红外吸收光谱与紫外荧光的区别
- 格式:ppt
- 大小:254.00 KB
- 文档页数:24
光谱技术与应用光谱技术是研究和应用光的科学,通过对物质与光的相互作用进行测量与分析。
光谱技术包括广泛的方法,如可见光、紫外光(UV)、红外光(IR)和拉曼光谱等,它们具有独特的特点和应用。
以下是光谱技术的一些常见应用:1. 可见光和紫外光吸收光谱:这种技术用于测量溶液或固体材料在可见光和紫外光范围内吸收的光的强度。
这可以帮助我们了解物质的组成、浓度、结构和稳定性。
它被广泛应用于颜色测量、化学分析和材料表征。
2. 红外光光谱:红外光谱技术用于测量物质对红外辐射的吸收。
它提供了关于物质振动和旋转能级的信息,可用于识别有机和无机化合物、分析功能团、研究分子结构等。
此外,红外光谱还可以应用于气体分析、食品检测和环境监测。
3. 拉曼光谱:拉曼光谱技术基于物质发生激发态的振转和旋转转变时发射或散射光粒子的能量差异,提供关于物质振动和分子结构的信息。
拉曼光谱在化学和材料科学中具有广泛应用,可以用于物质的成分分析、相变研究、微量探测等。
4. 荧光光谱:荧光光谱技术用于研究物质通过光吸收后再发射的光谱特性。
这种技术可以用来检测材料的组成、测量荧光强度和寿命,了解分子间相互作用,以及细胞和组织的荧光标记。
5. 质谱:质谱被用于分析物质的质量、质量比和结构。
质谱技术可以提供关于分子的质量、组成、分子结构、碎片图谱等信息。
它在化学、环境科学、生命科学等领域有广泛应用,包括物质探索、代谢组学、药物检测等。
除了上述应用,光谱技术在食品安全检测、医学诊断、环境监测、材料研究等领域都具有重要作用。
这些技术的研究和应用有助于我们更好地理解和探索物质的特性和行为,为科学研究和工业领域提供有价值的工具。
仪器分析复习材料仪器分析复习材料Ⅰ名词解释:内插法:图p153(⾃绘)透射率:T=I t /I 0吸光度与透射率关系A=-lgT朗伯⽐尔定律: A=ξ*L*C ;ξ=M/10*E (双波长法联⽴⽅程) 紫外分光仪器相对误差: RE=0.434△T/T*lgT 荧光效率=发射荧光量⼦数/吸收激发光量⼦数荧光强度 F=KC (ECL<0.05)不饱和度Ω=1+C+(N-H(和卤族))/2 核磁峰数=n+1受到不同相邻H 时,J 值相同峰数=(n+n ’+….)+1 J 值不同峰数=(n+1)(n ’+1)… 质谱分辨率 R=M ⼩/△M亚稳离⼦峰 M=M 2(裂解后)/M (裂解前)⽤于验证裂解产物⾊谱分辨率 R=2*(Tr2-Tr1)/(w1+w2) 分配系数 K Tr=To(1+K*V) 分配因⼦ k=Tr’/To理论塔板⾼度 n=16(Tr/w)2=5.54(Tr/w 1/2)2理论塔板数H=L/n⽓相⾊谱重要公式 H=A+B/u+Cu 归⼀化法公式 M i =Af i /∑Af 内标法公式 W=A i f i m s /A s f s m 相对⽐移值 R f =L/L 0Ⅳ课后习题答案第⼋章电位法和永停滴定法1.名词解释指⽰电极:在电化学电池中借以反映待测离⼦活度,发⽣所需电化学反应或激发信号的电极参⽐电极:在恒温恒压条件下,电极电位不随溶液中被测离⼦活度的变化⽽变化,具有基本恒定电位值的电极⽢汞电极:由汞、⽢汞及KCL溶液组成随CL-浓度⽽改变电位的电极. 在CL-浓度不变时多做参⽐2.简述离⼦选择电极类型以及测量⽅法离⼦选择电极类型:晶体膜电极、⾮晶体膜电极、⽓敏电极、酶电极测量⽅法:标准曲线法、标准⽐较法、标准加⼊法3.简述玻璃电极作⽤原理。
以及为什么使⽤前要在蒸馏⽔中浸泡⼀天原理:玻璃膜吸收⽔分形成⽔化凝胶层使凝胶层内Na+位点⼏乎全被H+占据,因SiO3对H+选择性更强导致H+进⼊多⽽Na+出来少产⽣了电位差8.总离⼦强度调节剂主要组成和作⽤,并说明加⼊的⽬的组成:离⼦强度调节剂、缓冲剂、掩蔽剂作⽤:1.提⾼离⼦强度 2.保持液接电位稳定 3.PH缓冲作⽤ 4.掩蔽⼲扰离⼦计算100ml⽔中测Ca2+ E=-0.0619 v 加⼊0.0731MOL/L Ca2+标准液1ML E=-0.0483求原Ca2+浓度解析利⽤标准加⼊法公式解(3.87*10-4)PH=4.00缓冲液⽤电级测E=0.209 当插⼊未知液时 E=0.312 E=0.088 E=-0.017求未知液的PH值利⽤计算ph公式计算(5.75 1.15 0.17)第九章光谱分析概论2.吸收光谱和发射光谱有何异同?同:都是通过物质能级的跃迁,量⼦化的以辐射形式进⾏的能量变化显⽰异:吸收光谱是物质选择性吸收辐射产⽣的谱线发射光谱是物质受刺激后,由激发态回到基态或较低能态时所释放的辐射强度谱线3.什么是分⼦光谱法,什么是原⼦光谱法原⼦光谱:明锐分⽴的现状光谱,每条线状光谱对应⼀定波长,只于原⼦离⼦性质有关,与原⼦、离⼦来源的分⼦⽆关。
部分一紫外光谱法与红外光谱法摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。
一、原理不同1、紫外光谱(UV)分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。
紫外光谱是由于分子中价电子的跃迁而产生的。
紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。
2、红外光谱法(IR)分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。
利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。
红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外2.5—25μm远红外波长25—500μm 。
二、仪器对比三、分析目的1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。
电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。
除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。
因此,紫外吸收光谱属电子光谱。
光谱简单。
2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。
3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。
红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究4、红外光谱的特征性比紫外光谱强。
各种光谱技术及其应用光谱技术是一种研究物质与光的相互作用的科学工具,它通过分析物质与光的相互作用过程中所产生的光谱信号来研究物质的性质和结构。
光谱技术在各个领域都有广泛的应用,如化学、生物学、物理学等,本文将介绍几种常见的光谱技术及其在不同领域中的应用。
1. 紫外-可见吸收光谱(UV-Vis)紫外-可见吸收光谱是一种常见的光谱技术,它通过测量物质对紫外或可见光的吸收能力来分析物质的特性。
UV-Vis光谱广泛应用于分析化学、环境监测、生物化学等领域。
例如,可以通过UV-Vis光谱来测定物质的浓度、了解反应过程中物质的变化、监测水体中的污染物等。
2. 红外光谱(IR)红外光谱是一种通过测量物质在红外辐射下吸收、散射或透射光的强度变化来研究物质结构和成分的技术。
红外光谱广泛应用于有机化学、药物研发、材料分析等领域。
例如,通过红外光谱可以确定有机化合物中的官能团、分析药物的含量、研究材料的结构等。
3. 核磁共振(NMR)核磁共振是一种通过测量核磁共振现象来研究物质结构和动力学的技术。
在核磁共振光谱中,物质中的原子核在外加磁场和射频场的作用下发生共振,从而产生一系列特征峰。
核磁共振在有机化学、生物化学、药物研发等领域具有重要的应用价值。
例如,核磁共振光谱可以用于识别有机化合物的结构、分析药物的纯度、研究生物大分子的结构等。
4. 荧光光谱荧光光谱是一种通过测量物质在受激发光照射下发射的荧光光强度来研究物质的性质和结构的技术。
荧光光谱广泛应用于生物学、医学、环境科学等领域。
例如,荧光光谱可以用于检测生物标记物、分析环境污染物、研究荧光染料的性质等。
5. 质谱(MS)质谱是一种通过分析物质的离子化状态和质量-电荷比来研究物质的成分和结构的技术。
质谱广泛应用于分析化学、药物研发、环境监测等领域。
例如,质谱可以用于确定有机化合物的分子结构、分析药物的代谢产物、检测环境中的有机污染物等。
6. 拉曼光谱拉曼光谱是一种通过测量物质在受激发光照射下发生拉曼散射光的强度和频率变化来研究物质的结构和成分的技术。
生物物理学中的光谱技术分析在生物物理学中,光谱技术是广泛应用的工具之一。
它可以用来分析生物分子的结构、动力学和相互作用等信息,进而为生物体系的研究提供了重要的数据支持。
本文将介绍生物物理学中常用的几种光谱技术,包括红外光谱、荧光光谱、紫外光谱和拉曼光谱等,并探讨其在生物领域中的应用。
一、红外光谱红外光谱是利用物质对红外光的吸收和散射来研究物质结构和成分的技术。
在生物领域中,红外光谱被广泛应用于生物分子的结构分析和催化酶活性的研究等方面。
以蛋白质为例,蛋白质的红外吸收峰可以提供其二级结构(α-螺旋、β-折叠、β-转角等)和氨基酸的结合状态等信息。
此外,红外光谱还可以测量酶催化反应中产生的化学键的变化,从而揭示其催化机理。
二、荧光光谱荧光光谱是利用物质发生荧光现象时发射的荧光信号来研究其结构和功能的技术。
在生物领域中,荧光光谱被广泛应用于蛋白质、核酸、细胞和药物等的结构和相互作用研究。
以蛋白质为例,荧光光谱可以反映蛋白质整体构象的变化,如受体和配体之间的相互作用等。
此外,荧光光谱还可以用于研究蛋白质的折叠状态、稳定性和配体的结合亲和力等。
三、紫外光谱紫外光谱是利用物质对紫外光的吸收和散射来研究物质结构和成分的技术。
在生物领域中,紫外光谱被广泛应用于蛋白质、核酸和细胞等的结构和相互作用研究。
以蛋白质为例,蛋白质的紫外吸收峰可以用来确定其三级结构(α-螺旋、β-折叠、β-转角等)和含量等信息。
此外,紫外光谱还可以用于研究蛋白质的热稳定性、强度和原位折叠等。
四、拉曼光谱拉曼光谱是利用物质散射入射光而发生的拉曼散射效应来研究物质结构和成分的技术。
在生物领域中,拉曼光谱被广泛应用于蛋白质、核酸和细胞等的结构和相互作用研究。
以蛋白质为例,拉曼光谱可以用来分析其二级结构(α-螺旋、β-折叠、β-转角等)和氨基酸的结合状态等信息。
此外,拉曼光谱还可以用于研究蛋白质的折叠状态和分子作用力等。
总结综合来说,光谱技术是生物物理学研究中不可或缺的工具之一。
分析仪器方法类型光分析法、电化学分析法、色谱分析法、质谱分析法、热分析法、分析仪器联用技术。
光谱1.红外光谱仪的主要部件包括:光源,吸收池,单色器、检测器及记录系统。
2.红外光谱是基于分子的振动和转动能级跃迁产生的。
3.物质的分子、原子、离子等都具有不连续的量子化能级,只有当某波长光波的能量与物质的基态和激发态的能量差相等时,才发生物质对某光波的吸收,也就是说物质对光的吸收是有选择性的。
4.红外光谱仪用能斯特灯与硅碳棒做光源。
5.在光谱法中,通常需要测定试样的光谱,根据其特征光谱的波长可以进行定性分析;而光谱的强度与物质含量有关,所以测量其强度可以进行定量分析。
6.根据光谱产生的机理,光学光谱通常可分为:原子光谱,分子光谱。
7.紫外可见分光光度计用钨丝灯,氢灯或氘灯做光源。
1、紫外可见吸收光谱法(U V)朗博比尔定律-单色光成立,测定大部分无机和部分有机物。
紫外光源:氘灯,可见光源:钨丝灯定性描述:几组峰是几种物质,波长是物质种类原理:利用物质的分子或者离子对某一波长范围的光的吸收作用,对物质进行定性、定量和结构的分析,所依据的光谱是分子或者离子吸收入射光特定波长的光而产生的光谱。
操作步骤:打开电源-预热(一般30分钟)-设定波长-模式选择-调零(将蒸馏水倒入比色皿-透射比打开盖子调为0,盖上盖子为100.吸光度相反。
连续几次)-模式调为吸光度(A)-润洗-上样-测定。
思考题:1.试简述产生吸收光谱的原因。
解:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁.同原子一样,分子吸收能量具有量子化特征.记录分子对电磁辐射的吸收程度与波长的关系就可以得到吸收光谱.2.紫外及可见分光光度计与可见分光光度计比较,有什么不同之处?为什么?解:首先光源不同,紫外用氢灯或氘灯,而可见用钨灯,因为二者发出的光的波长范围不同.从单色器来说,如果用棱镜做单色器,则紫外必须使用石英棱镜,可见则石英棱镜或玻璃棱镜均可使用,而光栅则二者均可使用,这主要是由于玻璃能吸收紫外光的缘故.从吸收池来看,紫外只能使用石英吸收池,而可见则玻璃、石英均可使用,原因同上。