材料测试与研究方法 第三章 红外吸收光谱
- 格式:ppt
- 大小:26.99 MB
- 文档页数:68
第三章红外光谱一、名词解释基频峰、倍频峰、费米共振、特征频率区、指纹区基频峰:当分子吸收一定频率的红外线后,振动能级从基态(V)跃迁到第一激发态(V1)时所产生的吸收峰,称为基频峰。
倍频峰:如果振动能级从从基态(V0)跃迁到第二激发态(V2)、第三激发态(V3)……所产生的吸收峰称为倍频峰。
费米共振:当一振动的倍频(或组频)与另一振动的基频吸收峰接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种倍频(或组频)与基频峰之间的振动偶合称费米共振。
特征频率区:特征谱带区有机化合物的分子中一些主要官能团的特征吸收多发生在红外区域的 4000~1500cm-2 。
该区域吸收峰比较稀疏, 容易辨认, 故通常把该区域叫特征谱带区。
红外光谱指纹区:红外吸收光谱上 1500~40Ocm-1的低频区, 通常称为,在核指纹区。
该区域中出现的谱带主要就是 C-X (X=C,N s O) 单键的伸缩振动以及各种弯曲振动对与确认有机化合物时用处很大。
二、填空1、红外光谱的产生就是由于------------------。
化学键的振动与转动跃迁。
2、红外光谱产生的条件就是-----------------------------、--------------------------------------------------。
红外光谱产生的条件就是辐射的能量满足跃迁所需能量,辐射引起偶极矩的变化。
3、红外光谱中影响基团频率位移的因素有外部因素与内部因素,内部因素主要有、、等。
此外,振动耦合、费米共振等也会使振动频率位移。
外部因素(样品的状态等)、电子效应(诱导效应、共轭效应与偶极场效应)、空间效应、氢键4、在红外光谱中,将基团在振动过程中有偶极矩变化的称为 ,相反则称为。
红外活性,非红外活性。
5、基团-OH与-NH,-C≡N与-C≡CH,-C=C-与-C=N-的伸缩振动频率范围分别就是cm-1, cm-1, cm-1。
第三章红外吸收光谱分析3.1概述3.1.1红外吸收光谱的基本原理红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。
当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。
如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。
图3-1为正辛烷的红外吸收光谱。
红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。
图中的各个吸收谱带表示相应基团的振动频率。
各种化合物分子结构不同,分子中各个基团的振动频率不同。
其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。
图3-1 正辛烷的红外光谱图几乎所有的有机和无机化合物在红外光谱区均有吸收。
除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。
吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。
吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。
也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。
因此,红外吸收光谱在化学领域中的应用,大体上可分为两个方面,即分子结构的基础研究和用于化学组成的分析。
首先,红外光谱可以研究分子的结构和化学键。
利用红外光谱法测定分子的键长和键角,以此推断出分子的立体构型;利用红外光谱法测定分子的力常数和分子对称性等,根据所得的力常数就可以知道化学键的强弱;由简正频率来计算热力学函数等等。