植物生理学复习提纲(第一章至第十二章)
- 格式:doc
- 大小:181.00 KB
- 文档页数:9
植物生理学复习资料植物生理学复习资料第一章植物的水分生理一、名词解释1、水势:指在同温度同压强下每偏摩尔体积水的化学势与纯水的化学势的差值。
单位Pa。
2、渗透势Ψs:由于细胞液中溶质的存在引起细胞水势降低的数值,为负值。
3、压力势Ψp:由于细胞壁的压力的存在引起细胞水势变化的数值。
4、衬质势Ψm:有图细胞胶体物质的亲水性和毛细管作用对自由水的束缚而引起水势降低的值,为负值。
5、蒸腾作用:植物体内的水分以气态方式通过植物体表面散失到外界坏境的过程称为蒸腾作用。
6、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度而使水分沿导管上升的力量称蒸腾拉力。
作用力>>根压。
7、永久萎蔫系数:当植物刚好发生永久萎蔫时土壤尚存留的含水量。
(占土壤干重的百分数)。
二、简答、填空、判断等(一)2、水在植物生命中的作用(1)水是原生质的主要组分(2)一切代谢物质的吸收运输都必须在水中才能进行(3)水可以保持植物的固有姿态(4)水作为原料参与代谢:水是光合作用、呼吸作用、有机物合成与分解的底物(5)水可以调节植物的体温、调节植物的生存环境3、水势:指在同温度同压强下每偏摩尔体积水的化学势与纯水的化学势的差值。
单位Pa。
(1)在任何情况下。
水分流动的方向总是由水势高的地方流向水势低的地方。
(2)典型细胞水势(Ψw)包含三部分:Ψw = Ψs(渗透势)+ Ψp(压力势)+ Ψm(衬质势)成熟细胞则Ψw = Ψs(渗透势)+ Ψp(压力势)(3)当细胞处于质壁分离时:水势= 渗透势;细胞吸水饱和时:水势 = 0.4、植物细胞吸水的方式(1)渗透式吸水(具液泡细胞)(2)吸胀式吸水(无液泡的细胞及干种子、依赖衬质势(3)代谢性吸水(直接耗能)发生频率(1)>(2)>(3)(二)植物根系对水分的吸收1、根系是植物吸水的主要器官,,其中根毛区为主要的吸水区域。
2、根系吸水方式及其动力:根系吸水有主动吸水(根压)和被动吸水(蒸腾拉力)两种形式。
植物生理学复习提纲至一、植物生理学概述-植物生理学的定义和研究对象-植物生理学的研究方法和技术二、植物生长与发育1.植物生长的基本特征-植物器官的生长过程-细胞分裂与伸长的关系-植物的生长曲线2.植物的发育过程-胚胎发育和胚乳发育-初级生长和次生生长-花器官的形成和开花三、植物的营养吸收与转运1.植物养分吸收与转运的机制-植物对养分的吸收途径-养分转运的方式和调节机制-养分转运与植物生长发育的关系2.植物的主要营养元素-氮的吸收与转运-磷的吸收与转运-钾的吸收与转运-其他营养元素的吸收与转运四、植物的光合作用1.光合作用的基本过程-光反应的发生地点和机制-光合电子传递链的组成和功能-光合作用的化学反应2.光合作用的调节和适应机制-光合速率的调节机制-气孔调节光合作用-植物对光质和光照周期的适应五、植物的水分和矿质元素的吸收与转运1.植物对水分的吸收与传导-植物根系的吸水机制-植物的导管系统和水分传导-水分与植物生长发育的关系2.植物对矿质元素的吸收与传输-离子的吸收途径和调节机制-离子的传导和储存-矿质元素与植物生长发育的关系六、植物的激素调节1.植物激素的分类和功能-奥斯替灵事件有关的植物激素-植物激素的合成和转运-植物激素对生物体的影响2.植物激素的作用机制和调节-激素受体的结构和功能-激素信号传导的途径和调节-激素参与植物生长发育的调控机制七、植物对环境的适应与响应1.植物对温度和光照的适应-温度对植物生长发育的影响-光照对植物生长发育的影响2.植物对水分和盐度的适应-干旱适应机制-盐碱适应机制3.植物与昆虫的互作关系-植物防御机制-昆虫攻击与植物逆境响应八、植物的信号传导与逆境响应1.植物的信号传导网络-植物细胞间的信号传导-植物激素与信号传导2.植物的逆境响应机制-干旱和盐碱胁迫的信号传导路径-植物逆境相关基因的表达调控九、植物生理学的应用1.植物生长调节剂的应用-激素类生长调节剂的应用-生物肥料和改良剂的应用2.植物对环境污染的响应-植物对重金属的吸收和转运-植物对土壤污染的修复能力。
植物生理学提纲绪论植物生理学是研究生命活动规律的科学。
它的内容可分为生长发育与形态建成、物质与能量转化、信息传递和信号转导等3个方面。
植物生理学的任务是将研究成果应用于一切植物生产事业中。
植物生理学的发展起源于农业生产活动。
随着物理、化学的发展,植物生理学亦有较大的突破。
植物生理学的发展大致可分为孕育时期、奠基与成长时期、发展时期等3个时期。
近二三十年来,植物生理学发展有4大特点:(1)研究层次越来越宽广;(2)学科之间相互渗透;(3)理论联系实际;(4)研究手段现代化。
第一章植物的水分生理重点与难点重点:(1)植物细胞对水分的吸收。
(2)植物根系对水分的吸收。
(3)气孔运动的机理。
(4)合理灌溉与节水农业。
难点:植物细胞水势的概念及其组成。
没有水,便没有生命。
水分在植物生命活动中起着极大的作用。
一般植物组织的含水量大约占鲜重的3/4。
细胞吸水有3种方式:扩散、集流和渗透作用,其中以渗透作用为主。
植物细胞是一个渗透系统,它的吸水决定于水势:水势=渗透势+压力势细胞与细胞(或溶液)之间的水分移动方向,决定于两者的水势,水分从水势高处流向水势低处。
根系吸水的途径有3种:质外体途径、跨膜途径和共质体途径,后两种途径统称为细胞途径。
植物的主要吸水器官是根部。
根部吸水动力有根压和蒸腾拉力两种。
根压与根系生理活动有关,蒸腾拉力与叶片蒸腾有关,所以影响根系活动和蒸腾速率的内外条件,都影响根系吸水。
植物不仅吸水,而且不断失水,这是一个问题的两个不同方面。
植物的水分生理就是在这样既矛盾又统一的状况下进行的。
维持水分平衡是植物正常活动的关键。
植物失水方式有两种:吐水和蒸腾。
蒸腾作用在植物生活中具有重要的作用。
气孔是植物体与外界交换的“大门”,也是蒸腾的主要通道。
气孔运动的机制有3种看法:淀粉一糖互变、钾离子的吸收和苹果酸生成。
糖、K+、苹果酸等进入保卫细胞的液泡,水势下降,吸水膨胀,气孔就开放。
气孔清晨开放以K+积累为主,午后气孔关闭则以糖减少为主。
内容提要第一章植物水分代谢一、名词解释:水势渗透势压力势衬质势水孔蛋白根压蒸腾拉力蒸腾效率蒸腾系数(需水量)水分利用效率水分临界期WUE二、自由水与束缚水:通常以自由水/束缚水的比值做为衡量植物代谢强弱和植物抗逆性大小的指标之一。
自由水参与各种代谢活动,自由水含量越高,植物的代谢越旺盛。
束缚水不参与代谢活动,束缚水含量越高,植物代谢活动越弱,越冬植物的休眠芽和干燥种子所含的水基本上是束缚水,这时的植物以微弱的代谢活动度过不良的环境条件。
三、植物细胞的水势:典型植物细胞水势由三部分组成,由渗透势ψ,压力势ψP和衬质势ψm构成。
即ψW=ψS+ψP+ψm;SψS是由于液泡中溶有各种溶质而造成的;ψP是由于外界压力存在而使水势增加的值,它是正值。
当细胞发生质壁分离时,ψP 为零。
处在强烈蒸发环境中的细胞ψP会成负值;细胞的ψm是由细胞内的亲水胶体对水分的吸附造成的。
干种子萌发前的吸水就是靠吸胀作用,分生组织中刚形成的幼嫩细胞,主要也是靠吸胀作用吸水。
未形成液泡的细胞具有一定的衬质势。
但当液泡形成后,细胞内的亲水胶体已被水分饱和,其衬质势已与液泡的渗透势达到平衡,所以成熟细胞的水势表示为ψW=ψS+ψP。
植物细胞吸水主要由两种形式,一种是渗透性吸水,一种是吸胀性吸水。
未形成液泡的细胞靠吸胀性吸水,形成液泡的成熟细胞主要靠渗透性吸水。
四、植物细胞是一个渗透系统:植物细胞具备了构成渗透系统的条件。
一个成长的植物细胞壁对水分和溶质都是可以自由通透的。
但细胞壁以内的质膜和液泡膜却是一种选择透性膜,它把液泡中的溶液与环境中的溶液隔开,如果液泡的水势与环境水势存在水势差,水分便会在环境和液泡之间发生渗透作用。
质壁分离现象说明了生活细胞的原生质具有选择透性。
细胞死后,原生质层的结构被破坏,丧失了选择透性。
可以用质壁分离现象来鉴定细胞的死活,还可用来测定细胞的渗透势等。
五、水分的移动:水分进出细胞取决于细胞与其外界的水势差。
植物生理学提纲绪论1、植物生理学的定义2、植物生理学的内容第一章植物的水分生理1、植物水分代谢的三个过程2、植物体内水分存在的状态(束缚水,自由水)3、水分在生命活动中的作用4、水分跨膜运输的途径和原理5、水分在植物体内的传输途径和根系吸水的途径6、蒸腾作用的生理意义、部位与方式7、气孔运动机理和影响气孔运动的困素8、影响蒸腾作用的外、内条件9、作物的需水规律以及灌溉的方法第二章植物的矿质营养1、植物矿质营养(mineral nutrition)的三个过程2、植物必需矿质元素的生理作用3、离子跨膜运输的分类和机理4、植物吸收矿质元素的部位和特点5、根部对溶液中矿质元素的吸收过程和影响根系吸收矿质元素的条件6、矿物质在植物体内的运输,分布和利用7、植物对氮、硫、磷的同化(基本步骤)8、合理施肥的生理基础和指标第三章物质代谢和能量转换1、光合作用的概念和重要性2、叶绿体的结构和光合色素的特性3、光合作用过程:光能的吸收与传递;光能的转换(光化学反应);电子传递、光合磷酸化作用;碳同化4、C3途径,C4途径和CAM途径的过程和比较5、光呼吸的定义及代谢途径6、影响光合作用的因素7、植物的光能利用率的定义和提高光能利用率的途径第四章植物的呼吸作用1、呼吸作用的概念和生理意义2、糖类呼吸分解的三条途径:EMP,TCA,PPP3、EMP,TCA,PPP的比较4、电子传递链的组成5、氧化磷酸化的概念和机理6、呼吸过程中能量的贮存和利用7、光合作用与呼吸作用的关系8、呼吸作用的调节和控制9、呼吸作用的指标及影响因素xx、呼吸作用与农业生产第五章植物同化物的运输1、有机物运输的途径、溶质种类2、运输的速率和溶质的种类3、韧皮部装载的定义和分类4、韧皮部卸出5、韧皮部运输的机理6、同化产物的分布(同化产物的配置和分配)第六章植物的次级代谢产物1、初级代谢产物和次级代谢产物的概念2、萜类,酚类和生物碱第七章细胞信号传导1、细胞信号转导的定义,受体的概念2、跨膜信号转换的概念和分类3、第二信使,蛋白可逆磷酸化和降解途径的概念第八章植物生长物质1、植物生长物质,植物激素的概念2、植物激素的种类(生长素类、赤霉素类、细胞分裂素类、乙烯和脱落酸,油菜素甾体类、茉莉酸类、水杨酸和多胺类等)和特点3、生长素(auxin, IAA) 在植物体内的分布和运输4、IAA的合成与降解5、IAA的信号转导途径6、IAA的生理作应和应用7、赤霉素(gibberellin, GA) 的分布与运输8、GA的信号转导途径9、GA的生理作用和应用xx、细胞分裂素(cytokinin,CTK)的分布和运输xx、CTK的信号转导途径xx、CTK的生理作用和应用xx、脱落酸(abscisic acid,ABA) 的合成、代谢与运输xx、ABA的信号转导途径xx、ABA的生理作用和应用xx、乙烯(ethylene, ETH) 的生物合成和代谢xx、ETH的信号转导途径xx、ETH的生理作用与应用xx、其他天然的植物生长物质一、油菜素内酯(BR)二、多胺三、茉莉酸(JA)四、水杨酸(SA)20、植物生长抑制剂、植物生长延缓剂、植物生长促进剂第九章植物的生长生理1、种子萌发的条件及生理生化变化2、细胞周期(cell cycle&cell division cycle)的概念和组成3、细胞伸长过程中细胞壁的变化以及与植物激素的关系4、细胞分化(cell differentiation)的概念,细胞全能性(totipotency)和极性(polarity)的概念及特点5、影响细胞分化的条件6、营养器官的生长特性及影响条件7、植物生长的相关性8、植物光形态建成、光敏色素、隐花色素等基本概念9、光敏色素基本性质与生理作用及作用机理xx、植物的运动(movement)概念,分类xx、生理钟的概念和特性第十章植物的生殖生理1、春化作用的概念、机理和应用2、光周期现象及农业上应用3、光周期诱导的概念和机理4、花器官形成的影响条件5、花形态发生中的同源异形基因和ABC模型6、受精的生理条件及代谢变化7、受精后雌蕊的代谢变化以及植物自交不亲和性第十一章植物的成熟和衰老生理1、种子成熟过程中的生理生化变化2、果实成熟过程中的生理生化变化3、种子休眠原因和破除方法4、衰老的生理生化变化5、程序性细胞死亡(programmed cell death,PCD)的分类,特征和机理6、脱落的生理生化变化以及与激素的关系第十二章植物的抗性生理1、胁迫的概念和分类2、植物对逆境的适应手段3、冷害的生理生化变化,机制4、冻害的机制以及植物的生理适应5、植物的抗热性6、植物的抗旱性7、植物的抗盐性8、植物的抗病性复习题:一、名词解释代谢库根压光周期现象渗透作用生理干旱生长生长调节剂束缚水双增益效应水势细胞信号转导压力势蒸腾作用植物生理学自由水三羧酸循环P/O比二、填空题CAM植物夜间通过羧化CO2生成大量运往液泡贮藏。
植物生理学期末复习第一章植物的水分代谢一、名词解释渗透势:由于溶液中溶质颗粒的存在而引起的水势降低值,亦称溶质势( ).渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
质外体途径:指水分通过细胞壁、细胞间隙等没有细胞质的部分移动,阻力小、速度快。
共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速率慢。
根压: 植物根部的生理活动使液流从根部上升的压力。
二、缩写符号翻译Mpa:兆帕斯卡 WUE:水分利用效率;ψw:细胞水势ψp:压力势;ψs:溶质势三、填空题1、一个典型细胞的水势等于ψs+ψp+ψm+ψg ;具有液泡的细胞的水势等于ψs+ψp ;干种子细胞的水势等于ψm 。
2、形成液泡后,细胞主要靠渗透性吸水。
风干种子的萌发吸水主要靠吸胀作用。
3、在细胞初始质壁分离时,细胞的水势等于渗透势,压力势等于0 。
4、相邻两细胞间水分的移动方向,决定于两细胞间的水势差异。
5、证明根压存在的证据有吐水和伤流。
6、叶片的蒸腾作用有两种方式:角质蒸腾和气孔蒸腾。
7、常用的蒸腾作用的指标有蒸腾速率、蒸腾比率和水分利用率。
四、选择题1、一般而言,进入冬季越冬作物组织内自由水/束缚水的比值:( B )。
A、升高;B、降低;C、不变;D、无规律。
2、有一个充分为水饱和的细胞,将其放入比细胞液浓度低10倍的溶液中,则细胞体积:( B )A、变大;B、变小;C、不变;D、可能变小,也可能不变。
3、已形成液泡的植物细胞吸水靠(B)。
A、吸涨作用;B、渗透作用;C、代谢作用;D、扩散作用。
4、已形成液泡的细胞,其衬质势通常省略不计,其原因是:( C )。
A、初质势很低;B、衬质势不存在;C、衬质势很高,绝对值很小;D、衬质势很低,绝对值很小。
5、将一个细胞放入与其渗透势相等的外界溶液中,则细胞( D )。
A、吸水;B、失水;C、既不吸水也不失水;D、既可能失水也可能保持平衡。
第一章:植物的水分生理1.水分的存在状态束缚水—被原生质胶体吸附不易流动的水特性:1.不能自由移动,含量变化小,不易散失2.冰点低,不起溶剂作用3.决定原生质胶体稳定性4.与植物抗逆性有关自由水—距离原生质胶粒较远、可自由流动的水。
特性:1.不被吸附或吸附很松,含量变化大2.冰点为零,起溶剂作用3.与代谢强度有关自由水/束缚水:比值大,代谢强、抗性弱;比值小,代谢弱、抗性强2.植物细胞对水的吸收方式:扩散、集流、渗透作用1)、扩散作用—由分子的热运动所造成的物质从浓度高处向浓度低处移动的过程。
特点:简单扩散是物质顺浓度梯度进行,适于短距离运输(胞内跨膜或胞间)2)、集流—指液体中成群的原子或分子在压力梯度下共同移动的现象。
特点:物质顺压力梯度进行,通过膜上的水孔蛋白形成的水通道3)、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
注:渗透作用是物质顺浓度梯度和压力梯度进行3.水势及组成1.Ψw = ψs + ψp + ψm + ψgΨs :渗透势Ψp :压力势Ψm :衬质势Ψg :重力势1)渗透势—在某系统中由于溶质颗粒的存在而使水势降低的值,又叫溶质势(ψπ)。
ψs大小取决于溶质颗粒总数:1 M蔗糖ψs > 1M NaCl ψs (电解质)测定方法:小液流法2)压力势—ψp 〉0,正常情况压力正向作用细胞,增加ψw;ψp〈 0,剧烈蒸腾压力负向作用细胞,降低ψw;ψp = 0,质壁分离时,壁对质无压力3)重力势—当水高1米时,重力势是0.01MP,考虑到水在细胞内的小范围水平移动,通常忽略不计。
4)衬质势—由于亲水性物质和毛细管对自由水的束缚而引起的水势降低值,ψm 〈 0,降低水势.2.注:亲水物质吸水力:蛋白质〉淀粉〉纤维素*有液泡细胞,原生质几乎已被水饱和,ψm = --0.01 MPa ,忽略不计;Ψg也忽略,水势公式简化为:ψw = ψs+ ψp*没有液泡的分生细胞、风干种子胚细胞:ψw = ψm *初始质壁分离细胞:ψw = ψs*水饱和细胞:ψw = 03.细胞水势与相对体积的关系◆细胞吸水,体积增大、ψsψpψw 增大◆细胞吸水饱和,体积、ψs ψp ψw = 0最大◆细胞失水,体积减小,ψs ψp ψw 减小◆细胞失水达初始质壁分离ψp = 0,ψw = ψs◆细胞继续失水,ψp 可能为负ψw《ψs4.蒸腾作用(气孔运动)小孔扩散律(边缘效应)——气体通过小孔表面的扩散速度不与小孔的面积呈正比,而与小孔的周长呈正比。
硕士研究生招生专业课植物生理学考试大纲* 为重点内容第一章绪论(一)植物生理学的研究内容(二)植物生理学的发展简史第二章植物细胞生理(一)植物细胞概述(二)植物细胞的亚显微结构与功能(三)植物细胞信号转导第三章植物水分生理(一)水分在植物生命活动中的意义(二)植物细胞对水分的吸收*(三)植物根系对水分的吸收*(四)植物蒸腾作用*(五)植物体内水分的运输(六)合理灌溉的生理基础第四章、植物的矿质营养(一)植物体内的必需元素*(二)植物对矿质元素的吸收与运输*(三)植物对氮*、磷、硫的同化(四)合理施肥的生理基础第五章、植物的光合作用(一)光合作用的概念及其重要性(二)叶绿体及光合色素*(三)光合作用光反应的机制 *(四)光合暗反应(碳同化)*(五)影响光合作用的因素*(六)提高植物光能利用率的途径第六章、植物的呼吸作用(一)呼吸作用的概念和生理意义(二)植物呼吸代谢途径*(三)植物体内呼吸电子传递途径的多样性*(四)植物呼吸作用的调节*(五)影响呼吸作用的因素*(六)呼吸作用的实践应用第七章、植物体内有机物质运输与分配(一)同化物运输*(二)韧皮部运输机制(三)同化物的装载与卸出*(四)同化物的配置与分配第八章、植物生长物质(一)植物生长物质的概念和种类*(二)植物激素的发现、化学结构(三)植物激素的代谢和运输*(四)植物激素的生理作用*(五)植物激素的作用机制*(六)植物生长调节剂(七)植物激素的常用测定方法第九章、植物生长生理(一)植物生长和形态发生的细胞基础(二)植物生长的相关性*(三)环境因子对生长的影响(四)植物生长的调控(基因、植物激素、环境因子等,含几种光受体参与的形态建成*)(五)植物的运动第十章、植物的生殖生理(一)幼年期与花熟状态(二)光周期诱导*(三)春化作用*(四)植物激素及营养物质对植物成花的影响(五)花器官的形成(六)受精生理*第十一章、植物的休眠、成熟和衰老生理(一)种子的休眠和萌发*(二)芽的休眠与萌发(三)种子的发育和成熟生理*(四)果实的生长和成熟生理*(五)植物的衰老生理和器官脱落第十二章、植物逆境生理(一)逆境与植物抗逆性*(二)水分逆境对植物的影响*(三)温度逆境对植物的影响*(四)盐害生理与植物的抗盐性*(五)其它逆境(六)植物抗逆性的研究方法。
第一章植物的水分生理1.水分的存在状态及其与代谢的关系。
2.植物细胞吸水的三种方式。
3.水势;各类细胞的水势组成:渗透势、溶质势、压力势。
4.根压、蒸腾拉力。
5.根系吸水的途径。
6.气孔运动机理。
7.水分沿导管上升的动力(蒸腾-内聚力-张力学说)。
第二章植物的矿质营养1.植物必需元素的确定方法。
2.植物细胞吸收溶质的四种方式。
3.根系吸收矿质元素交换吸附时进行交换的阴阳离子。
4.循环元素和非循环元素。
5.氮同化过程。
第三章光合作用1.光合色素;荧光;磷光。
2.光合作用3个阶段:原初反应、电子传递和光合磷酸化、碳同化。
3.反应中心色素;聚光色素;光合磷酸化;红降现象;双光增益效应。
4.光合膜上进行电子传递的4个复合体。
5.环式光合磷酸化和非环式光合磷酸化的区别。
6.卡尔文循环;C4途径;CAM途径。
及这三种途径的区别。
7.光呼吸(底物、作用细胞器)。
第四章植物的呼吸作用1.呼吸代谢的途径及意义。
2.生物氧化;氧化磷酸化;磷氧比。
3.两条呼吸链及抗氰呼吸电子传递途径。
4.5种呼吸传递体及主要组成成分。
5.抗氰呼吸;呼吸商。
第五章植物体内有机物的代谢几种重要的次级产物。
第六章植物体内有机物质的运输1.有机物的运输途径;运输方向;运输形式。
2.代谢源;代谢库;比集运量。
3.同化物运输的机制(3种学说)。
4.源库单位;5.分配原则。
第八章植物生长物质1.植物生长物质;植物激素;植物生长调节剂。
2.5大类植物激素。
3.生长素运输方式及运输机理。
4.5大类植物激素的运输方式、主要生理效应。
5.细胞分裂素和生长素在愈伤组织细胞分化中的作用。
第十章植物的生长生理1.种子萌发;萌发的标志;萌发的外界条件;种子的寿命。
2.萌发的生理生化变化。
3.植物组织培养;植物细胞全能性;外植体;分化;脱分化;再分化。
4.植物生长大周期。
5.外界条件对植物生长的影响;生长最适温度;协调最适温度。
6.植物生长的相关性。
7.植物的运动;运动方式。
第一章植物的水分生理1. 束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分2. 自由水:距离胶粒较远而可以自由流动的水分3. 自由水占总含水量的比例越大,则植物代谢越旺盛。
束缚水不参加代谢作用,因此束缚水含量与植物抗性大小有密切关系。
4. 水势:就是每偏摩尔体积水的化学势差。
5. 纯水的水势定为零,溶液的水势成为负值,溶液越浓,水势越低。
解释:溶液中的溶质颗粒降低了水的自由能。
所以溶液中的自由能要比纯水低。
溶液的水势也就成为负值。
6. 溶质势:也称渗透势。
渗透势是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。
压力势:是指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力与此同时引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。
压力势是由于膨胀和细胞壁压力的存在而增加水势的值。
重力势:是水分因重力下移与相反力量相等时的力量,它增加细胞水分自由能,提高水势的值,已正值表示。
衬质势:是指由于细胞脚踢物质如蛋白质,淀粉酶,纤维素等的亲水性和毛细管(凝胶内部的空隙)对自由水束缚而引起水势降低的值,以负值表示。
7. 植物细胞的相对体积变化和水势,渗透势和压力势之间的关系图解 P158. 根系吸水的途径有3条:质外体途径跨膜途径共质体途径三种途径的特点 P179. 根系吸水的动力有两种:根压和蒸腾拉力10. 内聚力学说:水分子内聚力比水柱张力大,故可使水柱不断。
11. 气孔之所以会作用的原因:(1)气孔之所以能够运动,与保卫细胞的结构特点有关。
(2)由于保卫细胞壁的厚度不同,加上纤维素微纤丝与胞壁相连,所以导致气孔运动。
12. 气孔运动主要受保卫细胞的液泡水势的调节,调节物有下列几种:(1)K+在保卫细胞质膜上有ATP质子泵分解由氧化磷酸化或光合磷酸化产生的ATP,将H+分泌到保卫细胞外,使得保卫细胞的PH升高。
同时使保卫细胞的质膜超极化,质膜内侧的电势变得更负,驱动K+从表皮细胞经过保卫细胞质膜上的钾离子通道进去保卫细胞,再进入液泡。
植物生理学复习要点第一章植物的细胞结构与功能(不多)1、细胞是生物体结构和功能的基本单位。
4、原生质胶体有两种存在状态,即溶胶和凝胶。
当原生质处于溶胶状态时,粘性较小,代谢活跃,生长旺盛,但抗逆性较弱;当原生质呈凝胶状态时,细胞生理活性降低,但对低温、干旱等不良环境的抵抗能力提高,有利于植物度过逆境。
5、穿越细胞壁、连接相邻细胞原生质(体)的管状通道被称为胞间连丝。
6、由胞间连丝把原生质体连成一体的体系称为共质体,而将细胞壁、质膜与细胞壁间的间隙以及细胞间隙等空间叫作质外体。
共质体与质外体都是植物体内物质和信息传递的通路。
7、胞间连丝的功能:物质交换和信息传递。
8、生物膜(biomembrane)是指构成细胞的所有膜的总称。
可分为质膜和内膜。
由蛋白质、脂类、糖和无机离子等组成。
10、膜脂相变指膜的脂质部分在一定条件下发生的物相转变。
膜在正常条件下是一种液晶状态,在较高温度下呈液相状态,在低温下即转变为固相状态。
12、生物膜的功能:分室作用、代谢反应和能量转换的场所、控制物质交换、信号识别与转导。
13、植物细胞亚微结构的三大系统:微膜系统、微梁系统、微球系统。
14、内质网(ER):粗糙型内质网(RER)和光滑型内质网(SER)15、微体可分为过氧化物体(参与光呼吸)和乙醛酸体(参与脂类代谢,生理功能是糖异生作用,即脂肪转变成糖类)。
通常认为微体起源于内质网。
16、微球系统是指细胞中由DNA-蛋白质或RNA-蛋白质组成的无膜结构的细胞器的总称。
包括核粒与核糖体(蛋白质生物合成的场所)。
第二章植物的水分代谢1、植物细胞内水分以束缚水和自由水两种状态存在。
束缚水--与细胞组分紧密结合不能自由移动、不易蒸发散失的水。
自由水--与细胞组分之间吸附力较弱,可以自由移动的水。
自由水比结合水含量更大6、水势:每偏摩尔体积中水的化学势差。
(了解水势、自由能、化学势)7、纯水的化学势μw0 规定为0。
溶液的水势为负值。
第一章之杨若古兰创作1.代谢是保持各种生命活动(如生长、繁殖、活动等)过程中化学变更(包含物资合成、转化和分解)的总称.2.水分生理包含:水分的接收、水分在植物体内的运输和水分的排出.3.水分存在的两种形态:束缚水和自在水.束缚水含量与植物抗性大小有密切关系.4.水分在生命活动中的感化:1,是细胞质的次要成分2,是代谢感化过程的反映物资3是植物对物资接收和运输的溶剂4,能坚持植物的固有姿势5.植物细胞吸水次要有三种方式:扩散,集流和渗透感化.6.扩散是一种自觉过程,指分子的随机热活动所形成的物资从浓度高的区域向浓度低的区域挪动,扩散是物资顺着浓度梯度进行的.适合于短距离迁徙.7.集流是指液体中成群的原子或分子在压力梯度下共同挪动.8.水孔蛋白包含:质膜内在蛋白和液泡膜内在蛋白.是一类具有选择性、高效转运水分的跨膜通道蛋白,只答应水通过,不答应离子和代谢物通过.其活性受磷酸化和水孔蛋白合成速度调节.9.零碎中物资的总能量分为;束缚能和自在能.10.1mol物资的自在能就是该物资的化学势.水势就是每偏摩尔体积水的化学势.纯水的自在能最大,水势也最高,纯水水势定为零.11.质壁分离和质壁分离复原景象可证实植物细胞是一个渗透零碎.12.压力势是指原生质体吸水膨胀,对细胞壁发生一种感化力彼此感化的结果,与惹起富有弹性的细胞壁发生一种限制原生质体膨胀的反感化力.13.重力势是水分因重力下移与相反力量相等时的力量.14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径.15.根压;水势梯度惹起水分进入中柱后发生的压力.16.伤流:从受伤或折断的植物组织溢出液体的景象.流出的汁液是伤流液.17.吐水:从未受伤叶片尖端或边沿向外溢出液滴的景象.由根压惹起.18.根系吸水的两种动力;根压和蒸腾拉力.19.影响根系吸水的土壤条件:土壤中可用水分,通气情况,温度,溶液浓度.20.蒸腾感化:水分以气体形态,通过植物体的概况(主如果叶子),从体内散失到体外的景象.21.蒸腾感化的生理意义:1,是植物对水分接收和运输的次要动力2,是植物接收矿质盐类和在体内运转的动力3,能降低叶片的温度22.叶片蒸腾感化分为两种方式:角质蒸腾和气孔蒸腾.23.气孔活动有三种方式:淀粉-糖互变,钾离子接收和苹果酸生成.24.影响气孔活动的身分;光照,温度,二氧化碳,零落酸.25.影响蒸腾感化的内在条件:光照,空气绝对湿度,温度和风.内部身分:气孔和气孔下腔,叶片内部面积大小.26.蒸腾速率取决于水蒸气向外的扩散力和扩散途径的阻力.27.水分在茎叶细胞内的运输有两条途径:经过活细胞和经过死细胞.28.根压能使水分沿导管上升,高大乔木水分上升的次要动力为蒸腾拉力.29.这类以水分具有较大的内聚力足以抵抗张力,包管由叶至根水柱不竭来解释水分上升缘由的学说,称为内聚力学说亦称蒸腾-内聚力-张力学说.第三章1. 为何说碳素是植物的生命基础?第一,植物体的干物资中90%以上是无机物资,而无机化合物都含有碳素(约占无机化合物分量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是构成所有无机物的次要骨架.碳原子与其他元素有各种分歧方式的结合,由此决定了这些化合物的多样性.2. 按照碳素养分方式的分歧分为自养植物和异养植物3. 自养植物接收二氧化碳,将其转酿成无机物资的过程称为植物的碳素同化感化.植物碳素同化感化包含细菌光合感化、绿色植物光合感化和化能合成感化.4. 光合感化:绿色植物接收阳光的能量,同化二氧化碳和水,建造无机物资并释放氧气的过程.5. 光合感化的次要性:(1)把无机物酿成无机物(2)蓄积太阳能量(3)环境呵护.6. 叶绿体由两层膜构成,分别称为内膜和外膜,内膜具有控制代谢物资进出叶绿体的功能,具选择性.基质成分主如果可溶性蛋白质(酶)和其他代谢活跃物资,呈高度流动性形态,具有固定二氧化碳的能力,淀粉在基质里构成和储藏.7. 光合感化的能量转换功能是在类囊体膜上进行的,所以类囊体膜又称为光合膜.8. 高等植物的光合色素有两类;叶绿素和胡萝卜素,排列在类囊体膜上.9. 叶绿素分子含有四个吡咯环,和四个甲烯基连接成一个大环,叫做卟啉环.镁原子居于卟啉环的地方.10. 叶绿素的四个特点?11. 类胡萝卜素分为胡萝卜素(橙黄色)和叶黄素(黄色).12. 叶绿素最大接收区:波长为640~660nm的红光部分和波长为430~450nm 的蓝紫光部分.13. 叶绿素溶液在透射光下呈绿色,而在反射光下呈红色(叶绿素a为血红光,叶绿素b为棕红光),这类景象称为荧光景象.14. 从第一单线态回到基态所发射的光称为荧光.15. 第一三线态回到基态时所发生的光称为磷光.16. 叶绿素a由叶绿素b演化过来,植物叶子呈现的色彩是叶子各种色素的综合表示,其中主如果绿色的叶绿素和黄色的类胡萝卜素两大类色素之间的比例.矿质元素、温度、光是影响叶绿素构成的次要身分.17.这类缺乏任何一个条件而禁止叶绿素构成使叶子发黄的景象称为黄化景象.1.光合感化根据需光与否分为光反应(类囊体膜)和暗反应(叶绿体基质)2.全部光合感化分为3大步调:原初反应(光能的接收、传递和转换过程);电子传递和光合磷酸化(电能转化为活跃的化学能);碳同化(活跃的化学能转化为波动的化学能过程).前两个过程为光反应,最初一个为暗反应.3.光合单位=聚光色素零碎+反应中间.4.叶绿体类囊体上的色素分为反应中间色素(少数特殊的叶绿素a,具光化学活性)和聚光色素(无光化学活性,有收集光能的感化,传到反应中间色素,绝大多数色素,又称为天线色素).5.光合反应中间是指在类囊体中进行光合感化原初反应的最基本的色素蛋白结构.光合反应中间至多包含光能转换色素分子、原初电子受体和原初电子供体.原初电子受体是指直接接受反应中间色素分子传来电子的物体.高等植物的最初电子供体是水,终极电子受体是NADP+.6.当光波大于685nm(远红光)时,虽然光子仍被叶绿素大量接收,但量子产额急剧降低.这类景象被称为红降.7.两种波长的光协同感化而添加光合效力的景象称为增益效应或爱默生效应.8.各种电子传递体具有分歧的氧化还原电位,根据氧化还原电势高低排列,呈“Z”形,电子定向转移,这就是光合感化中非轮回电子传递的方案.这一系列互相跟尾的电子传递称为光合链.9.PSⅡ次要由核心复合体、PSⅡ捕光复合体、放氧复合体等亚基构成.10.利用储存在跨类囊体膜的质子梯度的光能把ADP和无机磷合成为ATP的过程称为光合磷酸化.有两种方式:非轮回光合磷酸化和轮回光合磷酸化.11.化学渗透假说12.因为ATP和NADPH用于暗反应中二氧化碳的同化,两者合称为同化能力.13.碳同化是将ATP和NADPH中活跃的化学能,转换为储藏在糖类中波动的化学能,在较长时间内供给生命活动的须要.占植物体干重90﹪以上的无机物资都是通过碳同化并转化而成的.碳同化在叶绿体的基质中进行.14.高等植物固定二氧化碳的生化途径有3条:卡尔文轮回,C4途径和景天科酸代谢途径.15.因为卡尔文轮回中二氧化碳受体是一种戊糖,故又称还原戊糖磷酸途径.分3个阶段:羧化阶段、还原阶段和更新阶段.16.要发生一个PGAld(磷酸丙糖)分子须要3个二氧化碳分子,6个NADPH分子和9个ATP分子作为能量来源.17.卡尔文轮回的调节:①本身催化②光的调节(离子的挪动;通过铁氧还蛋白-硫氧还蛋白零碎;光添加Rubisco活性)③光合产品转运18.C4途径:初产品:OAA,CO2受体:PEP,羧化酶:PEPC.包含4个步调:羧化,转移,脱羧与还原,再生.19.C4植物比C3植物具有较强的光合感化?P7920.景天科酸代谢(CAM)的调节有两种:短期调节和持久调节.21.蛋白质、脂类和无机酸都是光合感化的直接产品.22.Pi和TP控制着蔗糖和淀粉合成途径中的几种酶.23.景天科植物特殊的CO2固定方式:早晨气孔开放,吸进CO2,在PEP羧化酶感化下,与PEP结合,构成OAA,进一步还原为苹果酸,积累于液泡中.白日气孔关闭,液泡中的苹果酸便运到胞质溶胶,在依附NADP苹果酸酶感化下,氧化脱羧,放出CO2,介入卡尔文轮回,构成淀粉等.24.81页的表25.植物的绿色细胞依附光照,接收氧气和放出二氧化碳的过程被称为光呼吸.26.光呼吸是一个氧化过程,被氧化的底物是乙醇酸,又称为乙醇酸氧化途径.27.因为光呼吸的底物乙醇酸是C2化合物,其氧化产品乙醛酸和其转氨构成的甘氨酸都是C2化合物,故也称这条途径为二碳光呼吸碳氧化环,简称C2环.28.为何说光呼吸的调节与外界条件密切相干?首先是氧气及二氧化碳的浓度,二氧化碳按捺光呼吸而促进光合感化,氧气则按捺光合感化而促进光呼吸.随着光强、温度、和pH的增高,光呼吸也加强,其实质是CO2和O2对RubP的竞争.29.光呼吸的生理功能;一种观点是,在干旱和高辐射期间,气孔关闭,CO2不克不及进入,会导致光按捺.此时光呼吸释放CO2,耗费多余能量,对光合器官起呵护感化,防止发生光按捺.另一种观点是,Rubisco同时具有羧化和加氧的功能,在有氧条件下,光呼吸虽然损失一些无机碳,但通过C2轮回还可回收75%的碳,防止损失过多.30.光合感化的目标是光合速率.真正光合速率=表观光合速率+呼吸速率31.影响光合感化的身分:光照、二氧化碳、温度、矿质元素、水分、光合速率的日变更.32.光按捺:光能超出光合零碎所能利用的数量时,光合功能降低的景象.第四章1.呼吸感化包含有氧呼吸和无氧呼吸.2.有氧呼吸指生活细胞在氧的介入下,把某些无机物资完好氧化分解,放出二氧化碳并构成水,同时释放能量的过程.3.无氧呼吸普通指在无氧条件下,细胞把某些无机物分解成为不完好的氧化产品,同时释放能量的过程.这个过程用于高等植物,习气上称为无氧呼吸,如利用于微生物,则称为发酵.4.呼吸感化的生理意义:①呼吸感化提供植物生命活动所须要的大部分能量②呼吸过程为其他化合物合成提供原料.5.呼吸感化糖的分解代谢途径有三条:糖酵解(EMP胞质溶胶)、戊糖磷酸途径(PPP胞质溶胶)和三羧酸轮回(TCA线粒体).6.无机物资在生物体细胞内进行氧化分解,生成二氧化碳、水和释放能量的过程,称为生物氧化.7.电子传递链亦称呼吸链,就是呼吸代谢两头产品的电子和质子,沿着一系列有顺序的电子传递体构成的电子传递途径,传递到分子氧的总过程.构成电子传递链的传递体分为氢传递体和电子传递体8.氢传递体传递氢(包含质子和电子),作为脱氢酶的辅助因子有:NAD、NADP、FMN、FAD9.电子传递体是指细胞色素体系和铁硫蛋白(Fe-S),它们只传递电子.细胞色素是一类以铁卟啉为辅基的蛋白质.10.植物线粒体的电子传递链位于线粒体的内膜上,由5种蛋白复合体构成:复合体Ⅰ(NADH脱氢酶),复合体Ⅱ(琥珀酸脱氢酶),复合体Ⅲ(细胞色素bc1)复合物,复合体Ⅳ(细胞色素氧化酶),复合体Ⅴ(ATP合酶,催化ADP和Pi改变成ATP)11.在生物氧化中,电子经过线粒体的电子传递链传递到氧,陪伴ATP合酶催化,使ADP和磷酸合成ATP的过程,称为氧化磷酸化感化.(化学渗透假说)12.磷/氧比(P/O ratio)线粒体氧化磷酸化的一个次要目标,指氧化磷酸化中每耗费1mol氧时所耗费的无机磷酸摩尔数之比.(解耦联剂)13.末端氧化酶是把底物的电子传递到分子氧并构成水或过氧化氢的酶.包含:细胞色素氧化酶和交替氧化酶.14.抗氰呼吸有什么生理意义?利用授粉②能量溢流③加强抗逆性15.植物呼吸代谢具有多样性,表示在哪?它表示在呼吸途径的多样性(EMP、TCA、PPP等)、呼吸链电子传递零碎的多样性(电子传递主路、几条歧路和抗氰途径)、末端氧化零碎的多样性(细胞色素氧化酶、酚氧化酶、抗坏血酸氧化酶、乙醇酸氧化酶、交替氧化酶).这些多样性,是植物在持久进化过程中对不竭变更的环境的适应表示.16.氧可以降低糖类的分解代谢和减少糖酵解产品的积累,这类景象称为巴斯德效应.(比较爱默生效应)17.一个细胞中ATP+ADP+AMP的腺苷酸库是恒定的.能荷就是ATP-ADP-AMP零碎中可利用的高能磷酸键的度量.能荷=[ATP]+1/2[ADP]/[ATP]+[ADP]+[AMP]18.呼吸感化的目标有呼吸速率和呼吸商.19.呼吸速率:用植物的单位鲜重、干重或原生质(以含氮量)暗示,或者在必定时间内所放出的二氧化碳的体积或所接收的氧气的体积来暗示.20.RQ(呼吸商)=放出的二氧化碳的物资的量/接收的氧气的量21.内部身分对呼吸速率的影响:分歧植物;同一植株分歧器官;同一器官的分歧组织;同一器官在分歧的生长过程中.内部身分:温度,氧,二氧化碳,机械损伤.22.因为温度升高10℃而惹起的反应速度的添加称为温度系数Q10=(t+10)℃时的速度/t℃时的速度23.为何无氧呼吸时间一久植物就会受伤死亡?①无氧呼吸发生酒精,酒精使细胞质的蛋白量变性②无氧呼吸利用葡萄糖发生的能量很少,植物要保持正常生理须要,就要耗费更多的无机物③没有丙酮酸氧化过程,很多由这个过程的两头产品构成的物资就没法继续合成.24.为何机械损伤会明显加快组织的呼吸速率?①氧化酶与其底物在结构上是隔开的,机械损伤使本来的间隔破坏,酚类化合物就会敏捷地被氧化②机械损伤使某些细胞改变成分生组织形态,构成愈伤组织去修补伤处,这些生长兴旺的生长细胞的呼吸速率,当然比本来休眠或成熟组织的呼吸速率快得多.第六章1.通过环割实验,证实无机物运输是由韧皮部担任,通过示踪法实验知次要运输组织是韧皮部里的筛管和伴胞.韧皮部内的运输是双向运输.运输的物资主如果水,其中溶解很多糖类,糖类中主如果非还原性糖,以蔗糖最多.利用蚜虫的吻刺法结合放射性核素示踪测定无机物运输品种.2.韧皮部装载是指光合产品从叶肉细胞到筛分子-伴胞复合体的全部过程.3.同化产品在细胞间的运输为短距离运输,经过维管零碎从源到库的运输为长距离运输.4.韧皮部装载的两条途径:质外体途径和共质体途径,即糖从某些点进入质外体(细胞壁)到达韧皮部或糖从共质体(细胞质)经胞间连丝到达韧皮部.5.韧皮部装载特点:沿浓度梯度进行;需能过程;具有选择性.6.韧皮部卸出是指装载在韧皮部的同化产品输出到库的接受细胞的过程7.同化产品卸出的两条途径:共质体途径(养分器官)和质外体途径(延存、生殖、储藏器官)8.筛管中溶液流(集流)运输是由源和库端之间渗透发生的压力梯度推动的学说称为压力流动学说.另两种无机物运输学说:胞质泵动学说和收缩蛋白学说.9.同化产品在植物体中的分布有两个水平:配置和分配.10.配置是指源叶中新构成同化产品的代谢转化.源叶的同化产品有三个方向:代谢利用;合成临时储藏化合物;从叶输出到植株其他部分.11.分配:新构成同化物在各种库之间的分布.12.分配方向的3个准绳:有生长中间;就近供应,同侧运输;分歧叶龄感化分歧.13.库强度=库容量×库活力.库容量指库的总分量(普通指干重),库活力指单位时间单位干重接收同化产品的速率.改变其中一个都会改变运输方式.14.库强度次要受膨压和植物激素调节.第七章1.生长发育是基因在必定时间、空间上顺序表达的过程.2.植物细胞旌旗灯号转导是指细胞藕联各种刺激旌旗灯号(包含各种内外源刺激旌旗灯号)与其惹起的特定生理效应之间的一系列分子反应机制.旌旗灯号转导可以分为4个步调:一是旌旗灯号分子与细胞概况受体的结合;二是跨膜旌旗灯号转换;3是在细胞内通过旌旗灯号转导收集进行旌旗灯号传递、放大与整合;4是导致生理生化变更(图7-1)3.对植物体来讲,环境变更就是刺激,就是旌旗灯号.旌旗灯号分为物理旌旗灯号和化学旌旗灯号.化学旌旗灯号也称为配体.旌旗灯号进入细胞后,终极惹起生理生化变更和形状反应.4.受体是指能够特导地识别并结合旌旗灯号、在细胞内放大和传递旌旗灯号的物资.细胞受体的特征是有特导性,高亲和力和可逆性.至今发现的受体大都为蛋白质.位于细胞概况的受体称为细胞概况受体.位于亚细胞组分如细胞核、液泡膜上的受体叫做细胞内受体.5.植物细胞概况受体次要有两品种型:G蛋白连接受体和类受体蛋白激酶6.类受体蛋白激酶本人是一种酶蛋白,具有胞外感受旌旗灯号的区域、跨膜区域和胞内的激酶区域.7.受体-配体结合的特点:①受体-配体结合具有较高亲和力②是可逆的③具有特异性④在必定的配体浓度下,配体与其受体的结合具有饱和性.8.旌旗灯号与细胞概况的受体结合以后,通过受体经过旌旗灯号转导进入细胞内,这个过程称为跨膜旌旗灯号转换.9.G蛋白也称为GTP结合调节蛋白,这类蛋鹤发挥调节感化时须要和GTP结合也就具有GTP酶的活性.G蛋白有两品种型,一是异源三聚体GTP结合蛋白,由α、β和γ三种亚基构成;二是小G蛋白.10.G蛋白介导的跨膜旌旗灯号转换是依附于本身的活化和非活化形态轮回来实现的.(P160图)11.通常将胞外旌旗灯号视为初级旌旗灯号,经过跨膜转换以后,进入细胞,还要通过细胞内的旌旗灯号分子或第二信使进一步传递和放大,终极惹起细胞反应.12.CaM(钙调蛋白)呈哑铃形,在其分子里有4个钙离子结合区.13.胞外刺激使PIP2(磷脂酰肌醇-4,5-二磷酸)转化成IP3(三磷酸肌醇)和DAG,激发IP3/Ca2+和DAG/PKC两条旌旗灯号转导途径,在细胞内沿两个方向传递如许的旌旗灯号零碎称为双旌旗灯号零碎.14.DAG(二酯酰甘油)激活PKC(蛋白激酶C),再使其他蛋白激酶磷酸化的过程称为DAG/PKC旌旗灯号传递途径.15. 蛋白质磷酸化与脱磷酸化分别由蛋白激酶(PK)和蛋白磷酸酶(PP)催化完成.这两种酶的协同感化调节细胞中“活性酶的含量”,使细胞对外界的刺激作出敏捷的反应.第八章1.植物生长物资是一些调节植物生长发育的物资.植物生长物资可分为两类;(1)植物激素(2)植物生长调节剂.植物激素是指一些在植物体内合成,并从发生的地方输送到别处,对生长发育发生明显感化的微量无机物;而植物生长调节剂是指一些具有植物激素活性的人工合成的物资.2. 植物激素有5类,既生长素类、赤霉素类、细胞分裂素类、乙烯和零落酸.3. 生长素在植物组织内呈分歧化学形态.从各种溶剂中提取的生长素称为自在生长素,而把通过酶解、水解或自溶感化从束缚物释放出来的那部分生长素,称为束缚生长素.自在生长素具有活性,而束缚生长素则没有活性.自在生长素和束缚生长素可彼此改变.4. 束缚生长素在植物体内的感化有几个方面;(1)作为储藏方式.(2)作为运输方式.(3)解毒感化(4)调节自在生长素含量.5. 生长素运输方式:一种和其他同化产品一样,通过韧皮部运输,运输速度约为1~/h,运输方向决定于两端无机物浓度差等身分的自在运输;另一种是仅局限于胚芽鞘、幼茎、幼根的薄壁细胞之间短距离单方向的极性运输.6. 生长素极性运输是指生长素只能从植物体的形状学上端向下端运输.生长素极性运输是一种主动的运输过程,缺氧会严重地障碍生长素的运输;生长素可以逆浓度梯度运输.生长素生物合成的前体主如果色氨酸.合成途径有4条:吲哚丙酮酸途径;色胺途径;吲哚乙腈途径;吲哚乙酰胺途径(存在于细菌里面).7. 生长素的降解有两方面:酶促降解和光氧化.8. 激素受体是指那些特异的识别激素并能与激素高度结合,进一步惹起生理生化变更的物资.生长素受体为位于内质网上的生长素结合蛋白1.9. 生长素引诱基因分两类:初期基因或初级反应基因;初期基因或次级反应基因.10. 生长素的生理感化:促进感化:P175按捺感化:按捺花朵零落,侧枝生长,块根构成,叶片衰老.11. 赤霉素是一种双萜,由4个异戊二烯构成.根据碳原子数分歧分为:C19和C20两类,前者包含的生长素品种大大多于后者,前者生理活性高,后者低.赤霉素都含羧酸,呈酸性,是调节植株高度的激素.也有自在赤霉素和结合赤霉素之分.12. 赤霉素在高等植物中生物合成的地位至多有3处:发育着的果实或种子;伸长着的茎端和根部.在细胞中的合成部位:质体,内质网,细胞质溶胶等处.合成前体为甲瓦龙酸.改变的分支点为GA12-醛13. 赤霉素的旌旗灯号转导途径:GA引发糊粉层发生α-淀粉酶;GA受体定位于糊粉层细胞质膜的外概况;cGMP,Ca2+和蛋白激酶可能是旌旗灯号两头体.Ca2+促进α-淀粉酶的释放.14. 赤霉素的利用:促进麦芽糖化,促进营摄生长,打破休眠,防止零落.15. 细胞分裂素类则是一类调节细胞分裂的激素,最早发现的是激动素.把具有和激动素不异活性的天然的和人工合成的化合物,都称为细胞分裂素(CK)16. 天然存在的细胞分裂素又分为游离的细胞分裂素和在tRNA中的细胞分裂素.17. 细胞分裂素在植物体内的运输次要从根部合成处通过木质部运到地上部,少数在叶片合成的细胞分裂素也可能从韧皮部运走.CK在根尖合成,前体为甲瓦龙酸和AMP,生物合成是在细胞的微粒体中进行.CK在细胞内的降解主如果由细胞分裂素氧化酶催化的.18. 乙烯合成部位为液泡膜内概况,前体为蛋氨酸,直接前体为ACC,途径为蛋氨酸轮回.19. 乙烯生物合成的酶调节:ACC合酶;ACC氧化酶;ACC丙二酰基转移酶.20. 乙烯代谢的功能是除去乙烯或使乙烯钝化,使植物体内的含量达到植物体生长发育须要的水平.按捺乙烯感化:Ag2+,EDTA,CO2..21. 乙烯受体的共同特征:N端跨膜3次,并具有乙烯结合位点;都具有与细菌二元组分类似的组氨酸激酶催化区域.22. 三重反应:按捺伸永生长(矮化),促进横向生长(加粗),地上部失去负向重力性生长(偏上生长).是植物对乙烯的特殊反应.23. S-ABA和R-ABA都具有生物活性,但后者不克不及促进气孔关闭.ABA运。
植物生理学提纲绪论一、植物生理学的定义与内容(一)定义(二) 植物生理学的内容1.生长发育与形态建成2.物质代谢与能量转化3.信息传递和信号转导第一篇植物的物质生产和光能利用第一章植物的水分生理植物水分代谢的三个过程:植物对水分的吸收、水分在植物体内的运输和水分的排除(散失).第一节一、植物体内水分存在的状态(一) 束缚水,自由水。
(二)自由水与束缚水的生理意义自由水直接参与植物的生理过程和生化反应,而束缚水不参与这些过程.自由水/束缚水比值较高时,植物代谢活跃,生长较快,抗逆性差;反之,代谢活性低、生长缓慢,但抗逆性较强。
二、水分在生命活动中的作用(一)水对植物的生理作用1.水是原生质的主要组分2.水直接参与植物体内重要的代谢过程3.水是许多生化反应和物质吸收、运输的良好介质4.水能使植物保持固有的姿态5.细胞的分裂和延伸生长都需要足够的水(二)水对植物的生态作用1.水是植物体温调节器2.水对可见光的通透性3.水对植物生存环境的调节植物对水分的需要,包括生理需水和生态需水两方面。
第二节植物细胞对水分吸收的方式:1 、扩散;2 、集流; 3 、渗透性吸水(主要). 一、扩散(diffusion)自发、顺着浓度梯度、适于短距离的(如细胞间)迁徙、速度很慢二、集流(mass flow)(一)特点:耗能、与浓度梯度无关、适于木质部中远距离(木质部)运输.(二)机理:1 、通过膜上的水孔蛋白(aquaporin)形成的水通道实施2 、水孔蛋白(1)种类:A 、质膜内在蛋白(plasma membrane intrinsic protein);B 、液泡膜上的液泡膜内在蛋白(tonoplast intrinsic protein ).(2)机理“滴漏”模型,活性受磷酸化和水孔蛋白合成速度调节---依赖Ca离子的蛋白激酶可使特殊丝氨酸残基磷酸化,水孔蛋白的水通道加宽,水集流通过量剧增;水通道变窄,水集流通过量减少。
第一章植物的水分生理名词:水势、溶质势、压力势、根压、水分临界期水势 : 每偏摩尔体积水的化学势差。
衡量水分反应或做功能量的高低。
溶质势:亦称渗透势,渗透势是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。
在标准压力下,溶液的渗透势等于溶液的水势,因为溶液的压力势为0压力势:由于细胞膨压的存在而提高的水势。
一般为正值(Ψp>0)。
根压:指由于植物根系生理活动使根部产生水势梯度,从而促使水沿导管上升的压力。
水分临界期:指需水量不一定多,但植物对水分不足最敏感,最易受害的时期。
1、植物含水量的一般规律,植物体内水分的存在状态。
植物的含水量是指植物所含水分占鲜重的百分数。
一般占鲜重的70%--90%同一种植物生长在不同环境,含水量也有差异(荫蔽,潮湿环境中的比向阳,干燥环境中的高)同意植株,不同器官和不同组织的含水量也有差异(根尖,芽尖,嫩叶等>树干>风干的种子)自由水和结合水2、植物细胞吸收水分的方式及特点。
三种方式:扩散、集流、渗透作用扩散依浓度梯度通过膜脂双分子层进入细胞。
集流依压力或重力梯度通过质膜的水孔蛋白进入细胞。
渗透沿跨膜的水势梯度而移动。
3、植物细胞水势的组成。
理解掌握植物细胞相对体积变化与水势各个组分的关系图解。
水势ψw=渗透势ψs+压力势ψp+衬质势ψm初始:ψp=0 ψs=ψw(初始质壁分离)吸水时:细胞膨胀ψs上升ψp上升→ψw上升饱和时:完全膨胀∣ψs∣=∣ψp∣ψw=0强烈蒸腾时:ψp为负值ψw<ψs4、植物根系吸水部位与途径,根系吸水的动力。
质外体途径:水分通过细胞壁、细胞间隙等没有细胞质的部分移动,阻力小,速度快跨膜途径:水分从一个细胞到另一个细胞,通过两次质膜和液泡膜共质体途径:水分从一个细胞的细胞质经过细胞连丝,移动到另一个细胞的细胞质,形成一个细胞质连续体,速度慢动力:根压、蒸腾拉力5、影响根系吸水的土壤条件。
土壤可利用的水分土壤的温度土壤通气情况土壤溶液浓度6、水分在植物体内运输途径。
植物生理学复习提纲第一章植物的水分代谢本章主要名词概念:水势、渗透势、衬质势、压力势、渗透作用、水通道蛋白(水孔蛋白)、暂时萎蔫与永久萎蔫、根压、蒸腾拉力、生理干旱、蒸腾系数(需水量)、蒸腾效率、气孔阻力与边界层阻力、水分临界期、水分利用效率、ψw、ψs(ψπ)、ψp、ψm、VPD、WUE本章理解思考要点:一、自由水/束缚水:通常以自由水/束缚水比值作为为衡量植物代谢强弱和植物抗逆性大小的指标之一。
自由水/束缚水比值高,,植物代谢强度大;自由水/束缚水比值低,植物抗逆性强。
正常代谢的组织自由水含量高,原生质呈溶胶状态;代谢弱的干种子缺少自由水,原生质呈凝胶状态。
二、水势与细胞吸水:水分从高水势处向低水势处移动。
水势差便是水分运转的动力。
1、植物细胞吸水主要有两种形式:一种是渗透性吸水,一种是吸胀性吸水。
未形成液泡的细胞靠吸胀作用吸水;形成液泡以后,细胞主要靠渗透性吸水。
2、人为规定纯水的化学势为零。
溶液中,溶质颗粒降低了水的自由能,所以,溶液中水的化学势(渗透势ψs)小于零,为负值。
细胞的压力势ψP是一种限制水分进入细胞的力量,它能增加细胞的水势,一般为正值。
但当细胞发生质壁分离时,ψP为零。
处在强烈蒸发环境中的细胞ψP会成负值。
吸胀力就是一种水势,即衬质势ψm。
未形成液胞的细胞具有一定的衬质势。
3、植物细胞是一个渗透系统,用质壁分离现象证明。
用质壁分离现象解决下列几个问题:(1)说明生活细胞的原生质具有选择透性或具有半透膜的性质;(2)鉴定细胞的死活;(3)用来测定细胞的渗透势等。
4、典型植物细胞水势由三部分组成: ψw=ψs+ψp+ψm成熟细胞的水势:ψw=ψS+ψp;成熟细胞发生初始质壁分离时,ψp 为零,ψw=ψs当细胞完全吸水膨胀时,ψw= 0,这时ψs=-ψp;没有液泡的细胞,ψp=0,ψs=0,ψw=ψm三、根系吸水:根系吸水有主动吸水与被动吸水两种方式。
主动吸水的动力是根压,被动吸水的动力是蒸腾拉力。
第一章植物的水分生理一、汉译英并解释名词渗透作用:osmosis,即水分从水势高的系统通过半透膜想水势低的系统移动的现象。
蒸腾比率:TR,即植物蒸腾丢失水分和光和作用产生的干物质的比值。
水分利用率:WUE,即蒸腾系数,指植物制造1g干物质所消耗的水分克数。
WUE是TR的倒数。
内聚力学说:cohesion theory,即以水分具有较大的内聚力足以抵抗张力,保证有叶至根水柱不断来解释水分上升原因的学说,也称蒸腾—内聚力—张力学说。
水分临界期:critical period of water,作物对水分最敏感时期,即水分过多或缺乏对产量影响最大的时期,各种作物的水分临界期不同,但基本都处于营养生长即将进入生殖生长时期。
二、问答题1、蒸腾作用有何生理学意义,测定蒸腾作用的指标有哪些?答:蒸腾作用是指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。
蒸腾作用的生理学意义有下列3点:(1)、蒸腾作用是植物对水分吸收和运输的主要动力。
(2)、蒸腾作用有助于植物对矿物质和有机物的吸收。
(3)、蒸腾作用能够降低叶片的温度。
测定蒸腾作用的指标有下列3种:(1)、蒸腾速率,即植物在一定时间内单位叶面积蒸腾的水量。
一般用每小时每平方米叶面积蒸腾水量的克数表示(g/㎡/h)。
(2)、蒸腾比率:TR,即植物蒸腾丢失水分和光合作用产生的干物质的比值。
一般用g/㎏表示,即植物消耗1kg水所形成干物质的克数。
(3)、水分利用率:WUE,即蒸腾系数,指植物制造1g干物质所消化的水分克数,WUE是TR的倒数。
2、根系吸水的三个途径是什么?答:根系吸水的途径有3种:质外体途径、跨膜途径和共质体途径等。
质外体途径是指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,不越膜,阻力小,速度快。
跨膜途径是指水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。
共质体途径是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
共质体途径和跨膜途径统称为细胞途径。
3、水势的计算答:水势等于渗透势加压力势加重力势加衬质势:Ψw =Ψs+Ψp+Ψg+Ψm. 重力势和衬质势通常忽略不计,所以Ψw =Ψs+Ψp,本公式适用于有液泡的细胞或细胞群。
渗透势是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。
渗透势一般为负值。
压力势是指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。
压力势往往是正值。
第二章植物的矿质营养一、汉译英并解释名词胞饮作用:pinocytosis,即细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。
离子通道:ion channel,即细胞膜中由通道蛋白构成的孔道,控制离子通过细胞膜。
离子泵:ion pump,存在于植物细胞膜上,其实质是ATP酶,当少量的K﹢、Na﹢等阳离子进入质膜时,活化ATP酶,促进ATP水解,释放能量,将离子逆着电化学梯度进行跨膜运输。
诱导酶:induced enzyme,是指植物本来不含某种酶,但在特定外来物质的诱导下,可以生成这种酶,这种现象就是酶的诱导形成,所形成的酶叫做诱导酶。
硝酸还原酶:NR,主要存在于高等植物的根和叶子中,在硝酸盐还原成亚硝酸盐的过程中起催化作用,还原硝酸盐,是一种诱导酶。
NiR:亚硝酸还原酶,存在于叶绿体或根中,在亚硝酸盐还原成铵的过程中起催化作用,还原亚硝酸盐。
GS:谷氨酰胺合成酶,在谷氨酰胺合成途径中起催化作用。
植物中有两类GS,一类在胞质溶胶,另一类在根部细胞的质体或叶片的叶绿体。
生物膜:biomembranes,即细胞的外周膜和内膜系统。
二、问答题1、植物细胞对溶质、矿物质的吸收方式和过程答:植物细胞吸收溶质可分为被动运输和主动运输两种。
细胞对矿质元素的吸收主要由膜转运蛋白完成。
膜转运蛋白主要有通道蛋白、载体蛋白和离子泵3种,分别进行通道运输、载体运输和泵运输。
通道运输中主要有K﹢、Cl﹢、Ca²﹢、NO3﹣等离子通道,离子通道的运输时顺着跨膜的电化学梯度进行的。
载体运输包括单向运输载体、同向运输器和反向运输器,它们可以顺着或逆着跨膜的电化学梯度运输溶质。
泵运输有H﹢—ATP酶、Ca²﹢—A TP酶和H﹢—焦磷酸酶3种类型。
它们都要依赖于ATP或焦磷酸中的自由能启动。
胞饮作用是非选择性吸收,在吸收水分的同时把水分中的物质一齐吸收。
植物根部对溶液中矿质元素的吸收过程:(1)、离子吸附在根部细胞表面根部细胞再吸收离子的过程中,同时进行着离子的吸附于解吸附。
(2)、离子进入根的内部离子从根部外面进入根的内部可通过质外体途径,也可以通过共质体途径。
(3)、离子进入导管或管胞可通过被动扩散和主动运输进入。
2、植物细胞吸收了硝酸盐如何转化成氮的?答:植物细胞吸收硝酸盐后,先由细胞质中的硝酸还原酶把硝酸盐还原为亚硝酸盐,再通过叶绿体或根中的亚硝酸还原酶把亚硝酸盐还原成铵,植物吸收铵盐中的氨后,植物体通过谷氨酰胺合成途径等多种途径将氨同化为氨基酸或酰胺。
高等植物不能利用有理氨,靠借固氮微生物固氮酶的作用,经过复杂变化将氮还原成铵,供植物利用。
3、矿质元素中的大量元素和微量元素、必需元素有哪些?答:植物对某些元素需要量相对较大,称为大量元素:氮、钾、钙、镁、磷、硫、硅等7种;植物需要量极微,稍多即发生中毒的来自土壤的元素,即微量元素:氯、铁、硼、锰、钠、锌、铜、镍和钼等9种。
必须矿质元素为:氮、磷、钾、硫、钙、镁、硅、铁、锰、硼、锌、铜、钼、氯、镍、钠共16种。
第三章植物的光合作用一、汉译英并解释名词原初反应:primary reaction,即光合作用的第一幕,指光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程。
反应中心:reaction centre,是将光能转变为化学能的膜蛋白复合体,其中包含参与能量转换的特殊叶绿素a对、脱镁叶绿素和锟等电子受体分子。
光合速率:photosynthetic rate,通常指单位时间、单位叶面积吸收CO2的量或放出O2的量,或者积累干物质的量。
光饱和点:light saturation point,在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。
CO2补偿点:CO2 compensation point,当光和吸收的CO2量等于呼吸放出的CO2,这个时候外界的CO2含量就叫做CO2补偿点。
RuBP:核酮糖—1,5—二磷酸。
PSⅠ:光系统Ⅰ,复合颗粒较小,直径为11nm,仅存在于基质片层和基粒片层的非垛叠区,功能是将电子从PC传递给铁氧还蛋白。
PSⅡ:光系统Ⅱ,复合体颗粒较大,直径为17.5nm,位于近内腔一侧,多存在于基粒片层的垛叠区,功能是利用光能氧化水和还原质体醌。
CAM:crassulacean acid metabolism,景天科酸代谢,许多肉质植物的一种特殊代谢方式,简称CAM。
它们的绿色组织上的气孔夜间开放,吸收并固定CO2,形成以苹果酸为主的有机酸;白天则气孔关闭,不吸收CO2,但同时却通过光合碳循环将从苹果酸中释放的CO2还原为糖。
二、问答题1、光合作用的光反应和碳反应在哪个部位进行?它们之间有什么关系?.答:叶绿体是进行光合作用的细胞器。
类囊体膜(光合膜)是光反应的主要场所,基质是碳反应的场所。
光反应与暗反应之间的关系:光反应和暗反应是一个整体,二者紧密联系。
光反应是暗反应的基础,光反应阶段为暗反应阶段提供能量(ATP)和还原剂(【H】),暗反应产生的ADP和Pi为光反应合成ATP提供原料。
2、简述PSⅠ、PSⅡ的结构与功能。
答:(1)、PSⅠ即光系统Ⅰ,复合颗粒较小,直径为11nm,仅存在于基质片层和基粒片层的非垛叠区。
PS Ⅰ核心复合体由反应中心色素P700、电子受体和PSⅠ捕光复合体(LHCⅠ)3部分组成。
PSⅠ功能是将电子从PC传递给铁氧还蛋白。
(2)、PSⅡ,即光系统Ⅱ,复合颗粒较大,直径为17.5nm,位于近内腔一侧,多存在于基粒片层的垛叠区。
PSⅡ主要由PSⅡ反应中心、捕光复合体Ⅱ(LHCⅡ)和放氧复合体(OEC)等亚单位组成。
PSⅡ功能是利用光能氧化水和还原质体醌。
3、光和磷酸化的两种类型的差异有哪些?答:光和磷酸化是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把ADP和磷酸合成为ATP的过程。
光和磷酸化有两个类型:非循环光和磷酸化和循环光和磷酸化。
它们的差异:4、简述碳同化的三个途径及C4植物比C3植物具有较强光合作用的原因。
答:碳同化的生化途径有3条,即卡尔文循环、C4途径和景天酸代谢(CAM)。
(1)、卡尔文循环:是所有植物光合作用碳同化的基本途径,大致分为3个阶段:①羧化阶段:核酮糖—1,5—二磷酸(RuBP)是CO2的接受体,在核酮糖—1,5—二磷酸羧化酶/加氧酶作用下,和CO2形成中间产物,后者再与1分子H2O反应,形成2分子的甘油酸—3—磷酸。
②还原阶段:甘油酸—3—磷酸被A TP磷酸化,在甘油酸—3—磷酸激酶催化下,形成甘油酸—1,3—二磷酸,然后在甘油醛—3—磷酸脱氢酶作用下被NADPH + H﹢还原,形成甘油醛—3—磷酸。
③更新阶段:更新阶段是PDAld经过一系列的转变,再形成RuBP的过程,也就是RuBP的再生阶段。
(2)、C4途径①羧化:C4途径的CO2的接受体是叶肉细胞质中的PEP,在烯醇丙酮酸磷酸羧激酶(PEPC)催化下,固定HCO3﹣(CO2溶解于水),生成草酰乙酸(OAA)。
②转变:叶肉细胞的叶绿体中的草酰乙酸经过NADP—苹果酸脱氢作用,被还原成苹果酸。
③脱羧与还原:四碳双羧酸在维管束鞘中脱羧后变成丙酮酸或丙氨酸。
释放的CO2通过卡尔文循环被还原成糖类。
④再生:C4酸脱羧形成的C3酸(丙酮酸或丙氨酸)再运回叶肉细胞,在叶绿体中,经过丙酮酸磷酸双激酶(PPDK)催化和ATP作用,生成CO2受体PEP,是反应循环进行。
(3)、景天酸代谢(CAM)途径在夜间细胞中磷酸烯醇式丙酮酸(PEP)作为二氧化碳接受体,在PEP 羧化酶催化下,形成草酰乙酸,再还原成苹果酸,并贮于液泡中;白天苹果酸则由液泡转入叶绿体中进行脱羧释放二氧化碳,再通过卡尔文循环转变成糖。
C4植物比C3植物具有较强光合作用,主要原因是C4植物叶肉细胞中的PEP羧激酶活性比C3植物的高许多倍,而且C4途径是把CO2运入维管束鞘细胞内释放,供卡尔文循环同化,因此起了“CO2泵”的功能,把外界的CO2“压”到维管束鞘,光呼吸降低,光合速率增快。
第四章植物的呼吸作用一、汉译英并解释名词有氧呼吸:aerobic respiration,指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成和H2O,同时释放能量的过程。