汽车行业燃烧器快速选型手册
- 格式:pdf
- 大小:1.41 MB
- 文档页数:23
燃烧器设计技术手册燃烧器是工业生产中广泛应用的设备,用于将燃料和空气混合后进行燃烧,生成热量或产生能量。
燃烧器的设计与选择对生产过程的效率和安全性具有重要的影响。
本手册旨在介绍燃烧器设计的相关技术和原理,以供工程师和技术人员参考。
一、燃烧器基本原理1.1 燃烧过程概述燃烧是指燃料与氧气在一定条件下发生的化学反应,产生热量、光和气体。
燃料、氧气和适当的温度、压力与时间是燃烧发生的必要条件。
1.2 燃烧器结构典型的燃烧器包括燃料喷嘴、空气送风装置、点火装置、燃烧区和排放装置。
燃料喷嘴是将燃料喷洒到燃烧区的装置,空气送风装置用于提供氧气,点火装置用于启动燃烧过程,燃烧区是燃烧反应发生的区域,排放装置用于排放燃烧产物。
1.3 燃烧器分类燃烧器根据不同的工况和应用需求可分为工业燃烧器、锅炉燃烧器、热风炉燃烧器、热处理炉燃烧器等。
二、燃烧器设计技术2.1 燃料选择与喷洒技术在燃烧器设计过程中,需要根据具体情况选择合适的燃料,并设计相应的喷洒技术。
常见的燃料包括液体燃料、气体燃料和固体燃料,在设计时需要考虑燃料的物性、喷洒方式和燃烧特性。
2.2 燃气送风技术空气是燃烧过程中必不可少的氧化剂,燃烧器设计要合理设计送风装置,以保证燃料与空气的充分混合。
送风装置还需考虑节能、稳定性和压力损失等因素。
2.3 点火系统设计点火系统是燃烧过程中的关键部件,确保燃烧起始的可靠性和稳定性。
根据不同的燃烧方式,点火系统可以采用电火花点火、火焰检测和监控、火焰探测器等多种方式。
2.4 烟气排放控制技术燃烧产物的排放对环境和生产安全具有重要影响,需要合理设计烟气排放装置,确保燃烧产物排放符合环保标准。
常见的排放控制技术包括烟气净化装置、废气处理装置等。
2.5 燃烧器控制系统燃烧器的控制系统是整个燃烧过程中的智能调节装置,需要具备自动控制、安全保护、数据采集和远程监控等功能。
常见的燃烧器控制系统包括PID控制、PLC控制、DCS控制等。
整体式超低 N O x 燃气燃烧器RS/E ULX 系列产品概览A Carrier Company RS/E ULX 系列 | 整体式超低 NOx 燃烧器氮氧化物排放能够低于40mg/Nm 3 @ 3,5% O 2(无 FGR, 需要合适的炉膛尺寸)对于一些应用,NO x 排放可以达到 30mg/Nm 3 @ 3.5% O 2 以下,但需要利雅路工程师确认。
超低 NOX整体式燃气燃烧器RS 68 - 510/E ULX 系列2RS 68/E ULXRS 120/E ULXRS 200/E ULXRS 310/E ULXRS 510/E ULX3RS/E ULX 系列 | 整体式超低 NOx 燃烧器为了满足日益增长的对极低 NOx 排放的要求,利雅路基于创新的 ULX 燃烧技术,开发了整体式的新系列燃烧器。
ULX 燃烧技术可以控制燃烧过程中产生的烟气量,从而达到最严格的排放限制。
在无需FGR装置以及从烟囱到燃烧器管道的情况下,ULX 燃烧技术可以使得氮氧化物排放低于40mg/Nm3 @3.5% O2 (无FGR,需要合适的炉膛尺寸)。
对于一些应用,NOx排放可以达到30mg/Nm3 @ 3.5% O2 以下,但需要利雅路工程师确认。
近年来,由于污染大幅度增加,全球各地特别是所有高度工业化国家,都对产品的性能、能效和排放物的减排更加关注。
ULX 燃烧技术—环境可持续发展的新里程碑新型 ULX 燃烧头采用燃气分级燃烧和废气内部再循环技术,极大地降低了 NOx 排放。
这种新型燃烧头体现了利雅路产品一贯的坚固性和可靠性。
集成的燃烧器数字控制系统,通过独立的伺服马达,可以控制每个出力点的空气和燃料比例,以达到非常低的 NOx 排放,同时使燃烧器保持极高的运行可靠性和安全性。
4>使用 ULX 燃烧技术后,无需再安装 FGR 系统通常所需要的管道系统,因此燃烧器的安装也更加方便。
>无需在锅炉房中安装管道,可以节省空间、时间和安装成本。
燃烧器说明书目录1、燃料2、制粉系统与煤粉管道3、百叶窗式水平浓淡分离燃烧器4、燃烧器安装和调整中的注意事项5、伸缩式油枪(简单机械雾化)6、常规点火油、蒸汽、空气管路(见供货厂家相关说明)7、微油点火及暖风器系统(见供货厂家相关说明)8.点火操作(常规说明,详见供货厂家相关说明)9、煤粉燃烧器的操作运行附图参考图纸1、燃料本工程为山东魏桥创业集团有限公司、山东魏桥铝电有限公司1217t/h供热机组锅炉,所用燃料如下:1.1、煤质分析资料:1.1.1 品种:贫煤1.2 燃油,0#轻柴油特性如下:粘度(20℃)恩氏粘度°E 1.2~1.67运动粘度mm2/s 3.8~8.0灰份,不大于 0.25%硫含量,不大于 0.25%水份,不大于痕迹C16H34 不小于 50%闪点不低于65℃凝固点不高于0℃低位发热量 41870kJ/kg(10000kcal/kg)2、制粉系统与煤粉管道2.1制粉系统本机组采用双进双出钢球磨正压冷一次风机直吹式,每台锅炉配三台MGS-4360型磨煤机,一台磨煤机对应二层一次风。
煤粉细度R90=6%。
,炉前原煤由储煤斗经过给煤机进入磨煤机两端的原煤入口,借助螺旋输送装置将原煤送入磨煤机筒内。
热风通过磨煤机两端中空轴内的热风管道进入磨煤机,热风携带煤粉通过磨煤机两端中空轴和热风管之间通道由输粉管道进入分离器,经分离合格的煤粉连同干燥介质形成风煤混合物(一次风)经煤粉管道输送至燃烧器进入炉膛内进行燃烧,不合格的煤粉返回磨煤机再次碾碎。
磨煤机出口风量(即一次风总量)由通过磨煤机的风量和旁路风量之和。
MGS-4360型双进双出磨煤机允许采用不对称运行方式,即从磨煤机一端进煤而在磨煤机一端或二端出煤粉,可以实现半台或一台磨煤机运行。
磨煤机的性能和运行请仔细阅读供货厂家说明书。
2.2煤粉管道2.2.1煤粉管道的布置本机组配三台磨煤机,于锅炉前呈一排布置。
由每台磨煤机两端出来的风粉混合物经2×4根煤粉管道引至两层四角煤粉燃烧器的两层煤粉喷嘴。
安装使用说明书威索(-weishaupt-)燃油燃烧器RMS 50/2-A,Ausf. ZM 830xxx01 - 1/200723目 录1 一般说明 52 安全须知 63 技术说明83.1 应用条件 83.2 基本功能 93.3 燃油调节系统 103.4 油泵12 3.4.1 独立泵站 12 3.4.2 一体式油泵 143.5 燃油预热系统153.6 燃烧控制管理器W-FM 的功能164 安装174.1 安装安全须知 174.2 运输及仓储 174.3 安装前的准备 174.4 供油系统 184.5 喷嘴的选择 214.6 燃烧器的安装 224.7 油管连接 244.8 电气线路连接255 调试及操作265.1 调试安全须知 265.2 首次调试前的措施 275.3 W-FM 的操作 285.4 调试及优化 295.5 调试后的措施 315.6 设备停止运行326 故障原因及排除336.1 燃烧器常见故障 336.2 W-FM 的故障3512345647 维护367.1 维护安全须知 367.2 维护工作367.2.1 测试、清洁和功能检查 367.3 混合装置的拆卸及安装 377.4 喷嘴的拆卸与安装 387.5 点火电极的设定 397.6 混合装置的设定和检查 407.7 混合装置伺服机构的拆卸和安装 417.8 风门伺服机构的拆卸和安装 427.9 回油调节器伺服机构的拆卸与安装438 技术数据448.1 燃烧器配置 448.2 工作范围表 448.3 适合的燃料 458.4 混合装置尺寸 458.5 允许的环境温度 468.6 电气数据 468.7 重量 468.8 燃烧器尺寸47附录48烟气分析 4878A1 一般说明本安装使用说明书 y 是设备的重要组成部分,必须始终保存于设备使用处备查;y部分内容在下列安装使用说明书中有所补充: - 燃烧控制管理器W-FM 使用说明书 - 燃油预热器使用说明书 y 只能由合格的专业人士进行指导;y 包含了有关设备安全的重要安装、调试及维护方面的说明;y对所有与设备运行有关人员均应引起注意。
一、燃油燃气锅炉燃烧器的选型原则燃油、燃气锅炉燃燃器的选用,应根据锅炉本体的结构特点和性能要求及燃料特性,结合用户使用条件进行选择。
燃烧器作为燃油、燃气锅炉的燃烧设备,它的主要作用是:1)提供锅炉所需的燃油或燃气,对油燃料还要选择油雾化方式,增大燃料与空气的接触面积。
对气体燃料还应选择燃烧方式。
2)供给燃烧所必须的空气,实现空气与油雾或燃气充分混合,保证燃烧完全。
3)保证点火迅速,燃烧稳定。
4)实现程序点火和燃烧过程的自动控制。
目前,用于中小型锅炉的燃油、燃气燃烧器多采用一体化结构,所以人们习惯上称其为燃烧机。
作为燃油燃烧器主要是由机壳、电动机、风机、风门、风门调节器、油泵、电磁阀、点火装置、火焰监测器、喷油嘴等组成。
作为燃气燃烧器,主要由机壳、电动机、燃气喷嘴、风机、风门、电磁阀、点火装置、火焰监测器等组成。
其中电动机与风机和油泵通过联轴节相连,电动机转动时,带动风机和油泵一起转动。
风机的作用是将燃烧需要的空气送入炉膛,并产生一定的压力。
调节风门调节器可控制进风门开度调节进风量。
油泵的作用是将燃料油加压,并为雾化提供能量。
控制电磁阀开关,可以控制燃油或燃气的供应。
小型燃烧器的喷油嘴或燃气喷嘴的数量可为一个或几个,并由不同的电磁阀分别控制,以达到分段燃烧的目的。
火焰监测器则起安全点火和熄火保护的作用。
另外,每台燃烧器上都带有一个控制器,燃烧器的点火运行程序就是通过它进行控制的。
虽然燃烧器的工作原理大致相同,结构也大同小异,但是不同结构或不同厂家生产的燃烧器性能却有很大的差别,因此在燃烧器选择时应注意以下几方面的问题:1.燃烧器出力与锅炉容量、锅炉烟风阻力需匹配由于一体化结构的燃烧器结构紧凑,安装方便,不需另配风机、油泵等设备,在中小型燃油、燃气锅炉中得到了广泛的应用。
而多数锅炉采用正压燃烧和运行,即锅炉的进风是由燃烧器的风机送入炉膛,燃烧产生的烟气也是以风机产生的压头为动力吹出炉膛排入大气。
此时,如果所选燃烧器的背压小于锅炉系统的烟风阻力,燃烧器就不能将烟气吹出炉外,也不能将空气送入炉膛,从而无法保证正常燃烧。
1、对自动化程度的要求用户在选用燃料以后,应根据自己的经济能力及设备的要求选用喷咀(烧咀)或选用全自动燃烧器.一般来讲,选用喷咀(烧咀)费用较低,但安全问题难以保证;选用全自动燃烧器费用较高,但不需自己配置风机及控制系统,操作方便,炉温控制精度高,安全有保障。
2、根据炉膛温度、压力(炉膛内压)选用订燃烧器时,一定要向生产厂家说明自己的设备属于那一类设备,炉膛内温度大概多高,炉膛是正压还是负压,压力大概有多高。
因为炉膛温度不同,燃烧器的结构也不同,选用的材料也不同;炉膛正压选用的燃烧器克服压力较高,炉膛负压选用的燃烧器克服压力较低。
3、燃料种类首先用户要确定自己用什么燃料,根据自己选用的燃料选用燃烧器。
比如,燃料是柴油选用燃油燃烧器;燃料是燃气选用燃气燃烧器。
4、根据地域选用不同地域对燃烧器的要求也不同。
如东北地市,燃烧器控制系统要求耐低温;新疆油田地区,要求控制系统又要耐高温,又要耐低温;高原地区气压低,标准燃烧器在此出力不够,选用时要考虑这一因素。
5、燃气燃烧器要根据燃气种类、燃气压力选用。
由于燃气种类多,热值相差大,所以某种燃气燃烧器只能烧该种燃气,如天然气燃烧器不能烧液化气或煤气;同样,煤气燃烧器也不能烧天然气或液化气。
高热值燃气燃烧器烧低热值燃气,燃烧器出力不够;反之,低热值燃烧器烧高热值燃气易发生不完全燃烧或爆炸事故。
燃烧器都有自己适应的燃气压力范围,如燃气压力不在燃烧器设计的压力范围以内,则不能使用。
燃气压力超出燃烧器设计压力范围,易发生危险;燃气压力低于燃烧器设计压力范围,则燃烧器出力不够。
如山西某地区进口国外锅炉十几台,附带的燃烧器为煤气燃烧器,压力15Kpa,而该地区煤气压力只有3-4 Kpa,国外燃烧器无法使用。
以上介绍了燃烧器的选用知识,用户如需要燃烧器,应说明以下几点:自己炉子类型(如属于加热炉、锅炉等)炉子温度(锅炉不必说明)炉膛压力(正压还是负压,压力多少)燃料种类,如燃料为燃气,需说明燃气种类、热值、压力、含焦油否。
燃油、燃气锅炉燃燃器的选用,应根据锅炉本体的结构特点和性能要求及燃料特性,结合用户使用条件进行选择。
燃烧器作为燃油、燃气锅炉的燃烧设备,它的主要作用是:1)提供锅炉所需的燃油或燃气,对油燃料还要选择油雾化方式,增大燃料与空气的接触面积。
对气体燃料还应选择燃烧方式。
2)供给燃烧所必须的空气,实现空气与油雾或燃气充分混合,保证燃烧完全。
3)保证点火迅速,燃烧稳定。
4)实现程序点火和燃烧过程的自动控制。
目前,用于中小型锅炉的燃油、燃气燃烧器多采用一体化结构,所以人们习惯上称其为燃烧机。
作为燃油燃烧器主要是由机壳、电动机、风机、风门、风门调节器、油泵、电磁阀、点火装置、火焰监测器、喷油嘴等组成。
作为燃气燃烧器,主要由机壳、电动机、燃气喷嘴、风机、风门、电磁阀、点火装置、火焰监测器等组成。
其中电动机与风机和油泵通过联轴节相连,电动机转动时,带动风机和油泵一起转动。
风机的作用是将燃烧需要的空气送入炉膛,并产生一定的压力。
调节风门调节器可控制进风门开度调节进风量。
油泵的作用是将燃料油加压,并为雾化提供能量。
控制电磁阀开关,可以控制燃油或燃气的供应。
小型燃烧器的喷油嘴或燃气喷嘴的数量可为一个或几个,并由不同的电磁阀分别控制,以达到分段燃烧的目的。
火焰监测器则起安全点火和熄火保护的作用。
另外,每台燃烧器上都带有一个控制器,燃烧器的点火运行程序就是通过它进行控制的。
虽然燃烧器的工作原理大致相同,结构也大同小异,但是不同结构或不同厂家生产的燃烧器性能却有很大的差别,因此在燃烧器选择时应注意以下几方面的问题:1.燃烧器出力与锅炉容量、锅炉烟风阻力需匹配由于一体化结构的燃烧器结构紧凑,安装方便,不需另配风机、油泵等设备,在中小型燃油、燃气锅炉中得到了广泛的应用。
而多数锅炉采用正压燃烧和运行,即锅炉的进风是由燃烧器的风机送入炉膛,燃烧产生的烟气也是以风机产生的压头为动力吹出炉膛排入大气。
此时,如果所选燃烧器的背压小于锅炉系统的烟风阻力,燃烧器就不能将烟气吹出炉外,也不能将空气送入炉膛,从而无法保证正常燃烧。
Selection conditions differ from the general air cylinder. Check the suitability with the selection guide.Step2Confirm working conditions1. Working pressure P (MPa)2. Load weight W (N)<Load weight>Consider the weight of the cylinder's guide rodwhen determining load weight.W = (load weight) + (jig weight) +(guide rod's weight: a) value.Calculate the guide rod's weight with calculationformulas in Table 1.Table 1 Guide rod weight calculation formula3. Installation direction<Operation method>Horizontal, vertical - rise, vertical - lower4. Stroke L (mm)5. Operation time t (s)6. Operation speed V (mm/s)Cylinder average operation speed Va calculation formula Va = L/t (mm/s)Step3Select the approximate cylinder sizeCylinder size (inner bore) calculation formulaF= /4 X D2D= 4F/ PD: Cylinder bore size (mm)P: working pressure (MPa)F: Cylinder's theoretical thrust (N)Obtaining with the theoretical thrustApproximate required thrust load weight x 2( x 2 in the load weight x 2 is whenthe load is 50% as the safety coefficient)<Example> Working pressure 0.5 (MPa)Load 25 (N)Required thrust is:25 (N) x 2=50 (N)Based on Table 2, the tube diameteris 12 and over to satisfy a theoreticalthrust of 50N and over at a workingpressure of 0.5MPa.D = 12st: Stroke length (mm)122123Step4Step4Calculating the weight (W) and each momentCalculate the static load (W 0) and moment (M) based on how the load is installed on the cylinder. W 0 = (load) + (jig weight) (N) M 1 = F 1 X 1 (N m) M 2 = F 2 X 2 (N m) M 3 = F 3 X 3 (N m) Use Fig. 2 for the F 1, F 2 and F 3 values Fig. 2 Moment calculation formulaCalculate each moment from the load, inertia force coefficient and eccentricity length.<Twisting moment>M 3 = F 3 X 3=10 X m 3 X 3<Bending moment>M 1 = F 1 X 1<Radial moment>M 2 = F 2 X 2 = 10 X m 2 X G X 2m 1:m 2:m 3:Load (N)3:2:1:Eccentricity distance (m) G :Inertia force coefficientFig. 3 Trends of moment of inertia coefficient for guided cylinder 13Selection guide124Step5Confirm load and movement based on operation direction*Refer to Page 126 for allowable lateral load.The load is determined based on use such as stability of the cylinder's operation speed, allowance, and life. General use should be within the range in Table 3.Lateral load functions during an eccentric load. The functioning lateral load must be less than the allowable lateral load in Table 2.Wmax 5-1 Confirm loadDuring horizontal operation The static load must be less than the allowable load Static load W 0 Value calculated in Step 4Allowable lateral load Wmax Select from Table2 based on the stroke (For the custom stroke length, select the longer standard stroke) W 0 WmaxTable 2 Allowable lateral load1During vertical operationThe load weight must be a value that applies the load in theoretical thrust Calculating the load Load WValue calculated in Step 2 Cylinder's theoretical thrust F = W/F X 100 (%)2Divide the bending moment and radial moment with the value in Table 4, and obtain the moment. The total moment must be 1.0 or less. Calculating the moment Bending moment M 1 Radial moment M 2M 1/M 1 max + M 2/M 2max 1.0Value calculatedin Step 45-2. Confirm moment11Selection guideTable 4 Allowable moment (N m)* Refer to page 126 for the allowable rotation torque.Table 6 STS and STL allowable energy absorption (E1)The value of the kinetic energy absorption performance providedby the cylinder's cushion mechanism differs based on the cylinder'sbore size.This energy is comparable to the values in Table 6 forthe guided cylinder.Confirm that the kinetic energy of the loadactually being used is absorbed by the cylinder'sown cushion performance.Allowable energy absorption of cylinder(E1) is unique to the cylinder. The values inTable 7 are used for STS and STL.Piston's kinetic energy (E2) calculation formulaW: load (N) Value calculated in Step 2V: Piston cushion rush speed (m/s)V=L/t X (1+1.5 X /100)L: Stroke length (m)T: Operation time (s): Load (%)E2=1/2 X W X V2 X (J)Cylinder's allowable energy absorption(Allowable energy absorption) > (Piston's kinetic energy)E1 > E2(Allowable energy absorption) < (Piston's kinetic energy)E1 < E2End of selectionThe twisting moment must be less than thetolerable rotation torqueTwisting moment M3 Value calculated inStep 4 Allowable rotation torqueM3max Select from Table 5 based on stroke length.(For a custom stroke length, select the longer standard stroke)M3 M3maxTable 5 Allowable rotation torque (N m)2101125。