计算智能chapter1 绪论
- 格式:pdf
- 大小:415.89 KB
- 文档页数:49
人工智能发展概要人工智能定义从1956年正式提出人工智能学科算起,40多年来,取得长足的发展,成为一门广泛的交叉和当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标人工智能理论进入21世纪,正酝酿着新的突破-人工生命的提出,不仅意味着人类试图从传统的什么是人工智能?定义1 智能机器(intelligent machine)能够在各类环境中自主地或交互地执行各种拟人任务人工智能是那些与人的思维、决•Schalkoff, 1990 人工智能是一门通过计算过程,力图理解和模仿智能行为的学科。
•Rick和Knight,1991 人工智能研究如何使计算机做事,而让人过得更好。
•Winston, 1992 人工智能是研究那些使理解、推理和行为成为可能的计算。
•Luger和Stubblefield,1993 人工智能是计算机科学中,与智能行为的自动化有关的一个分支。
1956年夏季,由麦卡锡(J. McCarthy)等美国年轻学者发起的首次人工智能研讨会标志着人工1. 形成期1956年到1961年可以说是AI研究的形成时2. 成长期•1961年以后进入AI研究成长期。
然而在成长期的早期(60年代),由于不适当地过分强调和依赖于符号逻辑和形式推理(AI形成期为AI建立的研究基础),导致了AI研究陷入基于弱法(weak methods)的纯学术研究的困境。
•所谓弱法就是通用问题求解策略,由于片面强调相应算法的通用性,忽视问题域特别信息的指导作用,容易引起所谓的组合爆炸问题。
•组合爆炸意指,复杂的问题涉及大量因素,由这些因素的适当组合而构成的可能解答的数目相当庞大,以至于再高速的计算机已无法在合理的时间内通过穷尽的枚举来找出正确答案。
•结果,弱法只能解决智力游戏(过河,九宫图)、玩具问题(积木块世界动作规划)等十分简单的问题。
60年代中期到70年代初,斯坦福大学研制的DENDRAL(用化学专业知识从质谱议数据推断有机化合物的结构)和MYCIN(人血液疾病诊断咨询系统)以及随之涌现的大批专家系统和建造工具的研制,使AI从纯弱法的研究困境中解脱出来,赋予新的生命力,以至引起八十年代初的AI大发展。
第四章计算智能(1)教学内容:本章讨论计算智能所涉及的领域和范围,计算智能的含义及它与传统的人工智能的区别。
介绍人工神经网络的由来、特性、结构、模型和算法;神经网络的表示和推理。
简要地介绍模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。
教学重点:计算智能;人工神经网络的结构、模型和算法,以及表示和推理。
教学难点:人工神经网络的结构、算法和推理;模糊数学的运算法则和模糊逻辑推理。
教学方法:课堂教学为主。
适当提问,加深学生对概念的理解。
教学要求:通过对本章的学习,使学生掌握人工神经网络的结构、模型和算法,了解计算智能所涉及的领域和范围,了解人工神经网络的特性、表示和推理,了解模糊数学的基本概念、运算法则、模糊逻辑推理和模糊判决等。
4.1概述教学内容:本节介绍计算智能所涉及的领域和范围,计算智能的含义及其与传统人工智能的区别。
贝兹德克提出的“ABC”,及它与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。
教学重点:计算智能的含义及其与传统的人工智能的区别。
教学难点:“ABC”及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。
教学方法:课堂教学。
教学要求:掌握计算智能的含义,了解计算智能与传统的人工智能有何区别。
了解贝兹德克提出的“ABC”及其与神经网络(NN)、模式识别(PR)和智能(I)之间的关系。
信息科学与生命科学的相互交叉、相互渗透和相互促进是现代科学技术发展的一个显著特点。
计算智能涉及神经网络、模糊逻辑、进化计算和人工生命等领域,它的研究和发展正是反映了当代科学技术多学科交叉与集成的重要发展趋势。
把神经网络(NN)归类于人工智能(AI)可能不大合适,而归类于计算智能(CI)更能说明问题实质。
进化计算、人工生命和模糊逻辑系统的某些课题,也都归类于计算智能。
计算智能取决于制造者(manufacturers)提供的数值数据,不依赖于知识;另一方面,人工智能应用知识精品(knowledge tidbits)。