表面张力的测定
- 格式:ppt
- 大小:283.50 KB
- 文档页数:6
表面张力的测量方法英才学院 1236305 张雍淋 6121810519液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。
目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。
1. 毛细上升法这个方法,研究的比较早,在理论和实际上都比较成熟。
如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。
此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。
图 1212cos ()g r r gh πσθπρρ=-1()2cos g ghrρρσθ-=其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角;ρ1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。
在和g实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。
毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。
应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。
2.最大气泡压力法如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如N2等)。
如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。
并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。
当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。
图2由于毛细管口位于液面下一定位置,气泡内外最大压差P ∆应该等于差压计的读数减去毛细管端面液位静压值。
当气泡进一步长大,气泡内的压力逐渐减小直到气泡逸出。
利用最大压差和毛细管半径即可计算表面张力:2r P σ∆=此方法与接触角无关,装置简单,测定快速;经过适当的设计可以用于熔融金属和熔盐的表面张力测量。
1、表面张力的测定:
测定方法有用达因笔测定和达因液测定二种方法。
使用达因笔测定,须购买38、42、52三种型号规格方能满足检测要求,另外达因笔价格比较贵,且使用时间较短,仅能维持2-3个月,因其达因数会随时间延长而下降,引起检测结果偏差。
使用达因液测定,比较实用。
薄膜表面电晕处理检验方法测定液配方,见表一。
注:以上比例均为体积比
用棉球醮取测定液,涂于倾斜30度的薄膜上,留下1cm宽10cm长的液膜,如果5秒钟内液膜不收缩,则判断该薄膜达到你要测定的表面张力值,如液膜收缩很少,便仍有0.8cm宽的液膜,则判断为接近你要
测定的表面张力值,如液膜完全破裂,收缩成颗粒状或条状小于0.5cm宽度,则判断为该薄膜未达到你要测定的表面张力值。
(如下图)。
测定表面张力的方法一、引言表面张力是物体表面上分子间相互作用力的一种体现,是液体表面分子所受到的内聚力的结果。
测定表面张力的方法有多种,本文将介绍其中的几种常见方法。
二、测定方法1. 悬滴法悬滴法是最常见的测定表面张力的方法之一。
首先,将待测液体滴在一根细管或毛细管的顶端,使其形成一个悬滴。
然后,通过调整悬滴的大小和重力平衡,可以测量得到悬滴的直径和长度。
根据悬滴的形状和重力平衡条件,可以计算出液体的表面张力。
2. 静水压法静水压法是一种间接测定表面张力的方法。
首先,将待测液体注入一个垂直装置的细管中,使其形成一定高度的柱状液体。
然后,通过测量液柱的高度和液体的密度,可以计算出液体的表面张力。
3. 振荡法振荡法是一种利用振荡频率来间接测定表面张力的方法。
在实验中,将一根细线或细棒放在液体表面上,然后施加一个小的外力使其振动。
通过测量振动的频率和细线或细棒的质量,可以计算出液体的表面张力。
4. 粘度法粘度法是一种利用液体的粘度来测定表面张力的方法。
在实验中,将待测液体注入一个粘度计中,通过测量液体在粘度计中的流动速度和粘度计的尺寸,可以计算出液体的表面张力。
5. 破裂法破裂法是一种直接测定表面张力的方法。
在实验中,将待测液体注入一个特殊的装置中,通过增加液体的体积,最终使液体破裂。
根据液体的破裂高度和装置的几何参数,可以计算出液体的表面张力。
三、实验注意事项1. 实验环境应保持清洁,避免灰尘和杂质对实验结果的影响。
2. 实验装置应精确校准,以确保测量结果的准确性和可靠性。
3. 实验过程中应注意安全,避免液体的溅出和烫伤等意外情况的发生。
4. 不同的测定方法适用于不同类型的液体,选择合适的方法进行测定。
四、应用领域测定表面张力的方法在许多领域都有广泛的应用。
例如,在材料科学中,测定表面张力可以帮助研究材料的润湿性和涂覆性能;在生物医学领域,测定表面张力可以用于研究细胞和组织的表面特性;在化学工程中,测定表面张力可以用于优化某些化学反应的条件等。
测定表面张力的实验操作指南实验目的:测定液体的表面张力。
实验原理:表面张力是指液体表面上的分子间相互作用力。
在液体表面,由于表面分子的自由度受到限制,分子受到的内力为向内收缩的趋势。
这种现象可以用表面张力来描述。
表面张力的测定可以通过测量液体在一定温度下液体表面凹陷或凸起的高度来进行。
根据杨氏方程,可以通过测量液体的凹陷或凸起高度来计算表面张力的数值。
实验器材:1. 试管:用于盛放液体的容器。
2. 量筒:用于测量液体的体积。
3. 针管:用于形成液体在试管内的凹陷或凸起。
4. 温度计:用于测量液体的温度。
5. 数码显微镜:用于测量凹陷或凸起的高度。
实验步骤:1. 准备工作:a. 所有器材清洗:将试管、量筒、针管等器材用去离子水进行清洗,确保无杂质干净。
b. 温度调整:将待测液体放置在恒温水浴中,使得液体温度稳定在实验所需温度。
2. 实验操作:a. 预备操作:用量筒准确地量取一定量的待测液体,并注入试管中。
b. 形成凹陷或凸起:将针管浸入试管中,先将其中的空气排出,然后再将针管插入待测液体,形成凹陷或凸起。
c. 测量凹陷或凸起的高度:使用数码显微镜,对凹陷或凸起的液面进行测量,并记录读数。
d. 温度控制:在每次测量前后,使用温度计对待测液体的温度进行测量,确保温度稳定。
3. 数据处理与计算:a. 计算表面张力:根据液体的凹陷或凸起高度数据,利用杨氏方程以及已知数据(液体密度、重力加速度等)计算表面张力。
b. 数据统计:对多次实验测得的数据进行平均,并计算测量误差。
实验注意事项:1. 液体选择:为了减小实验误差,最好选择具有较大的表面张力的液体进行实验。
2. 温度控制:确保待测液体在实验过程中温度保持稳定。
3. 器材清洗:要保证使用的器材干净,以避免干扰实验结果。
4. 液面读数:使用数码显微镜时,注意对液面的读数精度和准确性。
实验结果分析:根据实验测得的表面张力数值,可以得到不同液体表面分子间相互作用力的大小。
表面张力的测定实验报告表面张力的测定实验报告引言:表面张力是液体分子之间相互作用力的一种表现形式,是液体分子间吸引力的结果。
表面张力的测定对于研究液体性质、液滴形成和液体表面现象具有重要意义。
本实验旨在通过测定不同液体的表面张力,探究液体分子间相互作用力的差异,并了解表面张力对液体特性的影响。
实验材料与仪器:1. 三种不同液体:水、酒精、甘油2. 试管3. 滴管4. 皮尺5. 密度计实验方法:1. 实验前将试管清洗干净,以避免杂质对实验结果的影响。
2. 分别取一定量的水、酒精和甘油,注入三个试管中。
3. 将试管放在水平桌面上,注意保持试管外壁干燥。
4. 使用滴管,逐渐向试管中滴加液体,直到液体溢出试管口为止。
记录滴加液体的滴数。
5. 重复上述步骤3-4,每种液体进行三次测定,取平均值。
实验结果与数据处理:根据实验方法得到的滴加液体的滴数,可以计算出液体的表面张力。
根据液体表面张力的公式,表面张力=密度×重力加速度×滴数/滴液体积,可以得到不同液体的表面张力值。
通过对实验数据的处理,可以得到以下结论:1. 水的表面张力最大,酒精次之,甘油的表面张力最小。
这是因为水分子之间的氢键作用力较强,导致表面张力较大;酒精分子之间的作用力较弱,表面张力较水小;甘油分子之间的作用力最弱,表面张力最小。
2. 表面张力与液体的分子间相互作用力有关。
分子间相互作用力越强,表面张力越大;相反,作用力越弱,表面张力越小。
3. 表面张力对液体的性质有一定影响。
表面张力大的液体,易形成液滴,不易湿润固体表面;表面张力小的液体,不易形成液滴,易湿润固体表面。
讨论与改进:本实验通过测定不同液体的表面张力,探究液体分子间相互作用力的差异,并了解表面张力对液体特性的影响。
然而,由于实验条件的限制,实验结果可能存在一定误差。
为提高实验的准确性和可靠性,可以进行以下改进:1. 增加实验重复次数,取平均值,减小误差。
2. 使用更精确的仪器,如精密滴管和数字密度计,提高测量的准确性。
化学物质的表面张力测定正文:化学物质的表面张力测定化学物质的表面张力是指液体表面上分子间存在的一个相互作用力,它是液体表面在静平衡状态下能够抵抗外界压力的能力。
表面张力的测定对于许多化学领域具有重要意义,包括生物化学、材料科学等领域。
本文将介绍几种常见的测定表面张力的方法。
一、杜瓦诺等法杜瓦诺等法是一种常用的表面张力测定方法。
该方法利用杜瓦诺等方程,通过测量液滴的形状来计算表面张力。
首先,将待测液体滴入一容器中,使其形成一滴悬挂在容器口的液滴。
然后,通过变化容器口的尺寸,观察液滴的形状变化。
根据杜瓦诺等方程,可以推导出液滴的形状与表面张力间的关系。
通过测量液滴的形状参数,如直径和接触角等,可以计算出表面张力的数值。
二、浮力法浮力法是另一种常用的表面张力测定方法。
该方法利用浸泡在液体中的物体所受的浮力与表面张力的平衡关系来测定表面张力。
测定过程中,首先选取一个小而轻的物体,如铂经纬仪丝,将其浸入待测液体中。
通过测量物体在液面上浸没的深度,可以推导出物体所受的浮力大小。
由于物体所受的浮力与液体的表面张力之间存在着平衡关系,因此可以通过测量浸没深度来计算表面张力的数值。
三、气泡法气泡法是一种间接测定表面张力的方法,适用于较粘稠的液体。
该方法利用气泡在液体中的上升速度与表面张力的关系来测定表面张力。
测定过程中,首先要制备一个气泡发生器,使其能够稳定的产生气泡。
然后,将气泡放入待测液体中,观察气泡在液体中的上升速度。
通过测量上升速度,可以计算出表面张力的数值。
四、滴定法滴定法是一种基于液体的表面张力与溶液浓度的关系来测定表面张力的方法。
测定过程中,首先需要通过稀释液体,制备一系列不同浓度的溶液。
然后,利用滴定仪器将不同浓度的溶液滴入一容器中。
通过观察滴液在容器表面的扩散速度,可以判断液体表面张力的大小。
根据溶液浓度与表面张力的关系,可以计算出表面张力的数值。
总结:以上所介绍的几种方法是常用的测定化学物质表面张力的方法。
表面张力系数的测定实验报告表面张力系数的测定实验报告引言:表面张力是液体分子间相互作用力的结果,是液体表面上分子间吸引力导致的。
表面张力系数是表征液体表面张力大小的物理量,它的测定对于了解液体的性质和应用具有重要意义。
本实验旨在通过测定不同液体的表面张力系数,探究不同因素对表面张力的影响。
实验材料和仪器:1. 不同液体:水、酒精、植物油、肥皂水2. 试管3. 量筒4. 玻璃片5. 温度计6. 天平实验步骤:1. 准备工作:a. 清洗试管和玻璃片,确保无杂质。
b. 用量筒分别量取不同液体,并标记。
c. 将试管倒立放置,待液体静置后,取出液体。
2. 测定液体的质量:a. 使用天平称量试管,记录质量。
b. 将试管放入装有液体的容器中,使其完全浸没,待液体附着在试管壁上。
3. 测定液体的体积:a. 使用量筒将液体倒入试管中,记录体积。
b. 测量液体的温度,并记录。
4. 计算表面张力系数:a. 根据试管的质量和体积,计算液体的质量和体积。
b. 使用公式:表面张力系数 = (液体的质量× 重力加速度) / (液体的体积× 2 × 玻璃片的宽度) 计算表面张力系数。
实验结果和讨论:通过实验测得不同液体的表面张力系数如下:1. 水:0.072 N/m2. 酒精:0.022 N/m3. 植物油:0.034 N/m4. 肥皂水:0.045 N/m从实验结果可以看出,不同液体的表面张力系数存在差异。
水的表面张力系数最大,这是因为水分子间的氢键作用力较强,导致水具有较高的表面张力。
酒精的表面张力系数最小,这是因为酒精分子间的相互作用力较弱,导致酒精具有较低的表面张力。
此外,实验中还发现表面张力系数与温度有关。
随着温度的升高,液体分子的热运动增强,分子间的相互作用力减弱,表面张力系数也会减小。
这可以解释为什么水在高温下表面张力会降低。
结论:通过本实验的测定,我们了解到不同液体的表面张力系数差异,并发现表面张力系数与液体分子间的相互作用力和温度有关。
表面张力常用测定方法摘要本文介绍了常见的几种测定表面张力的方法,最大气泡压力法、包括毛细管上升法、吊环法/吊片法、悬滴法、滴重法/滴体积法。
关键词表面张力;最大气泡压力法;毛细管上升法;吊环法/吊片法;滴重法/滴体积法;悬滴法。
1最大气泡压力法[1]把毛细管捅入液体中,鼓入气体形成气泡,压力升高到一定值时气泡破裂,此最大压差值与表面张力有关,因此也称最大压力法。
此法设备简单,操作方便,但气泡不断生成可能扰动液面平衡,改变液体表面温度,因而要控制气泡形成速度,在实际操作中常用的是单泡法。
计算式:γ=p m /(2R)式中p m为最大压力;R为毛细孔半径。
2毛细管高度法毛细管插入液体后,按静力学关系,液体在毛细管内将上升一定高度,此高度与表面张力值有关。
本法理论完整,方法简单,有足够的精确度,是重要的测定方法。
欲得准确结果,应注意:(a)要求毛细管内径均匀; (b)液体与毛细管的接触角必须是零; (c)基准液面应足够大,一般认为直径应在10 c m以上液面才能看作平表面; (d)要校正毛细管内弯曲面上液体质量。
计算式:γ=RΔρg(h+r/3)/2式中,R为毛细管的滴头半径;Δρ为界面两相的密度差;g为重力加速度。
3拉环法把一圆环从液体表面拉出时最大拉力与圆环的内外半径可决定表面张力。
本法属经验力法,但设备简单,比较常用,要求接触角为零,环必须保持水平。
其计算式为:γ=PF/(4πR)式中,R为环的平均半径,P为由环法测定的拉力;F为校正因子。
4吊片法用打毛的铂片,测定当片的底边平行液面并刚好接触液面时的拉力,由此可算出表面张力,此法具有完全平衡的特点。
这是最常用的实验方法之一,设备简单,操作方便,不需要密度数据,也不要作任何校正。
它的要求是液体必须很好润湿吊片,保持接触角为零,测定容器足够大。
其计算式为γ=P/2(ι+d)式中,ι和d分别是吊片的宽度和厚度,由于吊片很薄,d可忽略不计,即γ=P/2ι5悬滴法[2]悬滴法实质上是滴外形法的一种。