二分法
- 格式:doc
- 大小:112.50 KB
- 文档页数:7
二分法
二分法是用计算机求解多项式方程时常用的一种方法.其基本思想是:若f (x 1)与f (x 2)的符号相反,则方程f (x )=0在区间(x 1,x 2)至少有一个根.取x 1和x 2的中点2
)(211x x r +=,将区间分为两半,然后比较f (r 1)与f (x 1)的符号,若符号相同,则根必在(r 1,x 2)之间,否则在(x 1,r 1)之间.这样每作一次二分法,含根区间恰好缩小一半.不断重复二分过程无限多次时,含根区间将缩为一点,显然这是不可能的.但是有一点是可以肯定的,即每重复二分一次,所得的中点ROOT 与根的距离便会越近.不断重复二分,便会构造出一系列的中点ROOT 1,ROOT 2,…,ROOT n ,当某个中点ROOT n 与根的距离小于规定的误差ξ
0时,该ROOT n 。
就是所解方程的近似解.。
二分法的世界观
二分法的世界观是指将事物分为两个对立面的思考方式。
在这种思维方式下,事物被划分为两个互相对立的阵营,如好与坏、对与错、黑与白等。
这种思考方式强调对立和区别,而不是联系和统一。
在二分法的世界观下,事物被视为非此即彼,缺乏中间地带。
这种思维方式在处理一些简单问题时可能有效,但在处理复杂问题时,可能忽略了事物的多样性和复杂性。
辩证法的思考方式与二分法不同,辩证法强调在对立中寻找统一,在统一中寻找对立。
辩证法认为事物是矛盾、冲突和变化的,矛盾和冲突推动事物的发展和变革。
单元-结构模型也是另一种思考方式,它将事物分为单元和结构两个部分。
单元是指组成事物的最小基本单位,结构是指单元之间的排列组合。
这种思考方式认为单元和结构不是完全对立的,而是可以相互转换的。
最小单元具有不可再分的性质,而结构可以产生和消灭。
二分法的世界观是一种将事物分为两个对立面的思考方式,辩证法则强调在对立中寻找统一,而单元-结构模型则将事物分为单元和结构两个部分。
不同的思考方式各有优缺点,应根据具体情况选择合适的思考方式来分析和解决问题。
二分法的基本原理和应用1. 什么是二分法二分法(Binary Search)是一种在有序数组中查找目标值的常用算法。
该算法通过将数组分成两半并检查目标值位于哪一半来递归地查找目标值。
2. 二分法的基本原理二分法的基本原理是不断将查找范围分成两半,然后通过比较目标值和中间值来确定目标值所在的区间。
具体步骤如下:1.初始化左侧指针为0,右侧指针为数组长度减1,表示查找范围为整个数组。
2.重复以下步骤,直到左侧指针大于右侧指针:1.计算中间指针的位置,即将左侧指针与右侧指针相加并除以2。
2.比较目标值和中间值:•如果目标值等于中间值,则返回中间指针作为结果,表示找到目标值。
•如果目标值小于中间值,则将右侧指针更新为中间指针减1,表示继续在左半区间查找。
•如果目标值大于中间值,则将左侧指针更新为中间指针加1,表示继续在右半区间查找。
3.如果循环结束,左侧指针大于右侧指针,说明目标值不存在于数组中,返回查找失败的结果。
3. 二分法的应用场景二分法主要应用于有序数组或有序列表中的查找问题。
由于二分法每次可以将查找范围减半,所以其时间复杂度为O(log n),比线性查找的时间复杂度O(n)更加高效。
以下是一些常见的二分法应用场景:•查找有序数组中的某个元素•在字符串中查找某个单词•查找某个数的平方根•查找某个数在数组中的插入位置•在旋转有序数组中查找目标值4. 二分法的优缺点4.1 优点•时间复杂度为O(log n),比线性查找更加高效。
•可以在有序数组或列表中快速查找目标值。
4.2 缺点•仅适用于有序数组或列表,对于无序数组或列表无法使用。
•添加、删除元素会破坏数组或列表的有序性,需要维护有序性。
5. 二分法的算法实现以下是一个用Python语言实现的二分法算法示例:```python def binary_search(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid elif nums[mid] < target: left = mid + 1 else: right = mid - 1 return -1 # 查找失败nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] target = 5 result = binary_search(nums, target) if result != -1: print(。
简单二分法简单二分法简介二分法是一种常用的查找算法,也被称为折半查找。
它是一种高效的算法,时间复杂度为O(logn)。
简单二分法是最基础、最常见的二分法。
原理简单二分法是在一个有序数组中查找某个元素。
它的核心思想是将数组分成两部分,如果目标元素比中间元素大,则在后半部分查找;否则在前半部分查找,直到找到目标元素或者确定目标元素不存在。
步骤1. 确定数组的左右边界left和right。
2. 计算中间位置mid = (left + right) / 2。
3. 如果目标值等于中间位置的值,则返回mid。
4. 如果目标值小于中间位置的值,则在左半部分继续查找,即right = mid - 1。
5. 如果目标值大于中间位置的值,则在右半部分继续查找,即left = mid + 1。
6. 重复步骤2-5,直到left > right或者找到目标元素为止。
代码实现下面是一个简单的二分查找实现:```pythondef binary_search(nums, target):left, right = 0, len(nums) - 1while left <= right:mid = (left + right) // 2if nums[mid] == target:return midelif nums[mid] < target:left = mid + 1else:right = mid - 1return -1```注意事项1. 数组必须是有序的。
2. 如果数组中有重复元素,无法保证返回的是第一个或最后一个出现的位置。
3. 如果目标元素不存在于数组中,需要特殊处理,例如返回-1或抛出异常。
4. 在计算mid时,要注意整数除法会向下取整,因此应该使用(left + right) // 2而不是(left + right) / 2。
5. 在确定边界时,要注意数组下标从0开始还是从1开始。
总结简单二分法是一种高效的查找算法,在处理有序数组时非常实用。
二分法解决实际问题及步骤
一、引言
二分法是一种简单而有效的数值计算方法,适用于求解连续函数在某一区间内的根。
在实际问题中,二分法可以应用于求解方程的根、求解函数的零点等。
本文将详细介绍二分法解决实际问题的步骤,帮助读者更好地理解和应用这一方法。
二、二分法的基本步骤
1.确定搜索区间
首先,我们需要确定搜索区间[a, b],其中a和b分别为区间的左右端点。
这个区间应包含我们所求的解。
2.计算区间的中点
在确定了搜索区间后,我们需要计算该区间的中点c,其中c=(a+b)/2。
3.判断中点值是否为所求
接下来,我们需要判断中点c的值是否为我们所求的解。
如果函数在c处的值为0,则c即为所求的解。
如果函数在c处的值不为0,则需要继续搜索。
4.根据判断调整搜索区间
根据判断结果,我们需要调整搜索区间。
如果函数在c处的值大于0,说明解在区间[a, c]内,我们将b调整为c;如果函数在c处的值小于0,说明解在区间[c, b]内,我们将a调整为c。
5.重复步骤2-4,直到找到解或区间长度小于预设精度
重复步骤2-4,直到找到解或区间长度小于预设精度。
预设精度可以根据实际情况设定,通常取一个很小的正数,例如1e-6。
当区间的长度小于这个预设精度时,我们可以认为已经找到了解。
6.输出解或报错
最后,如果找到了解,输出该解;如果未找到解,则报错。
7.结束程序
完成以上步骤后,程序结束。
二分法的算法描述
二分法算法描述
二分法是一种常用的算法,也称为折半查找法。
它的基本思想是将一个有序的数组分成两个部分,然后判断目标值在哪个部分,再在该部分中继续进行查找,直到找到目标值或者确定目标值不存在为止。
二分法的算法描述如下:
1. 首先,确定数组的左右边界,即左边界为0,右边界为数组长度减1。
2. 然后,计算出数组的中间位置,即中间位置为左右边界之和除以2。
3. 接着,判断目标值与中间位置的值的大小关系,如果目标值小于中间位置的值,则在左半部分继续查找,否则在右半部分继续查找。
4. 如果目标值等于中间位置的值,则直接返回中间位置。
5. 如果左右边界相遇,但是目标值仍未找到,则说明目标值不存在,返回-1。
6. 如果目标值在左半部分,则将右边界设为中间位置减1,继续执行步骤2。
7. 如果目标值在右半部分,则将左边界设为中间位置加1,继续执行步骤2。
二分法的时间复杂度为O(log n),比线性查找的时间复杂度O(n)要快得多。
因此,在需要查找有序数组中的元素时,二分法是一种非常高效的算法。
二分法的应用场景很多,例如在搜索引擎中,可以使用二分法来查找关键词在文档中的位置;在游戏中,可以使用二分法来查找玩家的位置等等。
二分法是一种非常实用的算法,可以大大提高查找效率,值得我们在编程中多加应用。
二分法算法二分法算法,也称为二分查找算法,是一种常用的查找算法。
它的基本思想是将已排序的数组分成两部分,然后通过比较目标值与数组中间元素的大小,来确定目标值可能存在的区域,然后再在这个区域内继续使用二分法查找。
这个过程不断重复,直到找到目标值或确定目标值不存在为止。
在开始之前,我们先来了解一下二分法算法的原理。
假设我们要在一个有序数组中查找目标值。
首先,我们取数组的中间元素,然后将目标值与中间元素进行比较。
如果目标值等于中间元素,那么就找到了目标值;如果目标值小于中间元素,那么目标值可能存在于数组的左半部分;如果目标值大于中间元素,那么目标值可能存在于数组的右半部分。
根据这个比较结果,我们可以将查找范围缩小一半,然后再在这个范围内继续使用二分法查找。
这个过程不断重复,直到找到目标值或确定目标值不存在为止。
二分法算法的时间复杂度是O(log n),其中n为数组的大小。
这是因为每次查找都将查找范围缩小一半,所以最多需要进行log n次查找。
相比于简单的线性查找算法,二分法算法的效率更高。
但是二分法算法有一个前提条件,就是数组必须是有序的。
如果数组无序,那么需要先对数组进行排序,然后再使用二分法算法进行查找。
下面我们通过一个具体的例子来说明二分法算法的应用。
假设有一个有序数组arr,长度为n,我们要查找目标值target。
首先,我们可以设置两个指针left和right,分别指向数组的第一个元素和最后一个元素。
然后,我们计算出中间元素的索引mid,将中间元素与目标值进行比较。
如果中间元素等于目标值,那么就找到了目标值;如果中间元素大于目标值,那么目标值可能存在于数组的左半部分,我们将right指针更新为mid-1;如果中间元素小于目标值,那么目标值可能存在于数组的右半部分,我们将left指针更新为mid+1。
然后,我们继续在更新后的查找范围内使用二分法查找,直到找到目标值或确定目标值不存在为止。
二分法算法的应用场景有很多,比如在有序数组中查找目标值、在有序矩阵中查找目标值等。
⼆分法(⼀):⼆分法的基本思想⼆分法是⼀个⾮常⾼效的算法,它常常⽤于计算机的查找过程中。
先玩⼀个⼩游戏。
预先给定⼀个⼩于100的正整数x,让你猜,猜测过程中给予⼤⼩判断的提⽰,问你怎样快速地猜出来?这样猜测最快,先猜50,如果猜对了,结束;如果猜⼤了,往⼩的⽅向猜,再猜25;如果猜⼩了,往⼤的⽅向猜,再猜75;…,每猜测1次就去掉⼀半的数,就这样可以逐步逼近预先给定的数字。
这种思想就是⼆分法。
在⽤⼆分法进⾏查找时,查找对象的数组必须是有序的,即各数组元素的次序是按其值的⼤⼩顺序存储的。
其基本思想是先确定待查数据的范围(可⽤ [left,right] 区间表⽰),然后逐步缩⼩范围直到找到或找不到该记录为⽌。
具体做法是:先取数组中间位置(mid=(left+right)/2)的数据元素与给定值⽐较。
若相等,则查找成功;否则,若给定值⽐该数据元素的值⼩(或⼤),则给定值必在数组的前半部分[left,mid-1](或后半部分[mid+1,right]),然后在新的查找范围内进⾏同样的查找。
如此反复进⾏,直到找到数组元素值与给定值相等的元素或确定数组中没有待查找的数据为⽌。
因此,⼆分查找每查找⼀次,或成功,或使查找数组中元素的个数减少⼀半,当查找数组中不再有数据元素时,查找失败。
⼆分法查找是⼀种⾮常⾼效的搜索⽅法,主要原理是每次搜索可以抛弃⼀半的值来缩⼩范围。
其时间复杂度是O(log2n),⼀般⽤于对普通搜索⽅法的优化。
⼆分法的适⽤情况⼀般满⾜以下⼏点:(1)该数组数据量巨⼤,需要对处理的时间复杂度进⾏优化;(2)该数组已经排序;(3)⼀般要求找到的是某⼀个值或⼀个位置。
【例1】⼆分查找。
有若⼲个数按由⼩到⼤的顺序存放在⼀个⼀维数组中,输⼊⼀个数x,⽤⼆分查找法找出x是数组中第⼏个数组元素的值。
如果x不在数组中,则输出“⽆此数!”。
(1)编程思路。
设有⼀数组a[n],数组中的元素按值从⼩到⼤排列有序。
⽤变量low、high和mid分别指⽰待查元素所在区间的下界、上界和中间位置。
二分法是一种常用的数学和计算机科学中的算法,它可以用来解决一些搜索和排序问题。
二分法最早的历史可以追溯到古代中国的数学家和天文学家。
在古代中国,数学家们使用的一种方法是将一个数列分成两部分,然后通过比较两部分的大小来确定中间位置的数值。
这种方法被称为“二分法”,因为它将数列分成了两部分。
在欧洲,最早使用二分法的是意大利数学家Fibonacci。
他在13世纪的著作《算盘书》中提到了一种使用二分法的方法,用于求解黄金分割比。
后来,这种方法被广泛应用于数学领域,并成为了一种重要的数学工具。
在计算机科学中,二分法最早被用于解决搜索问题。
1945年,计算机科学家Karl Schmidt 和Warren Weaver在他们的一篇论文中提出了使用二分法来解决搜索问题的方法。
这种方法后来被称为“二分查找法”或“折半查找法”。
随着计算机技术的发展,二分法在计算机科学中变得越来越重要。
它被广泛应用于各种算法和数据结构中,例如排序算法、查找算法和哈希表等。
二分法的高效性和可靠性使得它成为计算机科学中的一种重要算法。
二分法
1.引言
代数方程的求根问题是一个古老的数学问题。
理论上,次代数方程在复数域内一定有个根(考虑重数)。
早在16世纪就找到了三次、四次方程的求根公式,但直到19世纪才证明大于等于5次的一般代数方程式不能用代数公式求解,而对于超越方程就复杂的多,如果有解,其解可能是一个或几个,也可能是无穷多个。
一般也不存在根的解析表达式。
因此需要研究数值方法求得满足一定精度要求的根的近似解。
2.二分法的基本原理与方法
2.1 原理
首先确定有根区间,将区间二等分, 通过判断f(x)的符号, 逐步将有根区
间缩小, 直至有根区间足够地小, 便可求出满足精度要求的近似根。
2.2.方法
①为了确定根的初值,首先必须圈定根所在的范围,称为圈定根或根的隔
离。
②在上述基础上,采取适当的数值方法确定具有一定精度要求的初值。
③对于代数方程,其根的个数(实或复的)与其次数相同。
至于超越方程,
其根可能是一个、几个或无解,并没有什么固定的圈根方法
④求方程根的问题,就几何上讲,是求曲线y=f(x)与x轴交点的横坐标。
3. 二分法求根过程及实现
3.1求根过程
设方程f(x)=0在区间[a,b]内有根,二分法就是逐步收缩有根区间,最后得出所求的根。
具体过程如下
① 取有根区间[a,b]之中点, 将它分为两半,分点 ,通过判断f(x1)符号缩小有根区间 ② 对压缩了的有根区间 施行同样的手法,
即取中点 ,将区间 再分为两半,然
后再确定有根区间 ,其长度是 的
二分之一
③ 如此反复下去,若不出现 ,即可得出一 系列有根区间序列:
上述每个区间都是前一个区间的一半,因此 的长度
当k →∞时趋于零,这些区间最终收敛于一点x* 即为 所求的根 。
每次二分后,取有根区间 的中点
作为根的近似值,得到一个近似根的序列
该序列以根x*为极限
只要二分足够多次(即k 足够大),便有
这里ε为给定精度,由于 ,则
[]
2
2
,b a 2222b a x +=
[]22,b a []
33,b a []22,b a 0
)(=k x f [][][][] ⊃⊃⊃⊃=k k b a b a b a b a ,,,,2211)
(2
1
)(21111a b a b a b k k k k k -==-=---- []k k b a ,)
(21
k k k b a x += ,,,,,210k x x x x ε<-k x x *
[]
k k b a x ,*∈k
k k k a
b a b x x 2
2*-=-≤
-k
k k k k a b a b a b 2
211-=-=-++
当给定精度ε>0后,要想 成立,只要 取k 满足
即可,亦即当:
时,做到第k 次二分,计算得到的 就是满足精度要求的近似根 。
在程序中通常用相邻的 与 的差的绝对值或 与 的差的绝对
值以及|f(x)|是否小于ε来决定是否继续二分下去。
3.2算法实现
ε
<-k x x *ε<-)(21
a b k 2
lg lg )lg(ε
--≥
a b k k
x k x 1-k x k a k b
4.例题分析
例:用二分法求方程x=3-lgx在区间(2,3)内的近似值解:
原方程可化为x+lgx-3=0
因为当x=2时,x+lgx-3≈-0.698970004<0
当x=3时,x+lgx-3≈0.477121255>0
所以在区间(2,3)必存在一点使x+lgx-3=0
当x=2.5时,x+lgx-3≈-0.102059991<0
当x=3时,x+lgx-3≈0.477121255>0
所以在区间(2.5,3)必存在一点使x+lgx-3=0
当x=2.5时,x+lgx-3≈-0.102059991<0
当x=2.75时,x+lgx-3≈0.189332694>0
所以在区间(2.5,2.75)必存在一点使x+lgx-3=0
当x=2.5时,x+lgx-3≈-0.102059991<0
当x=2.75时,x+lgx-3≈0.189332694>0
所以在区间(2.5,2.75)必存在一点使x+lgx-3=0
当x=2.5时,x+lgx-3≈-0.102059991<0
当x=2.625时,x+lgx-3≈0.044129308>0
所以在区间(2.5,2.625)必存在一点使x+lgx-3=0
当x=2.5625时,x+lgx-3≈-0.382911412<0
当x=2.625时,x+lgx-3≈0.044129308>0
所以在区间(2.5625,2.625)必存在一点使x+lgx-3=0 因为2.5625≈2.6,2.625≈2.6
所以方程x=3-lgx在区间(2,3)内实根的近似值是x≈2.6(精确到0.1)
5.方法总结
5.1分法解题的基本步骤:
1)计算f(x)的有根区间[a,b]端点处的值f(a),f(b)。
2)计算f(x)的区间中点的值f((a+b)/2)。
3)进行函数值的符号比较。
4)根据误差估计二分到一定次数达到精度,从而求得近似值
5.2二分法的优缺点
优点:算法简单,容易理解,且总是收敛的
缺点:收敛速度太慢,浪费时间,企鹅二分法不能求复根跟偶数重根
所以,在以后的学习过程中,我们将根据方程的形式和二分法的优缺点不单独将其用于求根,只用其为根求得一个较好的近似值,方便其他方法的运算。
6.总结
(1)针对现实中的许多剖面设计、轨道设计等关键参数方程中三角函数多、计算工作量较大、迭代收敛条件强等问题,采取数学变化的方法将该方程转化成一个只包含对数函数和多项式函数的新方程,并提出了寻找求解区间的步长搜索算法和自适应步长搜索算法,进而使用二分法求新方程的数值解。
(2)数学分析和数值实践表明,该算法不仅能够正确判断设计方程是否有解,而且在有解的情况下能够正确求出该解,计算量小,计算过程稳定。
7.学习心得体会
在学习计算方法一个学期中,计算方法的内容,公式、知识点比较多,而且比较枯燥,上课不容易理解,容易分神。
老师在教学中应该多让学生思考,一直讲会让学生注意力不集中,跟学生多交流才能调动学生的积极性。
我认为方法永远比单纯做题更重要.在第二天讲课前,最好先预习一下.用笔划出不懂的地方.在老师讲课时认真听讲,并在原先预习时不懂的地方加以解释,写好步骤.在课上,有选择的听和记老师所讲的例题.首先要听懂,然后再记下些重要的
步骤和方法以及易错的地方和自己不容易想到的地方.还有,重要的定理和结论一定要熟记.课后要善于总结本堂课的内容,并在脑中梳理自己不懂的但经老师讲后才明白的例题的步骤,梳理一下.课后要按时完成作业。