一阶偏微分方程的特征方程
- 格式:docx
- 大小:17.07 KB
- 文档页数:3
§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程()()0,,,,,,211211=∂∂++∂∂n n n n x ux x x a x u x x x a (1)式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x ux u t u u x x x t F()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2) 称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c 就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) ) 是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni ini x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2.非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n in i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R tun i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()ux x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 === 为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0 都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x u p p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂==若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i ,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂y b b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bV a V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解.2︒ 如0=∂∂=∂∂=∂∂=∂∂y bx b y a x a ,即回到完全解.3︒ 当0/,0/≡∂∂≡∂∂b V a V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uF p x F t p p Fp t u p F t x i i i ni ii i i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或up x p up x p p Fp up x p xp x n n n ni iinn ∂+∂-==∂+∂-=∂∂=∂==∂=∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组 ()()F x y z p q G x y z p q a ,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解. 例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为z Fqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数) 可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为nn n ni iiinn n x f p x f p p f p zp f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1) 称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yPx Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足zUR y U Q x U P ∂∂=∂∂=∂∂=,, 从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c 所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P x z发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数.[特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-ji ji txa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线.[狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量.作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tn j i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i(k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关.(ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c )).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B t u A x v D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统.考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且图14.3()()()()()()()()v u t x u tx vv u t x u x t v v u t x v tx u v u t x v xtu,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A u t D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂tx v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.。
一阶偏微分方程根本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。
一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n阶常微分方程y n fx,y',y'', ,y n1,〕在变换yy,yy',L,ynyn112〕之下,等价于下面的一阶微分方程组dy1f1x,y1,y2,L,yn,dxdy2f2x,y1,y2,L,y n,dxMMMMdy nf n x,y1,y2,L,y n.dx〔〕在第三章中,已经介绍过方程组〔〕通解的概念和求法。
但是除了常系数线性方程组外,求一般的〔〕的解是极其困难的。
然而在某些情况下,可以使用所谓“可积组合〞法求通积分,下面先通过例子说明“可积组合〞法,然后介绍一阶常微分方程组“首次积分〞的概念和性质,以及用首次积分方法来求解方程组〔〕的问题。
先看几个例子。
例1求解微分方程组--WORD格式--可编辑--dx yxx2y21,dy xyx2y2 1.dt dt〔〕解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到x dx y dy x2y2x2y21,dt dt1dx2y2x2y2x2y21dt。
2这个微分方程关于变量t和x2y2是可以别离,因此不难求得其解为x2y21e2t C1,x2y2〔〕C1为积分常数。
〔〕叫做〔〕的首次积分。
注意首次积分〔〕的左端V x,y,t作为x,y,和t的函数并不等于常数;从上面的推导可见,当xx(t),y y(t)时微分方程组〔〕的解时,Vx,y,t才等于常数C1,这里的常数C1应随解而异。
因为式〔〕是一个二阶方程组,一个首次积分〔〕缺乏以确定它的解。
为了确定〔〕的解,还需要找到另外一个首次积分。
将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到y dx x dy x2y2,dt dt即x dy y dx x2y2,dt dt亦即d arctan yx。
一阶偏微分方程的解法偏微分方程是数学里一个广泛应用的领域。
其中,一阶偏微分方程是最为基础的一类,也是最常见的一类偏微分方程。
本文将介绍一阶偏微分方程的解法,希望能够对学习和应用偏微分方程的人们提供一定的帮助。
一、基础概念在介绍一阶偏微分方程的解法之前,我们需要先了解一些基础概念。
偏微分方程中的“偏”表示该方程与多个变量有关,微分方程表示该方程中包含有未知函数的导数项,即该方程描述了一个函数在不同变量下的变化。
一阶偏微分方程中,未知函数的偏导数项最高只有一次,且只涉及到一个变量。
方程中的未知函数只依赖于某一个变量,它的解也只涉及到一个变量。
因此,一阶偏微分方程通常可以写成以下的形式:$$ F(u_x, u_y, u_{xx}, u_{yy}, u_{xy}, x, y) = 0 $$其中,$u_x, u_y, u_{xx}, u_{yy}, u_{xy}$分别表示未知函数在不同变量下的偏导数,$x, y$是独立变量。
为了解决该方程,需要找到一个函数 $u(x,y)$,使得它满足该方程。
二、解法分析接下来,我们将介绍一阶偏微分方程的解法。
我们将着重介绍三种解法,分别是:特征线法、变换法和分离变量法。
1. 特征线法特征线法是一种经典的解法,适用于一些特殊的偏微分方程。
特征线法的基本思路是寻找一些特殊的曲线,这些曲线上的函数值保持不变,可以将函数沿这些曲线推进求解。
以以下方程为例:$$ u_x + u_y = x $$我们可以通过特征线法求解。
我们先假设存在某个变换,将$x,y$变为$\xi,\eta$,使得方程能够写成:$$ u_\xi + u_\eta = 1 $$这时,可以通过对$\xi, \eta$求偏导数,得到:$$ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} +\frac{\partial u}{\partial \eta}\frac{\partial \eta}{\partial x} $$$$ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} $$接着,我们可以找到一条特殊的曲线$\xi = \eta$,使得沿着该曲线推进方程不变:$$ \frac{du}{d\xi} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} = 1 $$在这个方程中,$u$ 只与$\xi$有关,因此可以直接求解得到:$$ u = \frac{1}{2}\xi^2 + C $$将$\xi,\eta$变回$x,y$,得到:$$ u = \frac{1}{2}(x-y)^2 + C $$2. 变换法变换法是一种寻求自变量的新变换,使得原方程可以转化为一些已知的方程的方法。
1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。
1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。
)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。
试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。
偏微分方程解析解偏微分方程(Partial Differential Equation,简称PDE)是数学中研究最广泛的领域之一,它涉及到物理、工程、金融等众多领域中的实际问题。
解析解是指通过解析方法得到的能够精确描述偏微分方程解的解析表达式。
本文将介绍偏微分方程解析解的求解方法,并通过一些具体的例子进行说明。
一、一阶线性偏微分方程1.1 一维线性传热方程考虑一维线性传热方程:$$\frac{{\partial u}}{{\partial t}} = k\frac{{\partial^2 u}}{{\partialx^2}}$$其中,$u(t,x)$表示时间$t$和空间$x$上的温度分布,$k$为传热系数。
为了求解这个方程,我们引入一个新的变量,令$v(t,x) = u(t,x) -F(x)$,其中$F(x)$是由于边界条件所确定的函数。
将$v(t,x)$代入上面的方程得到:$$\frac{{\partial v}}{{\partial t}} = k\frac{{\partial^2 v}}{{\partialx^2}}$$接下来,我们可以使用分离变量法求解这个二阶偏微分方程。
假设$v(t,x)$可以表示为$v(t,x) = T(t)X(x)$的形式,则将这个表达式代入上面的方程中,得到:$$\frac{{T'(t)}}{{T(t)}} = k\frac{{X''(x)}}{{X(x)}}$$由于左边是关于$t$的表达式,右边是关于$x$的表达式,它们只能等于一个常数,即:$$\frac{{T'(t)}}{{T(t)}} = \frac{{X''(x)}}{{X(x)}} = -\lambda^2$$其中,$\lambda$是常数。
对于关于$x$的方程,我们可以得到:$$X''(x) + \lambda^2 X(x) = 0$$这是一个常微分方程,可以求解出$X(x)$的形式。
一阶偏微分方程求解方法1.分离变量法分离变量法是求解一阶偏微分方程最常用的方法之一、其基本思想是将方程中的未知函数和它的偏导数按照自变量的不同分离开来,并进行变量代换。
具体步骤如下:(1)将方程中未知函数和它的偏导数的项分开;(2)将方程两边关于自变量进行积分,得到两个方程;(3)对两个方程求解得到未知函数的表达式;(4)将求得的表达式代入原方程,验证解的正确性。
2.齐次化方法齐次化方法是一种将一阶偏微分方程化为齐次方程进行求解的方法。
齐次方程是指方程中所有项的次数相同。
具体步骤如下:(1)将方程中未知函数和它的偏导数项分开;(2)引入新的变量进行变量代换;(3)将方程化为齐次方程;(4)对齐次方程进行求解,得到未知函数的表达式;(5)将求得的表达式代入原方程,验证解的正确性。
3.特征线方法特征线方法是一种适用于一些特殊类型的一阶偏微分方程求解的方法。
该方法基于特征线方程,即根据一阶偏微分方程的各项系数的关系,构造一组特征函数,然后通过特征函数的线性组合来求解原方程。
具体步骤如下:(1)确定方程的类型;(2)构造特征线方程,并求解特征线方程;(3)根据特征线方程的解,构造特解表达式;(4)将特解表达式代入原方程,验证解的正确性。
4.变换方法变换方法是一种通过引入新的变量进行变量代换的方法。
通过选择适当的变换,可以将原方程化为形式简单的方程,从而更容易求解。
常用的变换方法有线性变换、对称变换、相似变换等。
具体步骤如下:(1)引入新的变量,将原方程变换为新的一阶偏微分方程;(2)对新方程进行求解,得到新方程的解;(3)通过反变换将新方程的解转换为原方程的解。
除了以上介绍的方法,还有一些特殊的一阶偏微分方程可以通过直接积分、变量分离、换元等方法进行求解。
在实际应用中,根据具体的问题和方程的特点,选择合适的方法进行求解。
同时,在求解过程中需要注意验证解的正确性,以确保得到的解是原方程的解。
一阶常系数偏微分方程解析解一阶常系数偏微分方程解析解是指采用初始值或边界条件,利用某些恒定系数来求解常系数偏微分方程的数学解法。
它是微分方程研究中存在时间演化的实际问题的一种基本解法。
一阶常系数偏微分方程的解析解的理论和计算是非常复杂的,但由它可以得到一个有限的函数系列,可以用来找出特定的方程的所有解。
一阶常系数偏微分方程解析解可以分为两类:一类是解析解,另一类是特殊解。
解析解法主要是利用常数系数求解方程,它们可以根据一定的方程、边界条件或初值条件给出解析解。
解析解可能是数学解,也可以是拟合解,因此它是一种复杂又模糊的概念。
解析解有两个分支:求解方程的一般解,及求解方程的特殊解。
一般解是指根据一般方程的定义来求解的解,它包括特殊解的一般形式。
一类特殊解就是一阶常系数偏微分方程的通解,它代表方程有无穷多解。
它通常定义为一类关于一定常数的(这些常数满足方程的特征方程)解的积分形式。
另一类特殊解是特解,它是方程的特定解。
特解的求解往往是特殊的类型,要求满足特殊的初值条件或边界条件。
解析解法与其他解法相比,具有独特的优势,它能够快速获得解的全部信息,从而快速了解问题的演化过程,以及更直观地理解问题的本质。
此外,解析解也是一种精确而有效的解法,它可以准确地计算出某一时刻问题的状态值,而且不需要大量的计算量。
因此,对于已知初值、边界条件的函数,解析解も一种非常有效的工具,可以帮助我们快速准确获得解的所有信息。
总之,一阶常系数偏微分方程解析解是研究微分方程中存在时间演化问题的基本解法,其优点是快速而准确地求解方程,可以准确计算问题的状态值,它能够很快求出定义中各常数系数的值,从而可以快速求出各种特殊解,这些特殊解可以求出问题的全部解,并可以更加直观地掌握问题的演化趋势。
偏微分方程的基本分类与解法偏微分方程(Partial Differential Equations)是数学领域中研究函数及其偏导数的方程。
它在物理、工程和金融等多个领域中具有广泛的应用。
本文将对偏微分方程的基本分类和解法进行介绍。
一、基本分类偏微分方程可以根据方程中未知函数的阶数、方程中未知函数及其偏导数的最高阶数、方程中出现的独立变量的个数等因素进行分类。
下面将介绍几种常见的偏微分方程类型:1. 线性偏微分方程(Linear PDEs):线性偏微分方程的未知函数及其偏导数在方程中以线性的方式出现,即未知函数及其偏导数之间没有乘积或除法的项。
典型的线性偏微分方程包括波动方程、热传导方程和拉普拉斯方程等。
2. 非线性偏微分方程(Nonlinear PDEs):非线性偏微分方程的未知函数及其偏导数在方程中以非线性的方式出现。
非线性偏微分方程的研究更加复杂和困难,因为它们通常没有简单的通解,需要依赖于数值方法或近似解法。
3. 偏微分方程的阶数(Order):偏微分方程的阶数指的是未知函数及其偏导数的最高阶数。
常见的偏微分方程阶数包括一阶、二阶和高阶偏微分方程等。
4. 线性度(Degree of Linearity):线性度是指方程中未知函数和它的偏导数的最高次数。
线性偏微分方程的线性度为一,非线性偏微分方程的线性度大于一。
二、解法解偏微分方程的方法有很多,下面将介绍几种常见的解法:1. 分离变量法(Separation of Variables):分离变量法适用于可以将偏微分方程的未知函数表示为各个独立变量的乘积形式的情况。
通过将未知函数表示为各个独立变量的乘积形式,并将方程中的偏导数转化为普通导数,从而将原方程转化为一系列的常微分方程。
通过求解这些常微分方程,并将解合并起来,即可得到原偏微分方程的解。
2. 特征线方法(Method of Characteristics):特征线方法是用于解一阶偏微分方程的一种常用方法。
偏微分方程与特解偏微分方程(Partial Differential Equations, PDEs)是数学中一类重要的方程,通过描述多个变量之间的关系,用来描述自然现象和物理过程。
偏微分方程的解不仅包括通解,还包括特解。
在本文中,我们将探讨偏微分方程与特解之间的关系,并介绍一些求解偏微分方程特解的方法。
首先,让我们来了解什么是偏微分方程。
偏微分方程是包含多个未知函数及其偏导数的方程,其中涉及的变量一般是多元的。
以一维波动方程为例,它是描述波动现象的基本方程之一:∂^2u/∂t^2 = c^2∂^2u/∂x^2其中,u(x, t)表示波动的位移,t表示时间,x表示空间位置,c表示波速。
对于大多数偏微分方程来说,其通解往往包含一组由任意常数构成的通解函数。
然而,在实际问题中,我们通常需要找到满足特定边界条件的特解,以获得更准确的解析解。
求解偏微分方程特解的方法有很多种,下面我们介绍几种常见的方法。
1. 分离变量法(Method of Separation of Variables)分离变量法是求解偏微分方程的一种常用方法。
它的基本思想是假设解具有可以分离变量的形式,将多元函数转化为一元函数的乘积,然后将方程分别对每个变量求解。
通过适当的约束条件,可以得到特解。
2. 特征线法(Method of Characteristics)特征线法主要用于求解一阶偏微分方程特解。
其基本思想是通过特征线的存在性,将偏微分方程转化为常微分方程。
通过求解常微分方程,可以得到特解。
3. 变量替换法(Change of Variables)变量替换法是一种常用的求解偏微分方程的方法。
通过适当的变量替换,将原方程转化为更简单的形式,然后求解得到特解。
常用的变量替换方法包括极坐标变换、球坐标变换等。
4. 叠加原理(Superposition Principle)对于线性偏微分方程而言,可以利用叠加原理来求解特解。
叠加原理指出,如果一个偏微分方程的解包括若干个已知的特解的线性组合,那么该方程的任何线性组合也是该方程的解。
一阶偏微分方程的特征方程
一阶偏微分方程的特征方程通常表示为:
αx^(n-1) * y'[x] + βx^(n-2) * y''[x] + γx^(n-3) * y'''[x] + ... +λx^(n-m) * y^(m)[x] = 0
其中,α、β、γ等为常数,n为方程的最高阶,m为特征方程的阶数。
求解一阶偏微分方程的特征方程的一般步骤如下:
1. 确定特征方程的阶数m。
2. 求解特征方程的根,即求解x^(n-m) * y^(m)[x] = 0的根。
3. 根据求得的根,分析方程的解的性质。
需要注意的是,不同类型的偏微分方程有不同的求解方法,具体分析时要根据方程的类型和边界条件来确定。
此外,对于高阶偏微分方程,通常需要采用降阶、分离变量等方法求解。
一阶偏微分方程的特征方程
(原创版)
目录
一、什么是特征方程
二、特征方程与偏微分方程的关系
三、如何使用特征方程求解偏微分方程
四、特征方程在实际问题中的应用
五、结论
正文
一、什么是特征方程
特征方程是一种数学方程,它用于描述线性微分方程的特征根和特征向量。
在偏微分方程中,特征方程通常用于求解方程的通解。
对于一阶偏微分方程,特征方程的形式通常为:
a(x, y) * u_x + b(x, y) * u_y + c(x, y) * u = 0
其中,a(x, y)、b(x, y) 和 c(x, y) 是方程的系数,u_x 和 u_y 分别是 u 关于 x 和 y 的偏导数,u 是未知函数。
二、特征方程与偏微分方程的关系
特征方程与偏微分方程的关系密切。
在求解偏微分方程时,我们首先需要找到特征方程的根,然后根据这些根构建特征向量,最后利用特征向量求解偏微分方程的通解。
具体来说,对于一阶偏微分方程,我们可以通过以下步骤求解:
1.求特征方程的根:通过分离变量法或常数变易法等方法,将偏微分方程化为特征方程,并求解该方程的根。
2.构建特征向量:对于每个特征根,我们构造一个特征向量,使得该
向量在偏微分方程的作用下发生变换。
3.求解通解:利用特征向量和特征根,我们可以求解偏微分方程的通解。
通常,通解的形式为:
u(x, y) = C_1 * e^(r_1 * x) * (y - y_0)^(r_2) + C_2 * e^(r_3 * x) * (y - y_0)^(r_4)
其中,C_1 和 C_2 是待定系数,r_1、r_2、r_3 和 r_4 是特征根,y_0 是特征向量的纵坐标。
三、如何使用特征方程求解偏微分方程
在实际求解过程中,我们通常采用以下步骤:
1.确定偏微分方程的类型:根据方程的系数和变量,判断方程是一阶还是高阶偏微分方程,是线性还是非线性偏微分方程。
2.求解特征方程:将偏微分方程化为特征方程,并求解该方程的根。
3.构建特征向量:对于每个特征根,我们构造一个特征向量,使得该向量在偏微分方程的作用下发生变换。
4.求解通解:利用特征向量和特征根,我们可以求解偏微分方程的通解。
5.确定特解:根据定解条件,我们可以求解满足特解条件的特解。
四、特征方程在实际问题中的应用
特征方程在实际问题中有广泛的应用,例如在物理、工程和生物学等领域。
通过求解特征方程,我们可以了解系统的稳定性、波动性和变化规律等信息。
此外,特征方程还可以用于求解偏微分方程的通解和特解,从而解决实际问题。
五、结论
总之,特征方程是求解偏微分方程的重要工具,它有助于我们了解偏微分方程的性质和解的结构。
通过求解特征方程,我们可以得到偏微分方
程的通解,进而确定满足定解条件的特解。