库伦定律
- 格式:doc
- 大小:65.50 KB
- 文档页数:2
库仑定律中k值
摘要:
1.库仑定律简介
2.库仑定律中的k值含义
3.k值的具体数值
4.库仑定律的适用范围和局限性
5.总结
正文:
库仑定律是描述静止点电荷之间相互作用力的定律,由法国科学家库仑于1785年提出。
库仑定律的表达式为:F = k * q1 * q2 / r^2,其中F表示电荷之间的作用力,q1和q2分别为两个电荷的电量,r为两者之间的距离,k为库仑定律中的比例常数。
库仑定律中的k值代表了静电力常量,它反映了电荷间相互作用力的强度。
k值的数值为9.0109 N·m^2/C^2,这个数值是由科学家通过实验测定得出的。
值得注意的是,k值并非是库仑通过扭秤实验测出的,而是通过麦克斯韦的相关理论计算得出的。
库仑定律在许多情况下都可以用来计算电荷之间的作用力,例如静止电荷之间的相互作用力、受力电荷的运动情况等。
然而,它并不适用于运动电荷对静止电荷的作用力,也不适用于高密度电荷分布的情况。
总之,库仑定律是描述静止点电荷之间相互作用力的重要定律,其中的k 值代表了静电力常量。
k值的数值为9.0109 N·m^2/C^2,这是一个无误差常
数。
库仑定律在一定范围内具有较高的实用价值,但它也存在一定的局限性,不适用于所有电荷相互作用力的计算。
什么是库仑定律?库仑定律的适用范围是什么?在学习高中物理的时候往往会遇到很多关于物理问题,上课觉着什幺都懂了,可等到做题目时又无从下手。
以至于对于一些意志薄弱、学习方法不对的同学就很难再坚持下来。
过早的对物理没了兴趣,伤害了到高中的学习信心。
收集整理下面的这几个问题,是一些同学们的学习疑问,小编做一个统一的回复,有同样问题的同学,可以仔细看一下。
【问:什幺是库仑定律?库仑定律的适用范围是什幺?】答:真空中两个点电荷之间的相互作用力,跟电荷量的乘积成正比,与其距离的二次方成反比,作用力的方向在它们的连线上。
斥力还是引力,根据电性来判定。
这种作用力叫库仑力。
物理公式f=kq1q2/r2,其中k=9×109nm2/c2。
【问:什幺时候用动量守恒定律?】答:动量守恒不能乱用,守恒的前提条件是整个系统在要研究的方向上不受外力作用,只有内部“彼此之间的力”相互作用。
比如,碰撞过程,人在船上走的模型,用弹簧连接起来的两球,子弹穿透木块等等,系统总动量都是守恒的。
【问:什幺是超重和失重?】答:物体有向上的加速度称物体处于超重;反之,如果物体有向下的加速度称物体处于失重;特殊的,当加速度a=g时,n=0,则此时的物体处于完全失重状态。
要注意,不管物体处于失重状态还是超重状态,其自身重力大小并没有改变。
【问:多过程的物理问题如何处理?】答:认真分析题意,观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。
分析过程特征需仔细分析每个过程的约束条件,比如某物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。
至于过程之间的联系,则可从运动的速度大小、位移、时间等方面去寻找。
以上什幺是库仑定律?由小编整理,希望能够帮助同学解决一些关于物理上的问题,下面是小编关于物理学习方法及技巧的一些经验。
大家应该能够感。
关于库仑定律(成立条件、精确度、使用范围)1785年(我国清代乾隆五十年),法国科学家库仑(Charles Augustin Coulomb ,1736~1806年,军事工程师,退休后从事电学研究)用扭秤实验得出:两个静止的点电荷之间的相互作用力与它们之间的距离平方成反比.这一规律的发现比牛顿发现万有引力迟100年.另外,值得指出的是,第一,在库仑做他的著名“扭秤”实验时,对电荷的量还没有明确的定义和度量方法,故在他的研究报告(《法兰西皇家科学院研究报告集》第569页)中,只强调了反平方定律,并没有明确提到电力与电荷的电量成正比.关于电量的严格定义是高斯等人在以后作出的,所以,现在我们所看到的库仑定律是后人在库仑扭秤实验结论基础上发展起来的.第二,如果真要用实验来确定两个点电荷之间的相互作用力,则应在真空中进行.如果在介质中进行,会影响测量的精确性.事实上,当初(1785年)库仑的所有测定都是在真空中做的.库仑定律不仅是静电学的基础,也是整个电磁理论的基础之一.由库仑定律可以推出静电场方程乃至整个麦克斯韦方程组,而且库仑定律还标志着:人们对电磁现象的研究由定性的观察过渡到用仪器作定量的测量,并总结出定量的规律,从而开创了用近代的科学方法研究电磁现象的道路.库仑定律在近代物理理论中也具有重要的意义,它隐含着光子的静电质量为零的结论.正因为库仑定律有如此的重要性,所以,我们有必要对库仑定律的成立条件、适用范围及平方反比的精度等问题作深入的研究和探讨.1、库仑定律的成立条件关于库仑定律的成立条件,尽管各书籍的说法不一,但归纳起来不外有三条,即,(1)电荷是点电荷;(2)在真空中;(3)电荷处于静止状态.下面,我们将逐条分析.条件(1)应该说是容易理解的,亦是正确的.因为用库仑定律计算两点电荷之间的作用力要用到距离,而只有点电荷,两带电导体之间的距离才有完全确定的意义(点电荷是个相对概念,详见扩展资料中“点电荷与检验电荷”).然而,从微积分的观点看,任何连续分布的电荷都可看成无限多个电荷元(即点电荷)的集合,再利用叠加原理,就可求出非点电荷情况下的电场分布.所以,从上述分析可知,条件(1)确是库仑定律的成立条件,但不是限制库仑定律的使用条件.条件(2)是完全多余的(但不能说错),因为只要是两个点电荷,不管它们在什么地方(是在真空、导体还是介质中),相互作用力都遵从库仑定律.但要注意的是,在有其他物质存在时,这些物质会受到原来两电荷的电场作用,从而产生极化电荷或感应电荷.因此,原来两个电荷中的每一个,都要受到这些极化电荷或感应电荷的影响,这时它们所受的作用力一般就比较复杂了,好在有一个例子能加以说明.在均匀无限大介质(0εεεr =)中,两个点电荷之间的作用力是真空中的r ε/1倍,即2021022144r rq q r rq q F r επεπε==(1)从形式上看,(1)式似乎就是库仑定律在介质中不成立的佐证.殊不知在均匀无限大介质中,两个点电荷还要使介质产生相应的宏观极化电荷,如图所示.很明显,点电荷1q 要受到三种电荷的作用力,极化电荷1q '-均匀地包围着,由对称性可知,其对1q 的作用力为零,极化电荷2q '-由于距1q 较远,可看作点电荷,位置与2q 相同,故根据库仑定律,1q 所受到的力为:20210202144r rq q r rq q F πεπε'==(2)由电磁学理论可以证明,2q '和2q 的关系满足下式: 2021q q ⎪⎭⎫ ⎝⎛-='εε (3) 将(3)式代入(2)式可得: 2201202201414q rq q q r q F εεπεεεπε=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--'=22141rq q πε= (4)(4)式写成矢量形式为:20214r rq q F r επε=(5)可见,(5)式与(1)式完全相同.由此可见,只要我们把介质中的宏观极化电荷与自由电荷同等看待,那么,它们彼此间的作用力都遵从库仑定律,因而没有必要强调一定要在真空中库仑定律才成立.至于条件(3),即电荷处于静止状态,也可以适当放宽,不必要两个点电荷都相对于观察者静止,只要源电荷(施力电荷)保持静止就可以,受力电荷可以是静止的,也可以做任意运动.道理很简单,静止电荷在空间激发的电场是不随时间变化的,仅是空间的函数,运动电荷所受到的由静止电荷所激发的电场力只与两电荷的相对位置和它们本身的电量有关,即遵从库仑定律.反之,静止电荷所受到的由运动电荷激发的电场力,由狭义相对论电动力学可知,这个力不但与两个电荷的相对位置和电量有关,而且还与运动电荷的速度有关,即它们之间的作用不再遵从库仑定律.在这种情况下,连牛顿第三定律也不再遵守.如图所示,设点电荷1q 以速度v 匀速向右运动,点电荷2q 静止不动,则由上述观点,2q作用在1q 上的力为:2021124r rq q F πε=(6)即遵从库仑定律.但反过来,1q 作用在2q 上的力却不遵从库仑定律.根据电动力学理论,1q 在2q 处激发的电场强度为:2/3222022201114⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⋅=cr r v c v r c v rq E πε (7)式中c 是真空中的光速.因此,按qE F =计算,1q 作用在2q 上的力便为:2/3222022202121114⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⋅=cr r v c v r c v rq q F πε (8)从(8)式可知,1q 作用在2q 上的力已不再遵从库仑定律;只有当0=v 时,(8)式才退化为真空中的库仑定律.比较(6)式和(8)式还可以看出,当两个点电荷有相对运动时,它们之间的相互作用力也不再遵从牛顿第三定律.但可以证明两点电荷与它们所产生的电磁场所构成的系统满足包括电磁动量和机械动量在内的动量守恒定律.2、平方反比律的精确度 库仑定律是一个实验定律,由于实验装备的精确度是有限的,所以实验结果与库仑定律并不完全一致.验证平方反比律的一种方法是假定力按δ±2/1r变化,然后用实验测出δ的值.显然,δ值越小,实验精确度越高,从而表明库仑定律越准确.事实上,对电荷之间作用力所遵循的规律,早在库仑以前就有人进行过研究.1769年,罗比逊第一个从实验确定δ值约为0.06;1773年,卡文迪许实验测出的δ不大于0.02;1785年,库仑自己测出的δ为百分之几.关于库仑定律平方反比律精确度的研究,一直为历代物理学家高度重视,迄今未停止过.由于实验装置精确度的不断提高,至今精度最高的是1971年威廉姆斯等人所作的实验,他们测出的16102-⨯≤δ.为便于查阅,现将自罗比逊以后各次主要实验所得到的偏差值列表如下验证平方反比律的实验结果近代许多科学家之所以重新对库仑定律中的平方反比关系发生那么大的兴趣,主要是与对光子的静质量的关心有关,而光子的静质量是否为零,又与相对论的基本假设之一的光速不变原理有关.可以证明,若0≠δ,则光子的静质量将不为零.目前这方面的探讨还与磁单极的探索相联系.如果真的发现了磁单极,则光子的静质量必为零,库仑定律的平方反比关系也就严格成立了.3、库仑定律的适用范围库仑定律除了有一个平方反比律的精度问题外,还有一个适用范围的问题,因为所有验证库仑定律的实验都是囿于0210~10-米的范围内进行的.试问,超出0210~10-米这个空间范围,库仑定律是否还成立呢?库仑定律的适用范围到底有多大呢?兰姆和卢瑟福对氢原子的能级作了精确测量,与用库仑定律计算出的结果相吻合;另外,卢瑟福的X 粒子散射实验的精确测量与库仑定律也相吻合,这表明库仑定律在原子范围内(1010-米)是成立的.近代核物理实验证明在原子核的大小范围(1510-米)内,库仑定律不再成立,但在1310-米范围内,库仑定律精确成立.地球物理实验证明库仑定律在710~10米范围内是精确成立的.在更大的距离(如天文距离——26710~10米)范围内,物理学家虽然没有对库仑定律进行过实验验证,但是,在那样巨大的空间中,电磁波仍然以光速在传播,电磁场的规律仍然起作用.因此,可以推断,在那样大的范围内,库仑定律仍然有效.库仑定律的实验验证虽然都是在0210~10-米范围内进行,但其适用范围可扩展到261310~10-米.。
第2节 库仑定律一、库仑定律1. 库仑力电荷间的相互作用力,也叫做静电力。
2. 点电荷带电体间的距离比自身的大小大得多,以致带电体的形状、大小及电荷分布状况对它们之间的作用力的影响可忽略时,可将带电体看做带电的点。
它是一种理想化的物理模型。
(1). 点电荷是理想模型只有电荷量,没有大小、形状的理想化模型,类似于力学中的质点,实际中并不存在,是一种科学的抽象,其建立过程反映了一种分析处理问题的思维方式。
(2). 带电体看成点电荷的条件实际的带电体在满足一定条件时可近似看做点电荷。
一个带电体能否看成点电荷,不能单凭其大小和形状确定,也不能完全由带电体的大小和带电体间的关系确定,关键是看带电体的形状和大小对所研究的问题有无影响,若没有影响,或影响可以忽略不计,则带电体就可以看做点电荷。
3. 库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
(2)表达式:F =k q 1q 2r2,k 叫做静电力常量,k =9.0×109 N·m 2/C 2。
(3)适用条件:真空中的点电荷。
(4)库仑力①库仑力也称为静电力,它具有力的共性。
②两点电荷之间的作用力是相互的,其大小相等,方向相反。
③方向判断:利用同种电荷相互排斥,异种电荷相互吸引来判断。
4. 库仑定律的两个应用(1)应用库仑定律计算两个可视为点电荷的带电体间的库仑力。
(2)应用库仑定律分析两个带电球体间的库仑力。
①两个规则的均匀带电球体,相距比较远时,可以看成点电荷,库仑定律也适用,二者间的距离就是球心间的距离。
②两个规则的带电金属球体相距比较近时,不能被看成点电荷,此时两带电球体之间的作用距离会随电荷的分布发生改变。
如图甲,若带同种电荷时,由于排斥而作用距离变大,此时F <k Q 1Q 2r2;如图乙,若带异种电荷时,由于吸引而作用距离变小,此时F >k Q 1Q 2r2。
库仑定律公式COULOMB’S LAW库仑定律——描述静止点电荷之间的相互作用力的规律真空中,点电荷 q1 对 q2的作用力为F=k*q1*q2/r^2 可结合万有引力公式F=Gm1m2 /r^2来考虑其中:r——两者之间的距离r——从 q1到 q2方向的矢径k——库仑常数上式表示:若q1与q2同号,F12y沿r方向——斥力;若两者异号,则F12沿-r方向——吸力.显然q2对q1的作用力F21=-F121-2在MKSA单位制中力F的单位:牛顿N=千克·米/秒2kg·m/S2量纲:MLT-2电量q的单位:库仑C定义:当流过某曲面的电流1 安培时,每秒钟所通过的电量定义为 1 库仑,即1库仑C=1安培·秒A·S量纲:IT比例常数k= 1/4pe0 1-3=9.0x10^9牛·米2/库2e0=8.85418781871×10-12库2/牛·米2通常表示为法拉/米是真空介电常数英文名称:permittivity of vacuum说明:又称绝对介电常数。
符号为εo。
等于8.854187817×10-12法/米。
它是导自真空磁导率和光在真空中速度的一个无误差常量。
1 库仑定律只适用于计算两个点电荷间的相互作用力,非点电荷间的相互作用力,库仑定律不适用。
不能根据直接认为当r无限小时F就无限大,因为当r无限小时两电荷已经失去了作为点电荷的前提。
2 应用库仑定律求点电荷间相互作用力时,不用把表示正,负电荷的"+","-"符号代入公式中计算过程中可用绝对值计算,其结果可根据电荷的正,负确定作用力为引力或斥力以及作用力的方向。
3库仑力一样遵守牛顿第三定律,不要认为电荷量大的对电荷量小的电荷作用力大。
两电荷之间是作用力和反作用力。
1描述点电荷之间的作用力,仅当带电体的尺度远小于两者的平均距离,才可看成点电荷2描述静止电荷之间的作用力,当电荷存在相对运动时,库仑力需要修正为Lorentz 力.但实践表明,只要电荷的相对运动速度远小于光速 c,库仑定律给出的结果与实际情形很接近。
库仑定律一、基本概念电荷量定义:物体所带电荷的多少叫做电荷量。
电荷量的国际单位:库仑,简称库。
单位符号:常用的更小单位是单位符号:C ,常用的更小单位是μ C1、电荷量元电荷元电荷:物体所带电荷是某个最小电荷量的整数倍。
这个最小电荷量,就是电子电荷量的绝对值。
最小电荷量 e 最早由美国物理学家密立根用著名的油滴小电荷量 e 最早由美国物理学家密立根用著名的油滴实验测定。
一般带电体的电荷量都等于最小电荷量 e 的整数倍电荷量就叫做电荷的整数倍。
电荷量 e 就叫做元电荷。
e = 1.6 × 10 -19 C一库伦等于 1.25 × 10 18 个电子的带电量问题:元电荷就是电子这句话对吗问题:“ 元电荷就是电子” 这句话对吗?解答:不对。
每个电子带最小负电荷人们把电子电量的每个电子带最小负电荷,人们把电子电量的绝对值称为元电荷,一般带电物体所带的电荷量应为元电荷的整数倍。
因此这句话是错误的因此这句话是错误的。
2、点电荷当带电体的形状、大小、电荷分布对电荷间相互作用力的影响可以忽略时,带电体可以看成带有电荷的点,这样的带电体叫做点电荷。
提醒:点电荷只是一个理想化的物理模型,实际上是不存在的,类同于质点概念。
问题:“点电荷就是很小的带电体”这句话对吗?解答:不对。
当带电体的大小对电荷间相互作用力的影响相对当带电体的大小对电荷间相互作用力的影响相对于距离来讲小到忽略不计时,才能将带电体看成点电荷。
所以,在研究带电体间的相互作用时,能不能看成点电荷,不但要看带电体的大小,还要看带电体间的距离的距离。
3、电荷守恒定律电荷既不能创造,也不能消失,它只能从一个物体电荷既不能创造,也不能消失,它只能从个物体转移到另外一个物体,或者从物体的一部分转移到另外部分而电荷的总量保持不变任何种起电的方式一部分,而电荷的总量保持不变。
任何一种起电的方式都是电荷的转移,这就是电荷守恒定律。
各种起电的方法都是把正、负电荷分开,而不是创造电荷。
库仑定律库仑定律(英文:Coulomb's law):是电磁场理论的基本定律之一。
真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。
公式:F=k*(q1*q2)/r^2 。
库仑定律成立的条件:真空中;静止;点电荷。
(静止是在观测者的参考系中静止,中学计算一般不做要求)库仑定律:法国物理学家查尔斯·库仑于1785年发现,因而命名的一条物理学定律。
库仑定律是电学发展史上的第一个定量规律。
因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。
库仑定律阐明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。
真空中两个点电荷之间的相互作用力F的大小,跟它们的电荷量Q1.Q2的乘积成正比,跟它们的距离r的二次方成反比;作用力的方向沿着它们的连线。
同种电荷相斥,异种电荷相吸。
上述结论可表示为F=KQ1.Q2/r²,式中,K是静电常量。
如果各个物理量都采用国际制单位,即电荷量的单位用C(库),力的单位用N,距离的单位用m,则K=9.0×910N·m²/C²定义:真空中两个静止点电荷之间的互相作用力,与它们的距离的2次方成反比,作用力的方向在它们的连线上。
验证:库仑定律是1784年至1785年间法国物理学家查尔斯·库仑通过扭秤实验总结出来的。
物理意义(1)描述点电荷之间的作用力,仅当带电体的半径远小于两者的平均距离,才可看成点电荷(2)描述静止电荷之间的作用力,当电荷存在相对运动时,库仑力需要修正为电磁力(Lorentz力)。
但实践表明,只要电荷的相对运动速度远小于光速c,库仑定律给出的结果与实际情形很接近。
注意事项(1)库仑定律只适用于计算两个点电荷间的相互作用力,非点电荷间的相互作用力,库仑定律不适用。
库仑定律解析电荷之间的相互作用库仑定律是描述电荷之间相互作用的基本定律,它解析了电荷之间的相互吸引和排斥作用。
本文将详细探讨库仑定律及其应用,并分析电荷之间相互作用的原理与影响因素。
一、库仑定律的基本原理库仑定律是由法国物理学家库仑于18世纪末提出的,它描述了两个电荷之间的相互作用力与它们之间的距离的关系。
根据库仑定律,两个点电荷之间的相互作用力与它们之间的距离成反比,与它们的电荷量的乘积成正比。
具体表达式为:F = k * (q1 * q2) / r^2其中,F代表两个电荷之间的相互作用力,k是库仑常数,q1和q2是两个电荷的电荷量,r是它们之间的距离。
二、电荷之间的相互作用类型根据库仑定律,电荷之间的相互作用可以分为两种类型:吸引和排斥。
1. 吸引:当两个电荷的正负性相反时,它们之间会产生吸引力。
这是由于正电荷与负电荷之间存在电荷差异,使得它们相互吸引。
2. 排斥:当两个电荷的正负性相同时,它们之间会产生排斥力。
这是由于正电荷与正电荷或负电荷与负电荷之间存在电荷相同的特性,使得它们相互排斥。
三、影响电荷之间相互作用的因素库仑定律描述了电荷之间相互作用的基本规律,但还受到一些因素的影响,包括电荷量和距离。
1. 电荷量:根据库仑定律,两个电荷之间的相互作用力与它们的电荷量成正比。
当电荷量增加时,相互作用力也增加;反之,当电荷量减小时,相互作用力也减小。
2. 距离:库仑定律指出,两个电荷之间的相互作用力与它们之间的距离的平方成反比。
当两个电荷之间的距离增加时,相互作用力减小;反之,当距离减小时,相互作用力增加。
因此,电荷量和距离是影响电荷之间相互作用的主要因素。
增大电荷量或减小距离都会增加相互作用力。
四、库仑定律在现实生活中的应用库仑定律广泛应用于多个领域,如物理学、化学等。
1. 静电力:静电力是库仑定律的一个具体应用。
当摩擦或分离导体时,会产生静电荷积累。
根据库仑定律,这些静电荷之间会产生相互作用力,导致吸引或排斥现象。
库仑定律库仑定律[1]:是电磁场理论的基本定律之一。
真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。
公式:F=k*(q1*q2)/r^2 (在利用库仑定律表达式进行计算时即使碰到负电荷也带入电荷量的绝对值进行计算,斥力或引力计算完后根据电性判断)库仑定律成立的条件:处在真空中,必须是点电荷。
注:这个时候不一定要求静止是因为在平时的出题和提升中,很大一部分不考虑点电荷是否静止。
库仑定律的实验验证:库仑定律是1784--1785年间库仑通过扭秤实验总结出来的。
纽秤的结构如下:在细金属丝下悬挂一根秤杆,它的一端有一小球A,另一端有平衡体P,在A旁还置有另一与它一样大小的固定小球B。
为了研究带电体之间的作用力,先使A、B各带一定的电荷,这时秤杆会因A端受力而偏转。
转动悬丝上端的悬钮,使小球回到原来位置。
这时悬丝的扭力矩等于施于小球A上电力的力矩。
如果悬丝的扭力矩与扭转角度之间的关系已事先校准、标定,则由旋钮上指针转过的角度读数和已知的秤杆长度,可以得知在此距离下A、B之间的作用力。
如何比较力的大小【通过悬丝扭转的角度可以比较力的大小】库仑定律COULOMB’S LAW库仑定律——描述静止点电荷之间的相互作用力的规律真空中,点电荷q1 对q2的作用力为F=k*(q1*q2)/r^2其中:r ——两者之间的距离r ——从q1到q2方向的矢径k ——库仑常数上式表示:若q1 与q2 同号, F 12y沿r 方向——斥力;若两者异号,则 F 12 沿- r 方向——吸力.显然q2 对q1 的作用力F21 = -F12 (1-2)在MKSA单位制中力 F 的单位:牛顿(N)=千克·米/秒2(kg·m/S2)(量纲:M LT - 2)电量q 的单位:库仑(C)定义:当流过某曲面的电流1 安培时,每秒钟所通过的电量定义为 1 库仑,即1 库仑(C)= 1 安培·秒(A ·S)(量纲:IT)比例常数k = 1/4pe0 (1-3)=9.0x10^9牛·米2/库2e0 = 8.854 187 818(71)×10 -12 库2/ 牛·米2 ( 通常表示为法拉/米)是真空介电常数英文名称:permittivity of vacuum说明:又称绝对介电常数。
库仑定律库仑定律: 真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,作用力的方向在它们的连线上。
一、 知识点:1、 条件:真空 点电荷2、 库仑力大小:F = k221RQ Q 3、 库仑力方向:两电荷连线上, 同斥异吸 二、 条件的判断1、点电荷原理的直接记忆点电荷:当带电体间的距离比它们的大小大得多,以至带电体的形状、大小及电荷分布状况对它们之间的作用力的影响可以忽略,这样的带电体就可以看做带电的点,叫做点电荷。
点电荷是物理中一种重要的理想模型,可以类比于动力学中的质点。
由于点电荷的限制,所以在应用库仑定律之前必须仔细判断,然后再考虑选择动力学,库仑定律,电场力与场强三个关系中的一个求解。
例1.关于点电荷,以下说法正确的是 ( D ) A . 点电荷也叫元电荷B . 只有体积很小的带电体,才能看做点电荷C . 只有电荷量很小的带电体,才能看做点电荷D . 电荷量和体积都很大的带电体未必不能看做点电荷例2.如图,A 为带负电Q 的金属板,沿金属板的垂直平分线,在距板r 处悬挂吊着一质量为m ,电量为q 的小球,小球受到向右的电场力作用偏转α角而静止,小球用绝缘丝线挂于O 点。
试求小球所在处的电场强度。
分析:由于金属板的大小相对于两电点体的距离不能忽略,所以该处不能应用库仑定律。
但可以采取对小球受力分析得到小球所受电场力,再由E=F/Q 得到该处场强。
2、非电点荷向点电荷的转化 在某些时候,题目本身的模型并不是电点荷,但是我们可以通过数学或者几何的方法来把非点电荷的问题转化为点电荷的问题,从而可以用库仑定律求解。
例4 如图,A 是一个均匀带电的金属球,半径为R ,带电量为Q 。
(1)求离小球右端距离为L 的B 处A 的场强。
(2)如果在A 上去处一个半径为r 的小球,并且该小球与小球A 右边缘相切,两球心与B 保持同线。
球此时A 在B 点的场强析:对于均匀带电Q 的球,在分析球外某点场强时,我们则可以把它看成一个位于球心的带电量为q 的点电荷。
一、电荷:
1. 正电荷负电荷:自然界只存在两种电荷,即正电荷和负电荷,用丝绸摩擦过的玻璃棒所带的电荷是正电荷;用毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。
同种电荷互相排斥,异种电荷互相吸引
2. 电荷量:电荷的多少。
单位:1C =1A·s
3. 元电荷e :
一个物体所带电荷数量的多少叫电荷量,物体所带电荷量是指物体带净电荷的多少,迄今为止的一切实验都表明,原子中电子和质子带有等量的异种电荷,至今所发现的一切带电体的电荷量都等于电子电荷数的整数倍,这说明带电体的电荷量值是不连续的,它的最小单元就是电子电荷,这称为电荷的量子化,在
物理学上,把电荷是e 称为元电荷,其值通常可取为e=1.60×10-19
C 。
①e=1.60×10-19
C
②质子或电子所带的电量就是元电荷 ③元电荷是世界上电最小的电量
④任何带电体的电量都是元电荷的整数倍 4. 检验电荷:
电量要求:不影响原电场;体积充分小;一定是点电荷。
5. 电荷间的相互作用
同种电荷相互排斥,异种电荷相互吸引。
6. 荷质比(比荷):
带电粒子的电荷量与质量之比称为“荷质比”如电子的电荷量e 和电子质量m e (m e =0.91×10-30
kg)之比,叫做电子的荷质比,即
kg C m e
e
/1076.111-⨯=可以做为物理常量来使用。
二、使物体带电的几种方式
1. 摩擦起电:两个不同的物体相互摩擦,带上等量导种的电荷。
2. 接触带电:不带电物体接触另一个带电物体,使电荷从带电体转移一部分到不带电的物体上。
两个完全相同的带电金属小球接触时电荷量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总电荷量平分。
3. 感应起电:导体接近(不接触)带电体,使导体靠近带电体一端带上与带电体相异的电荷,而另一端带上与带电体电荷相同的电荷。
4. 光电效应—在光的照射下使物体发射出电子 三、电荷守恒定律:
电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移的过程中,电荷的总量不变。
四、库仑定律
1. 内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
2. 公式:22
1r q q k
F
=,F 叫做库仑力或静电力,也叫电场力。
它可以是引力,也可以是斥力,k 叫静电力常量k =2
29/109C m N ⋅⨯
3. 适用条件:(1)真空中; (2)点电荷.
点电荷:点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r )。
点电荷很相似于我们力学中的质点.
例如半径均为r 的金属球,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的
库仑力大小为F ,比较F 与K Q r 22
3()的大小关系,显然,如果电荷能全部集中在球心处,则两者相等。
依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。
实际上,由于异种电荷的
相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K
Q r >2
2
3()。
同理,若
两球带同种电荷Q ,则F K Q r <2
2
3()。
4. 理解:
(1)在种用库仑定律的公式进行计算时,无论是正电荷还是负电荷,均用电量的绝对值代入式中,计算其作用力的大小。
(2)作用力的方向根据:同性相斥,异性相吸,作用力的方向沿两电荷连线方向,进行判定。
(3)两个点电荷间的相互作用的库仑力满足牛顿第三定律—大小相等、方向相反(不能认为电量不等的两个点电荷相互作用时,所受的库仑力不等)
(4)库仑力存在极大值,由公式2
2
1γQ Q k F =可以看出,在r 和两带电体的电量和一定的条件下,当
Q 1=Q 2时,F 有最大值
(5)如果是多个点电荷对另一个点电荷的作用,可分别对每个点电荷间使用2
2
1r Q Q k F =,然后把该
电荷所受诸库仑力进行矢量合成
(6)在介质中,电荷间的相互作用比真空小,小多少,跟介质有关,2
2
1r q q k
F ⋅=ε,空气中的介电
常数近似取1,即认为电荷间的相互作用在空气中跟在真空中一样。
五、同一直线上三个点电荷的讨论和计算
三个自由电荷的平衡问题,是静电场中的典型问题。
为了使电荷系统处于平衡状态,每个电荷受到的两个库仑力必须大小相等、方向相反。
根据库仑定律和力的平衡条件,可以概括成易记的口诀为:“三点共线,两同夹异,两大夹小,近小远大。
”两大夹小也就是说三个电荷,外面两个的电荷量必须大于中间的一个;两同夹异,也就是说外面的两个电荷的电性必须相同,并且中间的一个电性与外面的两个相异!近小远大是说中间电荷靠近另两个中电量较小的。
利用这一条件可以迅速、准确地确定三个自由电荷的相对位置及电荷的电性,然后根据库仑定律列出电荷的受力平衡方程,问题就迎刃而解了。