因式分解知识点归纳总结
- 格式:doc
- 大小:92.50 KB
- 文档页数:4
初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。
因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。
注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。
3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。
系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。
例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。
因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
初中数学关于因式分解知识点整理(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的. (4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.(6)如果多项式的第一项的系数是负的,一般要提出〝-〞号,使括号内的第一项的系数是正的,在提出〝-〞号时,多项式的各项都要变号.(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.(8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)具备什么特征的两项式能用平方差公式分解因式①系数能平方,(指的系数是完全平方数)②字母指数要成双,(指的指数是偶数)③两项符号相反.(指的两项一正号一负号)(11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么.(l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:a2±2ab+b2=(a±b)2(13)完全平方公式的特点:①它是一个三项式.②其中有两项是某两数的平方和.③第三项是这两数积的正二倍或负二倍.④具备以上三方面的特点以后,就等于这两数和(或者差)的平方.(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和). (15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式.(16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式. (17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提.(18)分组分解法的原那么:分组后可以直接提出公因式,或者分组后可以直接运用公式.(19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键.。
因式分解知识点归纳总结 济宁分钟李涛一.因式分解 定义: 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.理解: 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二. 因式分解方法1. 提公共因式法(1)定义: 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: )(c b a ac ab +=+(2). 概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+(3). 易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.2. 运用公式法(1)定义: 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.(2). 主要公式:(1)平方差公式: ))((22b a b a b a -+=-(2)完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3). 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.(4). 运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.三. 因式分解思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.。
第一讲因式分解知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
即:多项式f几个整式的积例:-ax+-bx=-x(a-∖-b)3 3 3因式分解,应注意以下几点。
1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幕的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。
2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
'系数一一取各项系数的最大公约数<字母——取各项都含有的字母指数一一取相同字母的最低次塞例:↑2a3b3c-Sa3b2c3+βa4b2c2的公因式是解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分/匕3g。
302。
3,。
力力:都含有因式/∕c,故多项式的公因式是2a3b2c.②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。
多项式中第一项有负号的,要先提取符号。
例1:把12/b78。
从一2447√分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次耗是ab,故公因式为6abo 解:↑2a2b-↑Sab2-24aV=6ab(2a-3b-4a2b2)例2:把多项式3。
-4)+x(4-R)分解因式解析:由于4-x=-(x-4),多项式3(x-4)+M4-x)可以变形为3(x-4)-X(X-4),我们可以发现多项式各项都含有公因式(工-4),所以我们可以提取公因式(x-4)后,再将多项式写成积的形式.解:3(x-4)+x(4-x)=3(x-4)-x(x-4)=(3-x)(x-4)例3:把多项式-f+2为分解因式解:-X2+2x=-(x2-2x)=-x(x-2)(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
因式分解知识点归纳总结
定义与基本概念
定义:把一个多项式化为几个整式的积的形式,这种变形叫做因
式分解,也叫作把这个多项式分解因式。
关系:因式分解是整式乘法
的逆过程。
分解方法
提公因式法:
公因式:多项式中的每一项都含有的因式,称为公因式。
找法:
取多项式各项系数的最大公约数为公因式的系数,各项中相同字母取
最低次幂的积。
公式法:
平方差公式:a² - b² = (a + b)(a - b)完全平方公式:a² +
2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²
十字相乘法:适用于二次项系数为1的二次三项式,如x² + (a + b)x + ab = (x + a)(x + b)。
分组分解法:将多项式分组,然后提取每组的公因式或应用其他方法进行分解。
应用与重要性
应用:因式分解在数学求根作图、解一元二次方程等方面有广泛
应用,是解决许多数学问题的有力工具。
重要性:学习因式分解的方
法与技巧,不仅是掌握数学内容所需,而且对于培养解题技能、发展
思维能力都有着十分独特的作用。
注意事项
在进行因式分解时,要注意分解彻底,即分解到每个因式都不能
再进一步分解为止。
注意公因式的提取要准确,避免遗漏或错误。
熟
记并理解常用的公式和定理,以便在分解过程中灵活运用。
综上所
述,因式分解是数学中的一个重要概念和方法,通过学习和掌握相关的知识点和技巧,可以更好地应用它来解决实际问题。
因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
因式分解知识点因式分解是数学中重要的基础知识之一。
它是指将一个多项式表示成若干个一次或多次幂的乘积的形式。
因式分解在数学中有广泛的应用,例如解方程、计算极限、构建数据模型等等。
本文旨在深入探讨因式分解的相关知识点。
一、基本概念1.1 多项式与因式:多项式是由常数、变量和幂次依次相乘所得的代数式,如$x^2+2x+1$。
因式是一种可以被一个数或一个代数式整除的代数式,如$x+1$是$x^2+2x+1$的因式。
1.2 因数与因式分解:在数学中,一个数$a$能够被另一个数$b$整除,即$a=bn$,则称$b$是$a$的因数。
因式分解是指将一个代数式写成各个因数的乘积的形式。
二、因式分解方法2.1 提公因式法:提公因式法是指先提取出多项式中的公因式,然后将公因式与剩余项相乘得到原多项式。
例如,$3x^3+6x^2=3x^2(x+2)$。
2.2 分组分解法:分组分解法是指将多项式中的项分成两组,使得每组之间可以找到一个公因式,然后将两组分别提取出公因式后合并得到原多项式。
例如,$x^2+2xy+y^2= (x+y)^2$。
2.3 短除法:短除法是将多项式中的项按某个因式进行除法运算后得到商式,将商式再按另一因式进行除法运算,直到多项式无法再做除法为止。
例如,$x^3-8=(x-2)(x^2+2x+4)$。
2.4 公式法:公式法是指利用一些基本公式对多项式进行因式分解。
例如,$a^2-b^2=(a+b)(a-b)$。
三、应用3.1 解高次方程:因式分解可以方便地解决高次方程,如 $x^2-5x+6=0$可以因式分解为$(x-2)(x-3)=0$,从而得到解$x=2$和$x=3$。
3.2 计算极限:因式分解可以化简复杂的代数式,从而方便计算极限,如$\lim\limits_{x\rightarrow3}\dfrac{x^3-27}{x^2-9}=\lim\limits_{x\rightarrow3}\dfrac{(x-3)(x^2+3x+9)}{(x+3)(x-3)}=\lim\limits_{x\rightarrow3}\dfrac{x^2+3x+9}{x+3}=12$。
初二数学知识点归纳:因式分解初二数学知识点归纳:因式分解(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的(4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法()提出多项式的公因式以后,另一个因式的确定方法是:用原的多项式除以公因式所得的商就是另一个因式(6)如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的,在提出“-”号时,多项式的各项都要变号(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式(8)运用公式法:如果把乘法公式反过,就可以用把某些多项式分解因式,这种分解因式的方法叫做运用公式法(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)具备什么特征的两项式能用平方差公式分解因式①系数能平方,(指的系数是完全平方数)②字母指数要成双,(指的指数是偶数)③两项符号相反(指的两项一正号一负号)(11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么(l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方字母表达式:a2±2ab+b2=(a±b)2(13)完全平方公式的特点:①它是一个三项式②其中有两项是某两数的平方和③第三项是这两数积的正二倍或负二倍④具备以上三方面的特点以后,就等于这两数和(或者差)的平方(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和)(1)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式(16)具备什么条的多项式可以用分组分解法进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法分解因式(17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提(18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式(19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
n m n a a +=同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。
中考数学常考的知识点:因式分解(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!中考数学常考的知识点:因式分解中考数学常考的知识点:因式分解在日常过程学习中,是不是听到知识点,就立刻清醒了?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
八年级下册数学因式分解知识点总结一、因式分解的概念因式分解是指将一个代数式分解为若干个因式的乘积。
通过因式分解,我们可以更好地理解和计算代数式,简化运算过程。
二、公式的因式分解1.平方差公式平方差公式指的是a^2-b^2可以分解为(a+b)(a-b)。
利用平方差公式,我们可以快速求解平方差的值。
2.二次平方根公式二次平方根公式指的是a^2+2ab+b^2可以分解为(a+b)^2。
这个公式在应用中非常常见,可以简化一些复杂运算。
3.一元二次方程的因式分解一元二次方程的因式分解是指将形如ax^2+bx+c的二次方程分解为两个一次因式相乘的形式。
三、常见的因式分解方法1.提公因式法提公因式法是最基本的因式分解方法,它通过提取多项式的最大公因式来进行分解。
2.平方三项差公式平方三项差公式是指a^2-2ab+b^2可以分解为(a-b)^2。
这个公式在因式分解中经常使用。
3.两个平方差的差公式两个平方差的差公式是指a^2-b^2可以分解为(a+b)(a-b)。
这个公式也是因式分解中常用的方法之一。
四、高阶因式分解在高阶因式分解中,我们需要注意多项式的次数和系数,采用不同的方法进行因式分解。
常用的高阶因式分解方法有配方法、分组分解、换元法等。
因式分解是数学中的一项基本技能,对于解决方程、证明等问题具有重要的作用。
掌握因式分解的基础知识和常见方法,能够更好地理解和解决数学问题。
在实际应用中,我们还需要根据具体情况选择合适的因式分解方法,提高计算效率和准确性。
以上是八年级下册数学因式分解知识点的总结。
希望通过这篇文档,可以帮助大家更好地理解和掌握因式分解的方法和技巧。
因式分解知识点总结及典型试题知识点一:因式分解的总体思路第一步:定项(以加减号为准,区分三项以下的和三项以上的两种因式分解) 第二步:三项以下的要观察是否有公因式,有公因式先公因式提再分解。
第三步:三项以上的要分组,分组后再用公式法分解。
第四步:用公式法分解 (如果是两项用平方差;三项用完全平方或十字相乘法) 知识点二:公因式确定方法:各项中系数取最大公因数,相同字母取最低次幂,乘起来作为公因式1.(2016•平南县二模)分解因式 m ﹣ ma2 的结果是( )A. m (1+a) ( 1 ﹣ a) B. m (1+a) 2 C. m ( 1 ﹣ a) 2 D. ( 1 ﹣ a) (1+a)2. (2016 春•东湖区校级月考)计算:22014 ﹣(﹣ 2) 2015 的结果是( )A.22015 B.22014 C.﹣22014 D.3×220143. (2015•菏泽)把代数式 ax2 ﹣ 4ax+4a 分解因式,下列结果中正确的是( )A. a (x ﹣ 2) 2 B. a (x+2) 2 C. a (x ﹣ 4) 2 D. a (x+2) (x ﹣ 2) 4.(2015•宜宾)把代数式3x3 ﹣12x2+12x 分解因式,结果正确的是( )A. 3x (x2 ﹣ 4x+4) B. 3x (x ﹣ 4) 2 C. 3x (x+2) (x ﹣ 2) D. 3x (x ﹣ 2) 2 5.(2015•长沙校级自主招生)多项式 a n ﹣ a3n+a n+2分解因式的结果是( )A. a n ( 1 ﹣ a3+a2 ) B. a n ( ﹣ a2n+a2 ) C. a n (1 ﹣ a2n+a2 ) D. a n (﹣ a3+a n ) 6. (2015•杭州模拟)下列代数式 3 (x+y) 3 ﹣ 27 (x+y)因式分解的结果正确的是( ) A. 3 (x+y) (x+y+3) (x+y ﹣ 3) B. 3 (x+y) [ (x+y) 2 ﹣ 9]C. 3 (x+y) (x+y+3) 2 D. 3 (x+y) (x+y ﹣ 3) 27.(2016•温州校级一模)多项式 x2 ﹣ 1 与多项式 x2 ﹣ 2x+1 的公因式是 ( )A. x ﹣ 1 B. x+1 C. x2 ﹣ 1 D. (x ﹣ 1) 28. (2016•赵县模拟)若 ab= ﹣ 3, a ﹣ 2b=5,则 a2b ﹣ 2ab2 的值是( )A.﹣ 15 B. 15 C. 2 D.﹣ 89. -6xyz+3xy2-9x2y 的公因式是( ) A. -3x B. 3xz C. 3yz D. -3xy10. (1) m (a-2) +n (2-a) (2)(y-x) 2+2x-2y.11. (2014 春•玉环县期中)分解因式: x3 ﹣ 2x2 ﹣ 8x= .12. (2014 春•诸城市校级月考)分解因式: x3 ﹣4x2 ﹣ 21x= .13. (2013 秋•瑞安市校级期末)分解因式 a3 ﹣ a2 ﹣ 2a=.14.(2013•南充模拟)分解因式:2x2 ﹣ 2x ﹣ 12= .15. (2015 春•文昌校级期中)分解因式: x4 ﹣3x3 ﹣28x2=知识点三:平方差公式使用的条件:前提是两项;必须是平方的形式;平方的两项符号必须相反;只有具备上述三个条件才能平方差公式。
第四章因式分解
1.因式分解定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式。
2.公因式:把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。
3.提公因式法:如果一个多项式的各项含有公因式,那末就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。
4.找公因式的一般步骤:
(1) 若各项系数是整系数,取系数的最大公约数;
(2) 取相同的字母,字母的指数取较低的; .
(3)取相同的多项式,多项式的指数取较低的.
(4)所有这些因式的乘积即为公因式.
5.公式法:
(1) ma+mb+mc=m(a+b+c) (2) (3)
6.、分解因式的一般步骤为:
(1)若有“"先提取"-”,若多项式各项有公因式,则再提取公因式
(2)若多项式各项没有公因式则根据多项式特点选用平方差公式或完全平方公式
(3)每一个多项式都要分解到不能再分解为止.
7、因式分解与整式乘法是相反向的变形。
(1)把几个整式的积化成一个多项式的形式,是乘法运算.
(2)把一个多项式化成几个整式的积的形式,是因式分解.
补充:十字相乘法。
因式分解总结知识点一、多项式的基本知识1.多项式的定义多项式是由多个单项式相加或相减而成的代数式。
一般的形式为:$P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$。
其中,$a_n, a_{n-1}, \cdots, a_1, a_0$ 是常数,$x$ 是变元,$a_nx^n, a_{n-1}x^{n-1}, \cdots, a_1x, a_0$ 分别称为多项式 $P(x)$ 的各项,$a_n$ 称为多项式 $P(x)$ 的首项系数,$a_0$ 称为常数项。
2.多项式的次数如果多项式 $P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 中 $a_n \neq 0$,则$n$ 称为多项式的次数,记作 $\deg P(x) = n$。
3.多项式的分类按照多项式的次数和各项系数的类型,多项式分为一元多项式和多元多项式,一元多项式又可以分为单项式和多项式,多项式还可以按照各项系数的类型分为整系数多项式、有理系数多项式、实系数多项式和复系数多项式等等。
二、因式分解的基本方法1.提公因式法提公因式法是因式分解的一个基本方法,它适用于形如 $ax^2 + bx + c$ 的二次三项式,其中 $a, b, c$ 是常数。
例如对于 $2x^2 + 3x + 1$,我们可以先找到它的两个因式 $2x$ 和 $1$,然后将原多项式分解为 $(2x + 1)(x + 1)$。
2.公式法公式法是因式分解的另一个基本方法,它适用于一些特定形式的多项式,如平方差公式$a^2 - b^2 = (a + b)(a - b)$,完全平方公式 $(a \pm b)^2 = a^2 \pm 2ab + b^2$,立方和公式 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ 等等。
3.分组分解法分组分解法是对多项式中的部分项进行合并,以便进行进一步的因式分解。
一、 知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
即:多项式→几个整式的积例:111()333ax bx x a b +=+因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。
2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
⎧⎪⎨⎪⎩系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:333234221286a b c a b c a b c -+的公因式是 . 解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分33323422,,a b c a b c a b c 都含有因式32a b c ,故多项式的公因式是232a b c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。
多项式中第一项有负号的,要先提取符号。
例1:把2233121824a b ab a b --分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab ,故公因式为6ab 。
解:2233121824a b ab a b -- 226(234)ab a b a b =--例2:把多项式3(4)(4)x x x -+-分解因式解析:由于4(4)x x -=--,多项式3(4)(4)x x x -+-可以变形为3(4)(4)x x x ---,我们可以发现多项式各项都含有公因式(4x -),所以我们可以提取公因式(4x -)后,再将多项式写成积的形式.解:3(4)(4)x x x -+-=3(4)(4)x x x ---=(3)(4)x x --例3:把多项式22x x -+分解因式 解:22x x -+=2(2)(2)x x x x --=-- (2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
数学中的因式分解知识点在数学中,因式分解是指将一个多项式或一个整数分解为若干个乘积的形式,其中每一个乘积因子都是原多项式或整数的因子。
因式分解是数学中的基础概念之一,它在代数、方程与不等式、多项式、分式等诸多领域具有重要的应用。
本文将主要介绍因式分解的一些基本概念和常见方法。
一、整数因式分解整数因式分解是指将一个整数表示为几个素数的乘积的形式。
这种分解方法也叫做质因数分解。
对于任何一个大于1的整数,都可以找到一组素数,使得它们的乘积等于该整数。
例如,对于整数60,可以进行如下的因式分解:60 = 2 × 2 × 3 × 5上述式子中的2、3和5都是素数,它们的乘积正好等于60。
其中2、3、5就是60的质因数。
通过整数的因式分解,我们可以更好地理解整数的性质,例如判断整数的奇偶性、最大公约数、最小公倍数等。
同时,整数因式分解也为解决一些与整数相关的问题提供了有效的方法。
二、多项式因式分解多项式因式分解是指将一个多项式表示为若干个乘积的形式。
在进行多项式因式分解时,可以根据多项式的特点应用不同的方法。
1. 提取公因式法提取公因式法是一种常用的多项式因式分解方法,它适用于多项式中每一项都含有相同的因子的情况。
通过提取公因式,可以将多项式分解为含有公因式的乘积形式。
例如,对于多项式3x^2 + 6x,我们可以进行如下的因式分解:3x^2 + 6x = 3x(x + 2)上述分解过程中,我们提取出了3x这个公因式。
通过提取公因式,我们将多项式3x^2 + 6x分解为了3x和x + 2两个乘积。
2. 平方差公式平方差公式也是一种常用的多项式因式分解方法,它适用于多项式的形式为a^2 - b^2的情况。
平方差公式可以将这种多项式分解为两个因式的乘积。
例如,对于多项式x^2 - 9,我们可以进行如下的因式分解:x^2 - 9 = (x + 3)(x - 3)上述分解过程中,我们利用了平方差公式将多项式x^2 - 9分解为(x + 3)和(x - 3)两个乘积。
因式分解的相关知识
1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法
(1)提公因式法:)(c b a ac ab +=+
(2)运用公式法:))((22b a b a b a -+=-
222)(2b a b ab a +=++
222)(2b a b ab a -=+-
(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++
(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式
(3)分解因式必须分解到每一个因式都不能再分解为止。
因式分解知识点总结一、因式分解的概念。
1. 定义。
- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。
2. 与整式乘法的关系。
- 因式分解与整式乘法是互逆的恒等变形。
整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。
二、因式分解的方法。
1. 提公因式法。
- 公因式的确定。
- 系数:取各项系数的最大公因数。
例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。
- 字母:取各项相同的字母。
在6x^2+9x中,相同的字母是x。
- 字母的指数:取相同字母的最低次幂。
对于6x^2+9x,x的最低次幂是1。
所以公因式是3x。
- 提公因式的步骤。
- 找出公因式。
- 用多项式除以公因式,得到另一个因式。
例如,6x^2+9x = 3x(2x+3)。
2. 公式法。
- 平方差公式。
- 公式:a^2-b^2=(a + b)(a - b)。
- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。
例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。
- 完全平方公式。
- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。
- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。
例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。
3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。
因式分解
因式分解
把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。
因式分解与整式乘法都是整式变形,它们目标不同,过程相反,两者互为逆变形,因式分解是将“和差"化为“积"的形式,而整式乘法是将"积"化为“和差"的形式。
提公因式法
1、公因式:多项式的各项都含有的公共的因式叫做这个多项式的公因式。
如果多项式的各项有公因式,可把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法。
2、提公因式法用字母表示为:pa+pb+pc=p(a+b+c),p 既表示单项式也可表示多项式,我们称p 为这个多项式的公因式。
公式法
1、平方差公式
))((22b a b a b a -+=-
2、完全平方公式
222)(2b a b ab a +=++
222)(2b a b ab a -=+-
3、十字相乘法
我们把形如2x +(p+q)x+pq=(x+p)(x+q),的因式分解称为十字相乘法。
利用该式可将某些二次项系数是1的二次三项式分解因式。
因式分解方法的综合运用
对多项式进行因式分解常常是几种方法综合运用,灵活操作,首先,看各项有无公因式,若有公因式,则把它提取出来。
其次,观察是否符合完全平方公式或平方差公式,若符合就用公式法分解因式。
因式分解知识点归纳总结概述
定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
分解因式与整式乘法互为逆变形。
因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法
注意三原则
1 分解要彻底
2 最后结果只有小括号
3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))
分解因式技巧
1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法
⑴提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式
提公因式法基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
例如:-am+bm+cm=
a(x-y)+b(y-x)=
⑵公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a2-b2=(a+b)(a-b);
完全平方公式:a2±2ab+b2=(a±b) 2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
例如:a2 +4ab+4b2 =
⑶分组分解法
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)
同样,这道题也可以这样做。
ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
2. x 3-x 2+x-1
3. x 2-x-y 2-y
⑷十字相乘法
这种方法有两种情况。
①x 2+(p+q)x+pq 型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。
因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p+q)x+pq=(x+p)(x+q) .
②kx 2+mx+n 型的式子的因式分解
如果有k=ac ,n=bd ,且有ad+bc=m 时,那么kx 2+mx+n=(ax+b)(cx+d).
所以7x 2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。
十字相乘试一试,分组分解要合适。
”
因式分解练习题
(1) ()()()()m n p q n m p q ++-+- (3) 44x y -
(4) 22(32)()m n m n +-- (5) 1132n n n x x x +--+
(6) 3221516x x y xy --
(7) 3214y y y ---
(9) 3
1
33x x -
(10) 23()6()24x y x y ----
(11) 22144b ab a ---
(13) 2412625a a -+
(14) 42()()20x y x y +++-
(15) 2222(328)(28)x x x x +----
16) 222(2)2(2)1x x x x -+-+。