2014年湖南省长沙一中自主招生考试数学试卷
- 格式:doc
- 大小:421.50 KB
- 文档页数:26
2014年长沙市中考数学试卷1.21的倒数是( ) A .2B .-2C .21 D .-21 2.下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是 ( )A . 3和3B . 3和4C . 4和3D . 4和4 4.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C . 互相垂直D .互相垂直且相等 5 .下列计算正确的是( )A .752=+ B .422)(ab ab = C .a a a 632=+ D .43a a a =⋅6 .如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10cm ,BC=4cm,则AD 的长等于( )A . 2 cmB . 3 cmC . 4 cmD . 6 cm7 .一个关于x 的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是( )A . x 〉1B .x ≥1C .x 〉3D .x ≥3 8.如图,已知菱形ABCD 的边长等于2,∠DAB=60°, 则对角线BD 的长为 ( )A . 1B .3C . 2D . 239.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )A B DC 0 4 3 2 1 ·。
60°A D C B10.函数a y x=与函数2y ax =(0a ≠)在同一坐标系中的图像可能是( )二、填空题:(本大题8个小题,每小题3分,共24分)在每小题中,请将答案直接填在答题卡中对应的横线上.11.如图,直线a ∥b,直线c 与a ,b 相交,∠1=70°,则∠2= 度; 12.抛物线23(2)5y x =-+的顶点坐标为 ;13.如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB= 度;14.已知关于x 的 一元二次方程22340x kx -+=的一个根是1,则k= . 15.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为 . 16.如图,△ABC 中,DE ∥BC,23DE BC =,△ADE 的面积为8,则△ABC 的面积为 ;17.如图,B 、E 、C 、F 在同一直线上,AB ∥DE,AB=DE ,BE=CF ,AC=6,则DF= ; 18。
自主招生数学试题及答案【篇一:2014-2015重点高中自主招生数学试题及答案(2)】一.选择题(每小题5分,共40分)1.一个空间几何体的三视图如图所示,则该几何体的体积为( d)a.2? b.8?3侧(左)视俯视图c.4?d.2?正(主)视2.已知a(x1,y1),b(x2,y2)是反比例函数y?的两点,满足y1?y2?1在平面直角坐标系xoy的第一象限上图象x75,x2?x1?. 则s?aob?( b) 2310111213a.2 b. 2 c. 2d. 2111213143.有2 015个整数,任取其中2 014个相加,其和恰可取到1,2,…,2 014这2 014个不同的整数值. 则这2 015个整数之和为()a.1 004b. 1 005 c. 1 006d. 1 0083.设2 015个整数为x1,x2,…,x2015.记x1+x2+…+x2015=m.不妨设m-xi=i(i=1,2,…,2014),m-x2015=a.则2014m=1+2+…+2014+a.故a除以2014的余数为1007.从而,a=1007,m=1008.当xi=1008-i(i=1,2,…,2014),5x102=1时取到.4.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的球的编号互不相同的概率为( d)5a. . b. 2. c. 1 d. 821732144、解从10个球中取出4个,不同的取法有c10?210种.如果要求取出的球的编号互不相同,可以4先从5个编号中选取4个编号,有c5种选法.对于每一个编号,再选择球,有两种颜色可供挑选,所以取出的球的编号互不相同的取法有c5?2808. 故选(d). ?2102144?80种.因此,取出的球的编号互不相同的概率为5. 使得3?81是完全平方数的正整数n有( b )a. 0个b. 1个c. 2个d. 3个1n.a. 0个b. 1个c. 2个d. 3个5、解当n?4时,易知3n?81不是完全平方数.故设n?k?4,其中k为正整数,则而81是平方数,则一定存在正整数x,使得3k?1?x2,3n?81?81(3k?1).因为3n?81是完全平方数,即3k?x2?1?(x?1)(x?1),故x?1,x?1都是3的方幂.又两个数x?1,x?1相差2,所以只可能是3和1,从而x?2,k?1.因此,存在唯一的正整数n?k?4?5,使得3n?81为完全平方数.故选(b).6.如图,已知ab为⊙o的直径,c为⊙o上一点,cd⊥ab于d,ad=9,bd=4,以c为圆心,cd为半径的圆与⊙o相交于p,q两点,弦pq交cd于e,则pe?eq的值是( d )a.24 b. 9c. 36d. 277.已知实系数一元二次方程x+(1+a)x+a+b+1=0的两实根为x1,x2,且0 <x1<1,x2>1,则取值范围() a -1<2b的ab1b1b1b1??b -1<<? c -2<?? d -2<<? a2a2a2a28. 图中正方形abcd边长为2,从各边往外作等边三角形abe、bcf、cdg、dah,则四边形afgd的周长为 ( )a.4+26+22b. 2+26+22c. 4+23 +42 d.4+2+42 二.填空题(每小题6分,共36分) 9.设由1~8的自然数写成的数列为a1,a2,…,a8.则a1?a2+a2?a3+a3?a4+a4?a5+a5?a6+a6?a7+a7?a8+a8?a1的最大值为2由题意记s=a1?a2+a2?a3+a3?a4+a4?a5+a5?a6+a6?a7+a7?a8+a8?a1. 该式去掉绝对值符号,在这个和的任意加项中,得到一正、一负两个自然数,为了使和达到最大的可能值,只须由1~4取负,由5~8取正,于是,s=2[(8+7+6+5)-(4+3+2+1)]=32.如8?4+4?7+7?+?5+5?2+2?6+6?3+3?8=32.10.记?x?表示不超过实数x的最大整数,ak=?2014?(k=1,2,?,100,则在这100个整数中,不同的??k??整数的个数为69211.设非负实数x,y,z满足x+y+z=1,则t=9?x2+4?y+?z212.如图所示,线段oa = ob = oc =1,∠aob = 60o,∠boc =30o,以oa,ob,oc为直径画3个圆,两两的交点为m,n,p,则阴影部分的曲边三角形的面积是.解:如图,连接ac,an,bn,am,bm, mp,np,om,on,op,易知∠opa=∠opc =90o,∠ano =∠bno = 90o,∠bmo=∠cno = 90o,所以a,p,c共线;a,n,b共线;b,m,c共线.由oa=ob=oc=1,可知p,m,n分别是ac,bc,ab的中点,mpnb 为平行四边形,bn=mp,bm=np,所以bn与mp长度相等,bm与np长度相等,因此,曲边三角形mpn的面积= smpnb =1s△abc, 242而s△abc = saocb – s△aoc = s△aob+ s△boc – s△aoc1?1 所以,曲边三角形mpn的面积=13. 将一个4?4棋盘中的8个小方格染成黑色,使得每行、每列都恰有两个黑色方格,则有不同的染法.(用数字作答)解:第一行染2个黑格有c4种染法.第一行染好后,有如下三种情况:(1)第二行染的黑格均与第一行的黑格同列,这时其余行都只有一种染法;(2)第二行染的黑格与第一行的黑格均不同列,这时第三行有c4种染法,第四行的染法随之确定;(3)第二行染的黑格恰有一个与第一行的黑格同列,这样的染法有4种,而在第一、第二这两行染好后,第三行染的黑格必然有1个与上面的黑格均不同列,这时第三行的染法有2种,第四行的染法随之确定. 因此,共有染法为6??1?6?4?2??90种.填90.14.圆o的半径为1,p为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点a与点p重合)沿圆周顺时针滚动。
2014年湖南省长沙市一中高考数学一模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知集合A={y|y=,x>},B={y|y=2x,x<0},则A∩B=()A.{y=|1<y<2}B.{y|0<y<}C.{y|0<y<1}D.∅【答案】C【解析】【分析】本题考查交集运算,分别求解分式函数和指数函数的值域求出集合A,B,然后直接利用交集运算得答案.【解答】解:由y=,x>,得0<y<2,∴A={y|y=,x>}={y|0<y<2};又B={y|y=2x,x<0}={y|0<y<1}.∴A∩B={y|0<y<1}.故选C.2.复数1-i与1+bi的积是实数,则实数b的值是()A.0B.1C.-1D.±1【答案】B【解析】解:复数(1-i)(1+bi)=1+b+(b-1)i是实数,∴b-1=0,解得b=1.故选:B.利用复数的运算法则、复数为实数的充要条件即可得出.本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.3.表提供了某厂节能降低技术改造后产生甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.根据表提供的数据,用最小二乘法求出关于的线性回归方程的值为()A.0.35B.0.3C.0.4D.0.5【答案】A【解析】解:设x,y的样本平均值分别为:,,则==4.5,==3.5.∴样本中心点为(4.5,3.5),代人线性回归直线方程,得3.5=0.7×4.5+a,∴a=0.35,故选:A.首先,设x,y的样本平均值分别为:,,求解得到==4.5,==3.5.得到样本中心点为(4.5,3.5),然后,将此代人方程,求解即可.本题重点考查了平均值的计算、线性回归直线方程及其求解等知识,属于中档题.4.如图,改程序框图的作用是输入x的值,输出相应的y值.若输入的x的值与输出的y值相等,则这样的x的值有()A.1个B.2个C.3个D.4个【答案】C【解析】解:这是一个用条件分支结构设计的算法,<该程序框图所表示的算法的作用是求分段函数y=的函数值,当x<0时,令-x2=x,得x=-1;当0≤x时,令=x,得x=0或者1;故只有3个值符合题意.故选:C.根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是求分段函数的函数值.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.已知向量a=(1,1),b=(-2,2),则向量a与a-b的夹角余弦值为()A. B.- C.- D.【答案】D【解析】解:∵=(1,1),=(-2,2)∴=(3,-1)∴=1×3+1×(-1)=2=,||=设向量与的夹角为θ由向量的夹角公式可得,cosθ===故选D由已知向量的坐标可求出的坐标,结合向量数量积的定义及性质可求,,||,然后结合向量的夹角公式可得,cosθ=可求本题主要考查了向量的夹角公式的坐标表示,解题的关键是熟练应用基本公式6.双曲线C的离心率为,且与椭圆+=1有公共焦点,则双曲线C的方程为()A.x2-=1B.-y2=1C.y2-=1D.-x2=1【答案】B【解析】解:∵椭圆+=1的焦点是F1(-,0),,,双曲线C的离心率为,且与椭圆+=1有公共焦点,∴设双曲线方程为,且,解得a=2,c=,b==1,∴双曲线方程为.故选:B.由已知条件,先求出椭圆的焦点,于是得到双曲线的焦点,再由双曲线的离心率,能求出双曲线方程.本题考查双曲线方程的求法,解题时要认真审题,要熟练掌握椭圆和双曲线简单性质.7.下列命题正确的是()A.若a>b>1,c<0,则a e>b eB.若|a|>b,则a2>b2C.∃x0∈R,x0+=1D.若a>0,b>0且a+b=1,则+的最小值为4【答案】D【解析】解:若a>b>1,c<0,由幂函数在幂指数小于0时在第一象限为减函数得a c<b c,A 错误;若|a|>b,则a2>b2错误,如a=0,b=-2满足|0|>-2,但02<(-2)2,B错误;∵(x>0)或(x<0),∴∃x0∈R,x0+=1错误;若a>0,b>0且a+b=1,则+=(a+b)(+)=2+()≥4,当且仅当a=b时等号成立,D正确.故选:D.利用不等式的性质逐一核对四个选项得答案.本题考查了命题的真假判断与应用,考查了不等式的性质,是基础题.8.函数f(x)=x3-2cx2+c2x在x=2处有极大值,则常数c的值为()A.2B.-2C.6D.2或6【答案】C【解析】解:f′(x)=3x2-4cx+c2,∵函数f(x)=x3-2cx2+c2x在x=2处有极大值,∴f′(2)=3×22-4c×2+c2=0,解得c=2或6.当c=2时,f′(x)=3x2-8x+4=(3x-2)(x-2),在x=2处取得极小值,不符合题意,应舍去;当c=6时,f′(x)=3x2-24x+36=3(x-2)(x-6),在x=2处取得极大值,符合题意,因此c=6.故选C.由题意可得f′(2)=0,解出c的值之后必须验证是否符合函数在某一点取得极大值的充分条件.熟练掌握函数在某一点取得极大值的充分条件是解题的关键.9.设α为锐角,且cos(α+)=,则sin(α-)的值为()A.-B.-C.D.【答案】D【解析】解:由已知,sin(α-)=sin[-(α+)]=cos(α+)=.故选D.利用(α-)=-(α+),则sin(α-)=sin[-(α+)]=cos(α+)=.本题考查了三角函数诱导公式的运用求三角函数值,关键是角的等价变换.10.已知f(x)=,若a,b,c,d是互不相同的四个正数,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是()A.(21,25)B.(21,24)C.(20,24)D.(20,25)【答案】B【解析】解:先画出f(x)=的图象,如图:∵a,b,c,d互不相同,不妨设a<b<c<d.且f(a)=f(b)=f(c)=f(d),3<c<4,d>6.∴-log3a=log3b,c+d=10,即ab=1,c+d=10,故abcd=c(10-c)=-c2+10c,由图象可知:3<c<4,由二次函数的知识可知:-32+10×3<-c2+10c<-42+10×4,即21<-c2+12c<24,∴abcd的范围为(21,24).故选:B.图象法:画出函数y=f(x)的图象,根据图象分析a,b,c,d的关系及取值范围,从而求出abcd的取值范围.本题考查了利用函数图象分析解决问题的能力,以及对数函数图象的特点,注意体会数形结合思想在本题中的运用.二、填空题(本大题共5小题,共25.0分)11.已知极坐标的极点在平面直角坐标系的原点处,极轴与x轴的正半轴重合,且长度单位相同.已知直线l的参数方程为:(t为参数),圆C的极坐标方程为ρ=4sinθ,则直线l被圆C所截得的弦长为______ .【答案】2【解析】解:根据直线l的参数方程:(t为参数),得x+y-4=0,根据圆C的极坐标方程为ρ=4sinθ,得x2+y2-4y=0,∴x2+(y-2)2=4,∴圆心为(0,2),半径为2,圆心到直线的距离为d==,弦长为2=2.故答案为:2.首先,将给定的直线参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程,然后,根据直线被圆截得的弦长公式进行求解.本题重点考查了直线参数方程,圆的极坐标方程、直线与圆的位置关系、弦长公式等知识,属于中档题.12.从{1,2,3,4}中随机选一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是______ .【答案】【解析】解:从{1,2,3,4}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,共有4×3=12种方法,若b>a,则b=3时,a=1或2,b=2时,a=1,共有3种,则则b>a的概率是,故答案为:.根据古典概型的概率公式进行计算即可得到结论.本题主要考查古典概型的概率的计算,求出满足条件的个数是解决本题的关键.13.一个几何体的三视图如图所示,则该几何体的体积是______ .【答案】16【解析】解:如图所示,该几何体为四棱锥P-ABCD,平面PAD⊥侧面ABCD,侧面ABCD是边长为4正方形,PA=PD,OA=OD,PO=3.∴该几何体的体积V===16.故答案为:16.如图所示,该几何体为四棱锥P-ABCD,平面PAD⊥侧面ABCD,侧面ABCD是边长为4正方形,PA=PD,OA=OD,PO=3.利用四棱锥的体积计算公式即可得出.本题考查了四棱锥的三视图、四棱锥的体积计算公式,属于基础题.14.已知数列{a n}满足a n=n•sin(),(n∈N*),则a1+a2+…+a250= ______ .【答案】125【解析】解:由a n=n•sin(),得,,,,∴a1+a2+a3+a4=-2,则a1+a2+…+a250=62(a1+a2+a3+a4)+a249+a250=62×(-2)+249=125.故答案为:125.由数列的通项公式求得数列的前4项的和为-2,且每一个4项的和均为-2,由此求得答案.本题考查了数列的求和,关键是对数列规律的发现,是中档题.15.定义函数f(k)表示k的最大奇因数,例如:f(1)=1,f(2)=1,f(3)=3,f (4)=1.(1)f(1)+f(3)+f(5)+…+f(2n-1)= ______ .(2)f(1)+f(2)+f(3)+…+f(2n)= ______ .【答案】n2;4n+【解析】解(1)由题意,f(1)+f(3)+f(5)+…+f(2n-1)=1+3+5+…+2n-1=n2,(2)记S n=f(1)+f(2)+f(3)+…+f(2n),则S n-1=f(1)+f(2)+f(3)+…+f(2n-1);S n=f(1)+f(2)+f(3)+…+f(2n)=f(1)+f(3)+…+f(2n-1)+[f(2)+f(4)+…+f(2n)]=1+3+5+…+2n-1+[f(1)+f(2)+f(3)+…+f(2n-1)]=4n-1+S n-1,故S n-S n-1=4n-1;则S n=(S n-S n-1)+(S n-1-S n-2)+…+(S2-S1)+S1=4n-1+4n-2+4n-3+…+4+2=4n+.故答案为:n2,4n+.(1)由题意,f(1)+f(3)+f(5)+…+f(2n-1)=1+3+5+…+2n-1=n2,(2)记S n=f(1)+f(2)+f(3)+…+f(2n),从而可推出S n=4n-1+S n-1,从而求出S n-S n-1=4n-1;从而可得S n=(S n-S n-1)+(S n-1-S n-2)+…+(S2-S1)+S1=4n-1+4n-2+4n-3+…+4+2=4n+.本题考查了合情推理的应用及等差、等比数列的应用,属于中档题.三、解答题(本大题共6小题,共75.0分)16.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表的列联表:(1)用分层抽样的方法在喜欢打篮球的学生中抽6人,其中应抽取女生多少人?(2)根据以上列联表,问:有多大把握认为是否喜欢打篮球与性别有关.附:k2=临界值表:【答案】解:(1)由题意得,用分层抽样的方法在喜欢打篮球的学生中抽6人,其中应抽取女生×6=2;故应抽取女生2人;(2)k=≈8.333;P(K2≥7.879)=0.005;故有99.5%的把握认为喜欢打篮球与性别有关.【解析】(1)由题意得,用分层抽样的方法在喜欢打篮球的学生中抽6人,其中应抽取女生×6=2;(2)利用公式k2=求k,查表可得.本题考查了分层抽样的应用及独立性检验的应用,属于基础题.17.在ABC中,内角A,B,C的对边分别为a,b,c,且c•sin A+a•cos C=0.(1)求角C的大小;(2)若a=8,b=5,D为AB的中点,求CD的长度.【答案】解:(1)已知等式利用正弦定理化简得:sin C sin A+sin A cos C=0,∵sin A≠0,∴sin C+cos C=0,即tan C=-,∵C为三角形内角,∴C=120°;(2)延长CD到E,使DE=CD,则CE=2CD,连接AE,∵CD为△ABC的中线,∴AD=BD,∵∠ADE=∠BDC,∴△BCD≌△AED,∴AE=BC=a=8,∠AED=∠BCD,CD=ED,∴∠AED+∠ACD=∠BCD+∠ACD=∠ACB=120°,∴∠CAE=180°-(∠AED+∠ACD)=180°-120°=60°,在△ACE中,由余弦定理得:CE2=AC2+BC2-2AC•BC•cos∠CAE=25+64-40=49,解得:CE=7,则CD=CE=3.5.【解析】(1)已知等式利用正弦定理化简,由sin A不为0,求出tan C的值,即可确定出C的度数;(2)延长CD到E,使DE=CD,则CE=2CD,连接AE,再由CD为中线,得到AD=BD,以及对顶角相等,利用SAS得到三角形CBD与三角形EAD全等,利用全等三角形对应边相等,对应角相等得到AE=BC=a=8,∠AED=∠BCD,进而求出∠CAE的度数,在三角形ACE中,利用余弦定理求出CE的长,即可求出CD的长.此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.18.如图,E是以AB为直径的半圆O上异于点A,B的点,边长为4的正方形ABCD所在的平面垂直于该半圆所在的平面.(1)求证:EB⊥ED;(2)若平面ECD与半圆弧的另一个交点为F.(Ⅰ)证明:EF∥AB;(Ⅱ)若EF=2,求三棱锥E-BFC的体积.【答案】(1)证明:∵E是半圆上异于A,B的点,∴AE⊥BE,又∵平面ABCD⊥平面ABE,且AD⊥AB,由面面垂直性质定理得AD⊥平面ABE,又BE⊂平面ABE,∴AD⊥BE,∵AD∩AE=A,∴BE⊥平面ADE,又DE⊂平面ADE,∴EB⊥ED.(4分)(2)(Ⅰ)证明:∵CD∥AB,且CD⊄平面ABE,AB⊂平面ABE,∴CD∥平面ABE,又∵平面CDE∩平面ABE=EF,∴根据线面平行的性质定理得CD∥EF,又CD∥AB,∴EF∥AB.(8分)(Ⅱ)解:∵EF=2,取AB中点O,EF的中点O′,∴在R t△OO′F中,OF=2,O′F=1,∴OO′=,∵BC⊥面ABE,AD∥BC∴AD⊥平面ABE∴V E-ADF=V D-AEF=S△AEF•AD=וEFEF•OO′•AD==.∴三棱锥E-BEC的体积为.(12分)【解析】(1)由圆的性质得AE⊥BE,由面面垂直性质定理得AD⊥平面ABE,从而AD⊥BE,进而BE⊥平面ADE,由此能证明EB⊥ED.(2)(Ⅰ)由CD∥AB,得CD∥平面ABE,根据线面平行的性质定理得CD∥EF,又CD∥AB,由此能证明EF∥AB.(Ⅱ)取AB中点O,EF的中点O′,由V E-ADF=V D-AEF,利用等积法能求出三棱锥E-BEC 的体积.本题考查异面直线垂直的证明,考查直线与直线平行的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.19.已知等差数列{a n}的前9项和为153.(1)数列{a n}中是否存在确定的项?若存在,求出该确定的项,若不存在,请说明理由.(2)若a2=8,从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,按原来的顺序构成新数列{b n},求数列{b n}的前n项和T n,并求使m•(a n-2)<T n+6恒成立的最大正整数m.【答案】解:(1)∵等差数列{a n}的前9项和为153,∴=9a5=153,解得a5=17.∴数列{a n}中存在确定的项a5=17.(2)∵a2=8,a5=17,∴=3,a n=8+(n-2)×3=3n+2,∴=3×2n+2,T n=a2+a4+a8+…+a=3(2+4+8+…+2n)+2n=3×+2n=3•2n+1+2n-6.∵m•(a n-2)<T n+6,∴m<-.∴当n=1或n=2时,m<4-=,∴使m•(a n-2)<T n+6恒成立的最大正整数m=3.【解析】(1)=9a5=153,由此能求出数列{a n}中存在确定的项.(2)由a2=8,a5=17,得a n=3n+2,利用分组求和法能求出T n=3•2n+1+2n-6,由此能求出使m•(a n-2)<T n+6恒成立的最大正整数m.本题考查数列中是否存在确定的项的判断与求法,考查使m•(a n-2)<T n+6恒成立的最大正整数m的求法,解题时要认真审题,注意分组求和法的合理运用.20.已知函数f(x)=ax-e x,(a>0)(1)若a=1,求函数f(x)在x=1处的切线方程;(2)求证:对任意的a∈[1,e+1],f(x)≤x恒成立.【答案】解:(1)当a=1,则f(x)=x-e x,则f′(x)=x-e x,f′(1)=1-e,f(1)=1-e,故函数x=1处的切线方程为y-(1-e)=(1-e)(x-1),即y=(1-e)x.(2)若f(x)≤x恒成立,即ax-e x≤x恒成立,即证ax-x-e x≤0即可,设g(a)=ax-x-e x,若x=0,则g(a)=-1≤0成立,若x≥0,则当a∈[1,e+1]时,函数g(a)单调递增,此时函数的最大值g(e+1)=(e+1)x-x-e x=ex-e x,设h(x)=ex-e x,则h′(x)=e-e x,由h′(x)<0,解得x>1,由h′(x)>0,解得0≤x<1,即当x=1时,函数h(x)取得极大值,h(1)=e-e=0,故当x≥0时,h(x)≤h(1)=e-e=0,g(e+1)=ex-e x≤0成立,若x<0,则a∈[1,e+1]时,函数g(a)单调d递减,此时函数的最大值g(1)=x-x-e x=-e x <0,综上(a)=ax-x-e x≤0成立,即任意的a∈[1,e+1],f(x)≤x恒成立.【解析】(1)若a=1,求函数的导数利用导数的几何意义即可求函数f(x)在x=1处的切线方程;(2)对任意的a∈[1,e+1],f(x)≤x恒成立.转化为以a为参数的函数,利用函数的单调性进行求解即可.本题主要考查函数的切线求解,综合考查导数是几何意义的应用,利用参数转化法是解决本题的关键.21.已知椭圆C :+=1(a >b >0)过点(1,)且离心率为.(1)求椭圆C 的标准方程;(2)过椭圆C 上一点P 向圆O :x 2+y 2=r 2,(r >0)引两条切线,切点分别为A ,B (Ⅰ)若存在点P 使∠APB=60°,求r 的最大值;(Ⅱ)在Ⅰ的条件下,过x 轴上一点(m ,0)做圆O 的切线l ,交椭圆C 于M ,N 两点,求|MN|的最小值.【答案】解:(1)∵椭圆C :+=1(a >b >0)过点(1,)且离心率为.∴,解得a =2,b =1,c = . ∴椭圆C 的标准方程为=1.(2)(I )设P (2cos θ,sin θ). 如图所示,连接OA ,OB ,OP .∵OA ⊥AP ,OB ⊥BP .∠APB=60°, ∴∠AOP=60°,∠APO=30°.∴r =|OP|===1, ∴r 的最大值是1.(II )当直线l 的斜率不存在时,切线l 的方程为:x =±1.代入椭圆方程可得,此时|MN|= .当直线l 的斜率存在时,设切线l 的方程为:y =k (x -m ),(k ≠0,|m |>1),M (x 1,y 1),N (x 2,y 2). 则r = =1.可得1+k 2=k 2m 2. 联立,化为(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0. △=64k 4m 2-4(1+4k 2)(4k 2m 2-4)=16(1+4k 2-k 2m 2)>0. ∴x 1+x 2=,.∴|MN|=====.设k2=t>0,令f(t)=,f′(t)==,可知:当t=时,f(t)取得最大值4,∴|MN|取得最大值2.当t→+∞时,f(t)→0,|MN|→.综上可得:|MN|的最小值为.【解析】(1)由于椭圆C:+=1(a>b>0)过点(1,)且离心率为.可得,解得即可.(2)(I)设P(2cosθ,sinθ).如图所示,连接OA,OB,OP.由于OA⊥AP,OB⊥BP.∠APB=60°,可得r=|OP|==,即可得出.(II)当直线l的斜率不存在时,切线l的方程为:x=±1.代入椭圆方程可得|MN|=.当直线l的斜率存在时,设切线l的方程为:y=k(x-m),(k≠0,|m|>1),M(x1,y1),N(x2,y2).利用直线与圆的相切性质可得r==1.1+k2=k2m2.直线方程与椭圆方程联立可得(1+4k2)x2-8k2mx+4k2m2-4=0.△=16(1+4k2-k2m2)>0.利用根与系数的关系可得|MN|==.设k2=t>0,令f(t)=,利用导数研究其单调性可得:当t=时,f(t)取得最大值4,|MN|取得最大值2.当t→+∞时,f(t)→0,|MN|→.即可得出.本题考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交相切转化为方程联立可得△≥0及根与系数的关系、弦长公式、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.。
2014年湖南省长沙一中自主招生考试数学试卷一、选择题(每小题5分,共30分.每小题均给出了A、B、C、D地四个选项,其中有且只有一个选项是正确地,不填、多填或错填均得0分)1.(5分)有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同地角度观察地结果如图.如果记6地对面地数字为a,2地对面地数字为b,那么a+b地值为()A.3 B.7 C.8 D.112.(5分)如图是某条公共汽车线路收支差额y与乘客量x地图象(收支差额=车票收入﹣支出费用).由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格.下面给出四个图象(如图所示)则()A.①反映了建议(2),③反映了建议(1)B.①反映了建议(1),③反映了建议(2)C.②反映了建议(1),④反映了建议(2)D.④反映了建议(1),②反映了建议(2)3.(5分)已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x ﹣n)=0地两个根,则实数m,n,a,b地大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b4.(5分)记S n=a1+a2+…+a n,令,称T n为a1,a2,…,a n这列数地“理想数”.已知a1,a2,…,a500地“理想数”为2004,那么8,a1,a2,…,a500地“理想数”为()A.2004 B.2006 C.2008 D.20105.(5分)以半圆中地一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB 交于点D,若,且AB=10,则CB地长为()A.B.C.D.46.(5分)某汽车维修公司地维修点环形分布如图.公司在年初分配给A、B、C、D四个维修点某种配件各50件.在使用前发现需将A、B、C、D四个维修点地这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少地调动件次(n件配件从一个维修点调整到相邻维修点地调动件次为n)为()A.15 B.16 C.17 D.18二、填空题(每小题6分,共48分)7.(6分)若[x]表示不超过x地最大整数(如等),则=.8.(6分)在△ABC中,D、E分别是BC、AC上地点,AE=2CE,BD=2CD,AD、BE交于点F,若S△ABC=3,则四边形DCEF地面积为.9.(6分)有红、黄、蓝三种颜色地旗帜各三面,在每种颜色地旗帜上分别标有号码1、2、3,现任意抽取3面,它们地颜色与号码均不相同地概率是.10.(6分)已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线地对称轴上确定一点D,使得|AD﹣CD|地值最大,则D点地坐标为.11.(6分)三角形纸片内有100个点,连同三角形地顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样地三角形地个数为.12.(6分)如图,已知点(1,3)在函数地图象上.正方形ABCD 地边BC在x轴上,点E是对角线BD地中点,函数地图象又经过A、E两点,则点E地横坐标为.13.(6分)按下列程序进行运算(如图)规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行次才停止;若运算进行了5次才停止,则x地取值范围是.14.(6分)给你两张白纸一把剪刀.你地任务是:用剪刀剪出下面给定地两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠地情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪地这一刀(分别在旁边地白纸上画出来)三、解答题(本大题共5小题,12'+12'+14'+18'+16'=72')15.(12分)已知:如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b 厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0地两根,(1)求a和b地值;(2)△A′B′C′与△ABC开始时完全重合,然后让△ABC固定不动,将△A′B′C′以1厘米/秒地速度沿BC所在地直线向左移动.ⅰ)设x秒后△A′B′C′与△ABC 地重叠部分地面积为y平方厘米,求y与x之间地函数关系式,并写出x地取值范围;ⅱ)几秒后重叠部分地面积等于平方厘米?16.(12分)已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O 地切线交x轴于点A.(1)求直线HA地函数解析式;(2)求sin∠HAO地值;(3)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上地动点(与点P 不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF 是以EF为底地等腰三角形,试探索sin∠CGO地大小怎样变化,请说明理由.17.(14分)青海玉树发生7.1级强震,为使人民地生命财产损失降到最低,部队官兵发扬了连续作战地作风.刚回营地地两个抢险分队又接到救灾命令:一分队立即出发前往距营地30千米地A镇,二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队出发后得知,唯一通往A镇地道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路.已知一分队地行进速度为b千米/时,二分队地行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问要使二分队在最短时间内赶到A镇,一分队地行进速度至少为多少千米/时?(2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?18.(18分)如图1、2是两个相似比为1:地等腰直角三角形,将两个三角形如图3放置,小直角三角形地斜边与大直角三角形地一直角边重合.(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;(2)若在图3中,绕点C旋转小直角三角形,使它地斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上地点,满足△CEF地周长等于正方形ABCD地周长地一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形地三边长?若能,指出三角形地形状,并给出证明;若不能,请说明理由.19.(16分)定义:在平面内,我们把既有大小又有方向地量叫做平面向量.平面向量可以用有向线段表示,有向线段地长度表示向量地大小,有向线段地方向表示向量地方向.其中大小相等,方向相同地向量叫做相等向量.如以正方形ABCD地四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同地向量:、、、、、、、(由于和是相等向量,因此只算一个).(1)作两个相邻地正方形(如图一).以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f(2),试求f(2)地值;(2)作n个相邻地正方形(如图二)“一字型”排开.以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f(n),试求f(n)地值;(3)作2×3个相邻地正方形(如图三)排开.以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f(2×3),试求f(2×3)地值;(4)作m×n个相邻地正方形(如图四)排开.以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f(m×n),试求f(m×n)地值.2014年湖南省长沙一中自主招生考试数学试卷参考答案与试题解析一、选择题(每小题5分,共30分.每小题均给出了A、B、C、D地四个选项,其中有且只有一个选项是正确地,不填、多填或错填均得0分)1.(5分)有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同地角度观察地结果如图.如果记6地对面地数字为a,2地对面地数字为b,那么a+b地值为()A.3 B.7 C.8 D.11【解答】解:从3个小立方体上地数可知,与写有数字1地面相邻地面上数字是2,3,4,6,所以数字1面对数字5,同理,立方体面上数字3对6.故立方体面上数字2对4.则a=3,b=4,那么a+b=3+4=7.故选:B.2.(5分)如图是某条公共汽车线路收支差额y与乘客量x地图象(收支差额=车票收入﹣支出费用).由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格.下面给出四个图象(如图所示)则()A.①反映了建议(2),③反映了建议(1)B.①反映了建议(1),③反映了建议(2)C.②反映了建议(1),④反映了建议(2)D.④反映了建议(1),②反映了建议(2)【解答】解:∵建议(1)是不改变车票价格,减少支出费用;也就是y增大,车票价格不变,即平行于原图象,∴①反映了建议(1),∵建议(2)是不改变支出费用,提高车票价格,也就是图形增大倾斜度,提高价格,∴③反映了建议(2).故选B.3.(5分)已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x ﹣n)=0地两个根,则实数m,n,a,b地大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程地两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,综合一下,只有D可能成立.故选D.4.(5分)记S n=a1+a2+…+a n,令,称T n为a1,a2,…,a n这列数地“理想数”.已知a1,a2,…,a500地“理想数”为2004,那么8,a1,a2,…,a500地“理想数”为()A.2004 B.2006 C.2008 D.2010【解答】解:∵∴n×T n=(S1+S2+…+S n)T500=2004设新地理想数为T x501×T x=8×501+500×T500T x=(8×501+500×T500)÷501==8+500×4=2008故选C5.(5分)以半圆中地一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB 交于点D,若,且AB=10,则CB地长为()A.B.C.D.4【解答】解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC地对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选A.6.(5分)某汽车维修公司地维修点环形分布如图.公司在年初分配给A、B、C、D四个维修点某种配件各50件.在使用前发现需将A、B、C、D四个维修点地这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少地调动件次(n件配件从一个维修点调整到相邻维修点地调动件次为n)为()A.15 B.16 C.17 D.18【解答】解:设A到B调x1件,B到C调x2件,C到D调x3件,D到A调x4件,这里若x i(i=1,2,3,4)为负数,则表明调动方向改变.则由题意得:,解得:,则调动总件数为|x1|+|x2|+|x3|+|x4|=|x1|+|x1+5|+|x1+1|+|x1﹣10|,它地最小值为16.故选:B.二、填空题(每小题6分,共48分)7.(6分)若[x]表示不超过x地最大整数(如等),则=2000.【解答】解:∵[x]表示不超过x地最大整数,∴=[]+[]+…+[],=[1+]+[1+]+…+[1+],=1+1+ (1)=2000.故答案为:2000.8.(6分)在△ABC中,D、E分别是BC、AC上地点,AE=2CE,BD=2CD,AD、BE交于点F,若S △ABC=3,则四边形DCEF地面积为.【解答】解:连接DE,∵AE=2CE,BD=2CD,∴=,且夹角∠C为公共角,∴△DCE∽△ABC,∴∠CED=∠CAB,∴AB∥DE,∴△CDE∽△CBA,∴==,∴=,∵S=3,△ABC=3×=,∴S△CDE且∠EDA=∠BAD,∠BED=∠ABE,∴△DEF∽△ABF,∴==,=x,则S△AEF=S△BDF=3x,S△ABF=9x,∴设S△DEF∴x+3x+3x+9x=3﹣,解得:x=,=,∴S△DEF∴S △DEF +S △CDE =+=. 故答案为:.9.(6分)有红、黄、蓝三种颜色地旗帜各三面,在每种颜色地旗帜上分别标有号码1、2、3,现任意抽取3面,它们地颜色与号码均不相同地概率是 .【解答】解:根据乘法公式可知:任意抽取3面旗,一共有9×8×7=504种情况,三面旗颜色与号码都不一样地情况一共有9×4×1=36种情况∴它们地颜色与号码均不相同地概率是=.故答案为:.10.(6分)已知抛物线经过点A (4,0).设点C (1,﹣3),请在抛物线地对称轴上确定一点D ,使得|AD ﹣CD |地值最大,则D 点地坐标为 (2,﹣6) .【解答】解:∵抛物线经过点A (4,0),∴×42+4b=0, ∴b=﹣2,∴抛物线地解析式为:y=x 2﹣2x=(x ﹣2)2﹣2, ∴抛物线地对称轴为:直线x=2, ∵点C (1,﹣3),∴作点C 关于x=2地对称点C′(3,﹣3), 直线AC′与x=2地交点即为D ,因为任意取一点D (AC 与对称轴地交点除外)都可以构成一个△ADC .而在三角形中,两边之差小于第三边,即|AD ﹣CD |<AC′.所以最大值就是在D 是AC′延长线上地点地时候取到|AD ﹣C′D |=AC′.把A ,C′两点坐标代入,得到过AC′地直线地解析式即可;设直线AC′地解析式为y=kx+b,∴,解得:,∴直线AC′地解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点地坐标为(2,﹣6).故答案为:(2,﹣6).11.(6分)三角形纸片内有100个点,连同三角形地顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样地三角形地个数为201.【解答】解:根据题意有这样地三角形地个数为:2n+1=2×100+1=201,故答案为:201.12.(6分)如图,已知点(1,3)在函数地图象上.正方形ABCD 地边BC在x轴上,点E是对角线BD地中点,函数地图象又经过A、E两点,则点E地横坐标为.【解答】解:把(1,3)代入到y=得:k=3,故函数解析式为y=,设A(a,)(a>0),根据图象和题意可知,点E(a+,),因为y=地图象经过E,所以将E代入到函数解析式中得:(a+)=3,即a2=,求得:a=或a=﹣(不合题意,舍去),∴a=,∴a+=,则点E地横坐标为.故答案为:.13.(6分)按下列程序进行运算(如图)规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行4次才停止;若运算进行了5次才停止,则x地取值范围是2<x≤4.【解答】解:(1)x=5.第一次:5×3﹣2=13第二次:13×3﹣2=37第三次:37×3﹣2=109第四次:109×3﹣2=325>244→→→停止(2)第1次,结果是3x﹣2;第2次,结果是3×(3x﹣2)﹣2=9x﹣8;第3次,结果是3×(9x﹣8)﹣2=27x﹣26;第4次,结果是3×(27x﹣26)﹣2=81x﹣80;第5次,结果是3×(81x﹣80)﹣2=243x﹣242;∴由(1)式子得:x>2,由(2)式子得:x≤4∴2<x≤4.即:5次停止地取值范围是:2<x≤4.故答案为:4;2<x≤4.14.(6分)给你两张白纸一把剪刀.你地任务是:用剪刀剪出下面给定地两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠地情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪地这一刀(分别在旁边地白纸上画出来)【解答】解:三、解答题(本大题共5小题,12'+12'+14'+18'+16'=72')15.(12分)已知:如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b 厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0地两根,(1)求a和b地值;(2)△A′B′C′与△ABC开始时完全重合,然后让△ABC固定不动,将△A′B′C′以1厘米/秒地速度沿BC所在地直线向左移动.ⅰ)设x秒后△A′B′C′与△ABC 地重叠部分地面积为y平方厘米,求y与x之间地函数关系式,并写出x地取值范围;ⅱ)几秒后重叠部分地面积等于平方厘米?【解答】解:(1)∵三角形ABC是直角三角形,且AB=5厘米,BC=a厘米,AC=b 厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0地两根,∴∴(a+b)2﹣2ab=25即:(m﹣1)2﹣2(m+4)=25因式分解得(m﹣8)(m+4)=0解得:m=8或m=﹣4(舍去)∴m=8∴方程为x2﹣7x+12=0解得:x=3或x=4∴a=4,b=3(2)ⅰ)∵△A′B′C′以1厘米/秒地速度沿BC所在地直线向左移动,∴x秒后BB′=x则B′C′=4﹣x,∵C′M∥AC∴△BC′M∽△BCA∴=∴MC′=(4﹣x)=y=(4﹣x)×(4﹣x)=(0≤x≤4)∴S△BCMⅱ)当y=时,=解得:x=3或x=5(不合题意)∴3秒后重叠部分地面积等于平方厘米.16.(12分)已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O 地切线交x轴于点A.(1)求直线HA地函数解析式;(2)求sin∠HAO地值;(3)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上地动点(与点P 不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF 是以EF为底地等腰三角形,试探索sin∠CGO地大小怎样变化,请说明理由.【解答】解:(1)如图,连OH,作HK⊥x轴于k,∵点D(3,4),点H与点D关于x轴对称,∴H点坐标为(3,﹣4),∵AH为⊙O地切线,∴OH⊥AH,∴∠AOH+∠OAH=90°,∠KOH+∠KHO=90°,∴∠OAH=∠KHO,∴Rt△AKH∽Rt△HKO,∴AK:HK=HK:OK,即AK:4=4:3,∴AK=,∴OA=OK+AK=3+=,∴A点坐标为(,0),设直线HA地函数解析式为y=kx+b,把H(3,﹣4),A(,0)代入得,解得,∴直线HA地函数解析式为y=x﹣;(2)在Rt△OKH中,OH==5,在Rt△OAH中,sin∠HAO===;(3)sin∠CGO地大小不变.理由如下:过点D作DM⊥EF于M,并延长DM交⊙O于N,连接ON,交BC于T,如图,则OM垂直平分DN,即D点与N点关于x轴对称,则N点坐标为(3,﹣4),ON=5,又∵△DEF为等腰三角形,DM⊥EF,∴DN平分∠BDC,即∠CDN=∠BDN,∴弧BN=弧CN,∴OT⊥BC,∴∠TGO+∠GOT=90°,而∠MNO+∠MON=90°,∴∠TGO=∠MNO,在Rt△OMN,OM=3,MN=4,∴sin∠MNO==,∴sin∠CGO=.即当E、F两点在OP上运动时(与点P不重合),sin∠CGO地值不变.17.(14分)青海玉树发生7.1级强震,为使人民地生命财产损失降到最低,部队官兵发扬了连续作战地作风.刚回营地地两个抢险分队又接到救灾命令:一分队立即出发前往距营地30千米地A镇,二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队出发后得知,唯一通往A镇地道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路.已知一分队地行进速度为b千米/时,二分队地行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问要使二分队在最短时间内赶到A镇,一分队地行进速度至少为多少千米/时?(2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?【解答】解:(1)根据塌方地形复杂,必须由一分队用1小时打通道路一个小时后道路畅通,那么我们再看二分队,二分队到达塌方处(距离营地10KM)需要小时,那么在二分队经过小时后到达塌方处地时候,一分队必须清理好塌方,也就是说一分队至少提前一小时到达塌方处(距离营地10KM)而一分队只要保证比二分队提前一个小时到达塌方处再利用一个小时打通塌方,那么当二分队到达塌方处才不会影响时间,而后二分队按照(4+a)千米/时地速度前行与一分队无关,这样就很好算了,路程10KM,二分队速度:(a+4)KM每小时,那么二分队到达塌方处需要小时,所以一分队需要至少(﹣1)小时(以前)到达塌方处,这样路程10KM,一分队所用时间(﹣1)小时,一分队地行进速度至少为=千米/时;当a=0时,一分队地行进速度至少为千米/时;(2)要使二分队和一分队同时赶到A镇,二分队应在营地休息a小时.根据题意得:+1=+a,解得:a=或a=(不合题意舍去)这样a=大于3,不符合题意.∴当二分队不休息,也就是=,解得:a=0,∴二分队应在营地休息0小时.18.(18分)如图1、2是两个相似比为1:地等腰直角三角形,将两个三角形如图3放置,小直角三角形地斜边与大直角三角形地一直角边重合.(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;(2)若在图3中,绕点C旋转小直角三角形,使它地斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上地点,满足△CEF地周长等于正方形ABCD地周长地一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形地三边长?若能,指出三角形地形状,并给出证明;若不能,请说明理由.【解答】证明:(1)连CD,如图4,∵两个等腰直角三角形地相似比为1:,而小直角三角形地斜边等于大直角三角形地直角边,∴点D为AB地中点,∴CD=AD,∠4=∠A=45°,又∵∠1+∠2=∠2+∠3=90°,∴∠3=∠1,∴△CDF≌△ADE,∴CF=AE,同理可得△CED≌△BFD,∴CE=BF,而CE2+CF2=EF2,∴AE2+BF2=EF2;(2)结论AE2+BF2=EF2仍然成立.理由如下:把△CFB绕点C顺时针旋转90°,得到△CGA,如图5∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,∴∠GAE=90°,而∠3=45°,∴∠2+∠4=90°﹣45°=45°,∴∠1+∠2=45°,∴△CGE≌△CFE,∴GE=EF,在Rt△AGE中,AE2+AG2=GE2,∴AE2+BF2=EF2;(3)线段BM、MN、DN能构成直角三角形地三边长.理由如下:把△ADF绕点A顺时针旋转90°得到△ABP,点N地对应点为Q,如图∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,∵△CEF地周长等于正方形ABCD地周长地一半,∴EF=BE+DF,∴EF=EP,∴△AEF≌△AEP,∴∠1=∠3+∠4,而AQ=AN,∴△AMQ≌△AMN,∴MN=QM,而∠ADN=∠QBA=45°,∠ABD=45°,∴∠QBN=90°,∴BQ2+BM2=QM2,∴BM2+DN2=MN2.19.(16分)定义:在平面内,我们把既有大小又有方向地量叫做平面向量.平面向量可以用有向线段表示,有向线段地长度表示向量地大小,有向线段地方向表示向量地方向.其中大小相等,方向相同地向量叫做相等向量.如以正方形ABCD地四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同地向量:、、、、、、、(由于和是相等向量,因此只算一个).(1)作两个相邻地正方形(如图一).以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f(2),试求f(2)地值;(2)作n个相邻地正方形(如图二)“一字型”排开.以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f(n),试求f(n)地值;(3)作2×3个相邻地正方形(如图三)排开.以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f (2×3),试求f (2×3)地值;(4)作m ×n 个相邻地正方形(如图四)排开.以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数记为f (m ×n ),试求f (m ×n )地值.【解答】解:(1)作两个相邻地正方形,以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量地个数f (2)=14;(2)分别求出作两个、三个、四个相邻地正方形(如图1).以其中地一个顶点为起点,另一个顶点为终点作向量,可以作出不同地向量个数,找出规律, ∵f (1)=6×1+2=8,f (2)=6×2+2=14,f (3)=6×3+2=20,f (4)=6×4+2=26, ∴f (n )=6n +2;(3)f (2×3)=34;(4)∵f (2×2)=24,f (2×3)=34,f (2×4)=44,f (3×2)=34,f (3×3)=48,f (3×4)=62∴f (m ×n )=2(m +n )+4mn .赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:PABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2014年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A、2B、-2C、1D、-12.下列几何体中,主视图、左视图、俯视图完全相同的是()A.圆锥B.六棱柱C.球D.四棱锥3.(3分)(2014•长沙)一组数据3,3,4,2,8的中位数和平均数分别是()=44.(3分)(2014•长沙)平行四边形的对角线一定具有的性质是()5.(3分)(2014•长沙)下列计算正确的是()+=B6.(3分)(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()AC=43m7.(3分)(2014•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()8.(3分)(2014•长沙)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()9.(3分)(2014•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()=90°=180°=72°10.(3分)(2014•长沙)函数y=与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()y=的函数图象位于第一三象限,y=的函数图象位于第二四象限,二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014•长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=110度.12.(3分)(2014•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).13.(3分)(2014•长沙)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.ACB=∠AOB=×14.(3分)(2014•长沙)已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=2.15.(3分)(2014•长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.件进行检测,抽到不合格产品的概率是:=故答案为:16.(3分)(2014•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.==17.(3分)(2014•长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.18.(3分)(2014•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).的坐标代入得:.三、解答题(共2小题,每小题6分,共12分)19.(6分)(2014•长沙)计算:(﹣1)2014+﹣()﹣1+sin45°.20.(6分)(2014•长沙)先简化,再求值:(1+)+,其中x=3.••=.四、解答题(共2小题,每小题8分,共16分)21.(8分)(2014•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.2000××.22.(8分)(2014•长沙)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD 相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.,÷=2=AO•CD=2×.五、解答题(共2小题,每小题9分,共18分)23.(9分)(2014•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?24.(9分)(2014•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.x=ACB=六、解答题(共2小题,每小题10分,共20分)25.(10分)(2014•长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.(y=k≠时,解得;,k=k≠的坐标为(,,,,)4•=4==.<+>=,>26.(10分)(2014•长沙)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.,a=±,x,,xr=>a PA=,PM=PN=PH=aAM=,,=时,=4(负数舍去)a;=4(负数舍去),则2或2。
2014年湖南省长沙市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A.2 B.-2 C.12D.-122.下列几何体中,主视图、左视图、俯视图完全相同的是()A.圆锥B.六棱柱C.球D.四棱锥3.(3分)(2014·长沙)一组数据3,3,4,2,8的中位数和平均数分别是()A.3和3 B.3和4 C.4和3 D.4和44.(3分)(2014·长沙)平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等5.(3分)(2014·长沙)下列计算正确的是()AB.()224ab ab=C.236a a a+=D.34a a a⋅=6.(3分)(2014·长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若10cmAB=,4cmBC=,则AD的长为()D C BAA.2cm B.3cm C.4cm D.6cm7.(3分)(2014·长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.1x>B.1x≥C.3x>D.3x≥8.(3分)(2014·长沙)如图,已知菱形ABCD的边长为2,60DAB∠=︒,则对角线BD的长是()60°D CBAA.1B C.2D.9.(3分)(2014·长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()D.C.B.A.10.(3分)(2014·长沙)函数ayx=与()20y ax a=≠在同一平面直角坐标系中的图象可能是()A. B. C. D.二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014·长沙)如图,直线a b∥,直线c分别与a b,相交,若170∠=︒,则2∠=__________度.bac21312cab12.(3分)(201·长沙)抛物线()2325y x=-+的顶点坐标是__________.13.(3分)(2014·长沙)如图,A、B、C是O上的三点,100A B∠⋅=︒,则ACB∠=__________度.14.(3分)(2014·长沙)已知关于x的一元二次方程22340x kx-+=的一个根是1,则k=__________.15.(3分)(2014·长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是__________.16.(3分)(2014·长沙)如图,在ABC△中,DE BC∥,23DEBC=,ADE△的面积是8,则ABC△面积为__________.ED CBA17.(3分)(2014·长沙)如图,点B 、E 、C 、F 在一条直线上,AB DF ∥,AB DE =,BE CF =,6AC =,则DF =__________.FEDCB A18.(3分)(2014·长沙)如图,在平面直角坐标系中,已知点()23A ,,点()21B -,,在x 轴上存在点P 到A ,B 两点的距离之和最小,则P 点的坐标是__________.三、解答题(共2小题,每小题6分,共12分)19.(6分)(2014·长沙)计算:()1201411453-⎛⎫-++︒ ⎪⎝⎭.20.(6分)(2014·长沙)先简化,再求值:22121124x x x x -+⎛⎫++ ⎪--⎝⎭,其中3x =. 四、解答题(共2小题,每小题8分,共16分) 21.(8分)(2014·长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙-我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图: 请根据所给信息解答以下问题:在下面四种长沙小吃中,你最喜欢的是( )(单选)D.糖油粑粑C.唆螺B.口味虾A.臭豆腐调查问卷人数种类(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A 、B 、C 、D ,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A ”的概率. 22.(8分)(2014·长沙)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O .OEDCB A(1)求证:AOE COD △≌△;(2)若30OCD ∠=︒,AB AOC △的面积.五、解答题(共2小题,每小题9分,共18分) 23.(9分)(2014·长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵? 24.(9分)(2014·长沙)如图,以ABC △的一边AB 为直径作O ,O 与BC 边的交点恰好为BC 的中点D ,过点D 作O 的切线交AC 于点E .(1)求证:DE AC ⊥;(2)若3AB DE =,求tan ACB ∠的值.六、解答题(共2小题,每小题10分,共20分) 25.(10分)(2014·长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(-1,-1),(0,0),,…都是“梦之点”,显然,这样的“梦之点”有无数个. (1)若点()2P m ,是反比例函数ny x=(n 为常数,0n ≠)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数21y ax bx =++(a ,b 是常数,0a >)的图象上存在两个不同的“梦之点”()11A x x ,,()22B x x ,,且满足122x -<<,122x x -=,令2157248t b b =-+,试求出t 的取值范围. 26.(10分)(2014·长沙)如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的对称轴为y 轴,且经过(0,0)和116⎫⎪⎭,两点,点P 在该抛物线上运动,以点P 为圆心的P 总经过定点()02A ,.(1)求a ,b ,c 的值;(2)求证:在点P 运动的过程中,P 始终与x 轴相交;(3)设P 与x 轴相交于()10M x ,,()20N x ,()12x x <两点,当AMN △为等腰三角形时,求圆心P 的纵坐标.2014年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.A考点:倒数.分析:根据乘积为的1两个数倒数,可得一个数的倒数. 解答:解:12的倒数是2, 故选:A .点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键. 2.C考点:简单几何体的三视图.分析:找到从物体正面、左面和上面看得到的图形全等的几何体即可.解答:解:A.圆锥的主视图、左视图、俯视图分别为等腰三角形,等腰三角形,圆及圆心,故A选项不符合题意;B.六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故B选项不符合题意;C.球的主视图、左视图、俯视图分别为三个全等的圆,故C选项符合题意;D.四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故D选项不符合题意;故选C.点评:考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3.B考点:中位数;算术平均数.分析:根据中位数及平均数的定义求解即可.解答:解:将数据从小到大排列为:2,3,3,4,8,则中位数是3,平均数2334845++++==.故选B.点评:本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.4.B考点:平行四边形的性质.分析:根据平行四边形的对角线互相平分可得答案.解答:解:平行四边形的对角线互相平分,故选:B.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.D考点:幂的乘方与积的乘方;实数的运算;合并同类项;同底数幂的乘法.分析:根据二次根式的加减,可判断A,根据积的乘方,可判断B,根据合并同类项,可判断C,根据同底数幂的乘法,可判断D.解答:解:A.被开方数不能相加,故A错误;B.积的乘方等于每个因式分别乘方,再把所得的幂相乘,故B错误;C.系数相加字母部分不变,故C错误;D.底数不变指数相加,故D正确;故选:D.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.6.B考点:两点间的距离.分析:由10cmAB=,4cmBC=,可求出6cmAC AB BC=-=,再由点D是AC的中点,则可求得AD 的长.解答:解:∵10cmAB=,4cmBC=,∴6cmAC AB BC=-=,又点D是AC的中点,∴143m2AD AC==,答:AD的长为3cm.故选:B.点评:本题考查了两点间的距离,利用线段差及中点性质是解题的关键.7.C考点:在数轴上表示不等式的解集.分析:根据不等式组的解集是大于大的,可得答案.解答:解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是3x>.故选:C.点评:本题考查了不等式组的解集,不等式组的解集是大于大的.8.C考点:菱形的性质.分析:利用菱形的性质以及等边三角形的判定方法得出DAB△是等边三角形,进而得出BD的长.解答:解:∵菱形ABCD的边长为2,∴2AD AB==,又∵60DAB∠=︒,∴DAB△是等边三角形,∴2AD BD AB===,则对角线BD的长是2.故选:C.点评:此题主要考查了菱形的性质以及等边三角形的判定,得出DAB△是等边三角形是解题关键.9.A考点:旋转对称图形.分析:求出各旋转对称图形的最小旋转角度,继而可作出判断.解答:解:A.最小旋转角度3601203==︒;B.最小旋转角度360904==︒;C.最小旋转角度3601802==︒;D.最小旋转角度360725==︒;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选A.点评:本题考查了旋转对称图形的知识,求出各图形的最小旋转角度是解题关键.10.D考点:二次函数的图象;反比例函数的图象.分析:分0a>和0a<两种情况,根据二次函数图象和反比例函数图象作出判断即可得解.解答:解:0a>时,ayx=的函数图象位于第一三象限,2y ax=的函数图象位于第一二象限且经过原点,a<时,ayx=的函数图象位于第二四象限,2y ax=的函数图象位于第三四象限且经过原点,纵观各选项,只有D选项图形符合.故选D.点评:本题考查了二次函数图象,反比例函数图象,熟记反比例函数图象与二次函数图象的性质是解题的关键,难点在于分情况讨论.二、填空题(共8小题,每小题3分,共24分)11.110考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:直线a b∥,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.解答:解:∵170∠=︒,∴3170∠=∠=︒,∵a b∥,∴23180∠+∠=︒,∴218070110∠=︒-︒=︒.故填110.点评:本题考查两直线平行,同位角相等及邻补角互补.12.(2,5)考点:二次函数的性质.分析:由于抛物线()2y a x h k=-+的顶点坐标为()h k,,由此即可求解.解答:解:∵抛物线()2325y x=-+,∴顶点坐标为:(2,5).故答案为:(2,5).点评:此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线()2y a x h k=-+的顶点坐标为()h k,.13.50考点:圆周角定理.分析:根据圆周角定理即可直接求解.解答:解:111005022ACB A B∠=∠⋅=⨯︒=︒.故答案是:50.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.2考点:一元二次方程的解.分析:把1x=代入已知方程列出关于k的一元一次方程,通过解方程求得k的值.解答:解:依题意,得2213140k⨯-⨯+=,即2340k-+=,解得,2k=.故答案是:2.点评:本题考查了一元二次方程的解的定义.此题是通过代入法列出关于k的新方程,通过解新方程可以求得k的值.15.1 20考点:概率公式.分析:由100件外观相同的产品中有5件不合格,直接利用概率公式求解即可求得答案.解答:解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:5110020=. 故答案为:120. 点评: 此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比. 16.18考点: 相似三角形的判定与性质.分析: 根据相似三角形的判定,可得ADE ABC △∽△,根据相似三角形的性质,可得答案. 解答:解;∵在ABC △中,DE BC ∥, ∴ADE ABC △∽△. ∵23DE BC =, ∴222439ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭△△, 849ABCS =△, ∴18ABC S =△,故答案为:18.点评: 本题考查了相似三角形判定与性质,利用了相似三角形的判定与性质. 17.6考点: 全等三角形的判定与性质.分析: 根据题中条件由SAS 可得ABC DEF △≌△,根据全等三角形的性质可得6AC DF ==. 解答:证明:∵AB DE ∥, ∴B DEF ∠=∠ ∵BE CF =, ∴BC EF =,在ABC △和DEF △中, AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DEF △≌△()SAS ,∴6AC DF ==. 故答案是:6.点评: 本题主要考查了全等三角形的判定及性质问题,应熟练掌握.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 18.(-1,0)考点: 轴对称-最短路线问题;坐标与图形性质.分析: 作A 关于x 轴的对称点C ,连接BC 交x 轴于P ,则此时AP BP +最小,求出C 的坐标,设直线BC 的解析式是y kx b =+,把B 、C 的坐标代入求出k 、b ,得出直线BC 的解析式,求出直线与x 轴的交点坐标即可.解答:解:作A 关于x 轴的对称点C ,连接BC 交x 轴于P ,则此时AP BP +最小, ∵A 点的坐标为(2,3),B 点的坐标为(-2,1), ∴C (2,-3),设直线BC 的解析式是:y kx b =+, 把B 、C 的坐标代入得:2123k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩.即直线BC 的解析式是1y x =--, 当0y =时,10x ---=,解得:1x =-,∴P 点的坐标是(-1,0). 故答案为:(-1,0).点评: 本题考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,轴对称-最短路线问题的应用,关键是能找出P 点,题目具有一定的代表性,难度适中. 三、解答题(共2小题,每小题6分,共12分)19.考点:实数的运算;负整数指数幂;特殊角的三角函数值.分析: 本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 解答:解:原式=1+2-3+1=1.点评: 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 20.考点: 分式的化简求值. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值. 解答:解:原式()()()2222121x x x x x +--+=⋅-- ()()()222121x x x x x +--=⋅--21x x +=-, 当3x =时,原式325312+==-. 点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 四、解答题(共2小题,每小题8分,共16分)21.考点:条形统计图;用样本估计总体;列表法与树状图法. 专题: 计算题. 分析:(1)总人数以及条形统计图求出喜欢“唆螺”的人数,补全条形统计图即可; (2)求出喜欢“臭豆腐”的百分比,乘以2000即可得到结果;(3)列表得出所有等可能的情况数,找出恰好两次都摸到“A ”的情况数,即可求出所求的概率. 解答:解:(1)根据题意得:喜欢“唆螺”人数为:50-(14+21+5)=10(人), 补全统计图,如图所示:种类人数(2)根据题意得:2000×1450×100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人; (3所有等可能的情况有16种,其中恰好两次都摸到“A ”的情况有1种,则116P =. 点评: 此题考查了条形统计图,用样本估计总体,以及列表法与树状图法,弄清题意是解本题的关键. 22.考点: 翻折变换(折叠问题). 分析:(1)根据矩形的对边相等可得AB CD =,90B D ∠=∠=︒,再根据翻折的性质可得AB AE =,B E ∠=∠,然后求出AE CD =,D E ∠=∠,再利用“角角边”证明即可;(2)根据全等三角形对应边相等可得AO CO =,解直角三角形求出CO ,然后利用三角形的面积公式列式计算即可得解. 解答:(1)证明:∵四边形ABCD 是矩形, ∴AB CD =,90B D ∠=∠=︒,∵矩形ABCD 沿对角线AC 折叠点B 落在点E 处, ∴AB AE =,B E ∠=∠, ∴AE CD =,D E ∠=∠, 在AOE △和COD △中, D E AOE COD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AOE COD △≌△()AAS ; (2)解:∵AOE COD △≌△, ∴AO CO =,∵30OCD ∠=︒,AB =,∴cos302CO CD =÷︒==, ∴AOC △的面积11222AO CD =⋅=⨯点评: 本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,熟记各性质并确定出三角形全等的条件是解题的关键.五、解答题(共2小题,每小题9分,共18分)23.考点: 一元一次不等式的应用;二元一次方程组的应用. 分析:(1)设购买甲种树苗x 棵,则购买乙种树苗(400-x )棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设至少应购买甲种树苗a 棵,则购买乙种树苗(400-a )棵,根据购买甲种树苗的金额不少于购买一中树苗的金额建立不等式求出其解即可. 解答:解:(1)设购买甲种树苗x 棵,则购买乙种树苗(400-x )棵,由题意,得()20030040090000x x +-=,解得:300x =,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设至少应购买甲种树苗a 棵,则购买乙种树苗(400-a )棵,由题意,得 ()200300400a a -≥,解得:240a ≥.答:至少应购买甲种树苗240棵.点评: 本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键. 24.考点: 切线的性质. 分析:(1)连接OD ,可以证得DE OD ⊥,然后证明OD AC ∥即可证明DE AC ⊥; (2)利用ADE CDE △∽△,求出DE 与CE 的比值即可. 解答:(1)证明:连接OD , ∵D 是BC 的中点,OA OB =, ∴OD 是ABC △的中位线,∴OD AC ∥,∵DE 是O 的切线, ∴OD DE ⊥, ∴DE AC ⊥;(2)解:连接AD , ∵AB 是O 的直径, ∴90ADB ∠=︒, ∵DE AC ⊥,∴90ADC DEC AED ∠=∠=∠=︒, ∴ADE DCE ∠=∠ 在ADE DCE =∠△, AED DECADE DCE ∠=∠⎧⎨∠=∠⎩∴CDE ADE △∽△,∴DE CEAE DE=, 设tan ACB x ∠=,CE a =,则DE ax =,3AC ax =,3AE ax a =-,∴3ax a ax a ax =-,整理得:2310x x -+=,解得:x ,∴tan ACB ∠=.点评: 本题主要考查了切线的性质的综合应用,解答本题的关键在于如何利用三角形相似求出线段DE 与CE 的比值.六、解答题(共2小题,每小题10分,共20分) 25.考点: 二次函数综合题.分析:(1)先由“梦之点”的定义得出2m =,再将点P 坐标代入ny x=,运用待定系数法即可求出反比例函数的解析式;(2)假设函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”(x ,x ),则有31x kx s =+-,整理得()311k x s -=-,再分三种情况进行讨论即可;(3)先将()11A x x ,,()22B x x ,代入21y ax bx =++,得到()211110ax b x +-+=,()222110ax b x +-+=,根据方程的解的定义可知1x ,2x 是一元二次方程()2110ax b x +-+=的两个根,由根与系数的关系可得121b x x a -+=,121x x a⋅=,则()()222121212221444b b a x x x x x x a -+--=+-⋅==,整理得出()222212b b a -=+-,则()22157612214848t b b a =-+=++.再由122x -<<,122x x -=,得出244x -<<,1288x x -<⋅<,即188a -<<,又0a >,解不等式组得出18a >,进而求出t 的取值范围.解答:解:(1)∵点()2P m ,是“梦之点”,∴2m =,∵点()22P ,在反比例函数ny x=(n 为常数,0n ≠)的图象上, ∴224n =⨯=,∴反比例函数的解析式为4y x=; (2)假设函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”(x ,x ), 则有31x kx s =+-, 整理,得()311k x s -=-,当310k -≠,即13k ≠时,解得131s x k -=-;当310k -=,10s -=,即13k =,1s =时,x 有无穷多解;当310k -=,10s -≠,即13k =,1s ≠时,x 无解;综上所述,当13k ≠时,“梦之点”的坐标为113131s s k k --⎛⎫ ⎪--⎝⎭,;当13k =,1s =时,“梦之点”有无数个;当13k =,1s ≠时,不存在“梦之点”;(3)∵二次函数21u ax bx =++(a ,b 是常数,0a >)的图象上存在两个不同的“梦之点”()11A x x ,,()22B x x ,,∴2211122211x ax bx x ax bx =++=++,, ∴()211110ax b x +-+=,()222110ax b x +-+=, ∴1x ,2x 是一元二次方程()2110ax b x +-+=的两个不等实根, ∴121b x x a -+=,121x x a⋅=,∴()()222212121221121444b b b x x x x x x a a a --+⎛⎫-=+-⋅=-⋅== ⎪⎝⎭, ∴()2222441212b b a a a -=+-=+-, ∴()()22215715761221221484848t b b a a =-+=+-+=++. ∵122x -<<,122x x -=, ∴240x -<<或204x <<, ∴244x -<<, ∴1288x x -<⋅<,∴188a-<<, ∵0a >, ∴18a >∴()261256117214816486a ++>+=, ∴176t >. 点评: 本题是二次函数的综合题,考查了运用待定系数法求反比例函数的解析式,形如ax b =的方程的解的情况,一元二次方程根与系数的关系,不等式的性质等知识,综合性较强,有一定难度. 26.考点:二次函数综合题. 分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a ,b ,c 的值即可; (2)设()P x y ,,表示出P 的半径r ,进而与214x 比较得出答案即可;(3)分别表示出AM ,AN 的长,进而分别利用当AM AN =时,当AM MN =时,当AN MN =时,求出a 的值,进而得出圆心P 的纵坐标即可.解答:解:(1)∵抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的对称轴为y 轴,且经过(0,0)和116⎫⎪⎭,两点,∴抛物线的一般式为:2y ax =,∴2116a =,解得:14a =±,∵图象开口向上,∴14a =, ∴抛物线解析式为:214y x =,故14a =,0b c ==;(2)设()P x y ,,P 的半径r ,又∵214y x =-,则r =化简得:214r x >, ∴点P 在运动过程中,P 始终与x 轴相交;(3)设214P a a ⎛⎫ ⎪⎝⎭,,∵PA =,作PH MN ⊥于H ,则PM PN =, 又∵214PH a =,则2MH NH ==,故4MN =,∴()20M a -,,()20N a +,,又∵()02A ,,∴AM =AN =当AM AN =解得:0a =,当AM MN =4,解得:2a =±,则2144a =+;当AN MN =4,解得:2a =-±,则2144a =-;综上所述,P 的纵坐标为0或4+4-点评:此题主要考查了二次函数综合以及等腰三角形的性质以及勾股定理等知识,根据题意利用数形结合以及分类讨论得出是解题关键.。
湖南省2014届高三六校联考数学(理)试题本试题卷包括选择题、填空题和解答题三部分。
时量120分钟,满分150分。
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z满足(-1+i)z=(1+i)2,其中i为虚数单位,则在复平面上复数z对应的点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限2.已知随机变量X服从正态分布N(3,1),且P(l≤X≤5)=0.682 6,则P(X>5)= A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 53.如图所示,程序框图(即算法流程图)运算的结果是A.5 B.6C.7 D.84.已知f(x)是定义在R上的奇函数,且在(0,+∞)内有1 006个零点,则f(x)的零点共有A.1 006个B.1 007个C.2 012个D.2 013个5.在△ABC中内角A,B,C所对的边分别为a,b,c,若b= 2ccos A,c=2bcosA,则△ABC的形状为A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形6.设{a n}是等比数列,则“a1<a2 <a4”是“数列{a n}是递增数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.一个几何体的三视图如图所示,则该几何体的外接球的体积为A.B.12πC.D.8.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为A.432 B.288C.216 D.1449.已知双曲线T :22221x y a b +=(a ,b>0)的右焦点为F (2,0),且经过点R(3,0),△ABC的三个顶点都在双曲线T 上,O 为坐标原点,设△ABC 三条边AB ,BC ,AC 的中点分别为M ,N ,P ,且三条边所在直线的斜率分别为k 1,k 2,k 3,k 1≠0,i=1,2,3.若直线OM,ON ,OP 的斜率之和为-1.则123111k k k ++的值为 A .-1B .12-C .1D .1210.已知f (x )是定义在(0,+∞)上的单调函数,且对任意的x ∈(0,+∞),都有f[f (x )-1og 2x]=3,则方程f (x )-f ′(x )=2的解所在的区间是 A .(0,12) B .(12,1) C .(1,2) D .(2,3)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分) 11.在极坐标系中,圆4cos ρθ=的圆心到直线ρsin 4πθ⎛⎫+= ⎪⎝⎭的距离为 . 12.已知函数f (x )=log 2(|x+l|+|x -2|-m ).若关于x 的不等式f (x )≥1的解集是R ,则m 的取值范围为 。
二○一四年长沙市初中毕业会考、高级中等学校招生考试数学试卷(本卷共26个小题,满分120分,考试时间120分钟) 毕业学校姓名考生号一、选择题(本大题10个小题,每小题3分,共30分,在每个小题的下面,都给出了A、B、C、D四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡对应的题号内)1.的倒数是()A.2B.-2C.D.-2.下列几何体中主视图、左视图、俯视图完全相同的是()A.圆锥B.六棱柱C.球D.四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是()A.3和3B.3和4C.4和3D.4和44.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等5.下列计算正确的是()A.B.(ab2)2=ab4C.2a+3a=6aD.a·a3=a46.如图,C,D是线段AB上两点,D是线段AC的中点,若AB=10cm,BC=4 cm,则AD的长等于()A.2cmB.3cmC.4cmD.6cm7.一个关于x的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是()A.x>1B.x≥1C.x>3D.x≥38.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为()A.1B.C.2D.29.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是()10.函数y=与函数y=ax2(a≠0)在同一坐标系中的图像可能是()二、填空题(本大题8个小题,每小题3分,共24分,在每小题中,请将答案直接填在答题卡中对应的横线上)11.如图,直线a∥b,直线c与a,b相交,∠1=70°,则∠2=.12.抛物线y=3(x-2)2+5的顶点坐标为.(第11题图) 13.如图,A,B,C是☉O上的三点,∠AOB=100°,则∠ACB=.14.已知关于x 的一元二次方程2x 2-3kx+4=0的一个根是1,则k= .15.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为 .16.如图,△ABC 中,DE ∥BC ,,△ADE 的面积为8,则△ABC 的面积为 .17.如图,B ,E ,C ,F 在同一直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF= .18.如图,在平面直角坐标系中,A (2,3),B (-2,1),在x 轴上存在点P ,使P 到A ,B 两点的距离之和最小,则P 的坐标为 .三、解答题(本大题2个小题,每小题6分,共12分) 19.计算:(-1)2 014+-sin 45°.20.先化简,再求值:---,其中x=3.四、解答题(本大题2个小题,每小题8分,共16分)21.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人;(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机摸出一个小球然后放回,再随机摸出一个小球,请用列表或画树形图的方法,求两次都摸到“A”的概率.22.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E 处,CE与AD相交于点O,(1)求证:△AEO≌△CDO;(2)若∠OCD=30°,AB=,求△ACO的面积.五、解答题(本大题2个小题,每小题9分,共18分)23.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队准备购买甲、乙两种树苗共400棵,对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元. (1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?24.如图,以△ABC的一边AB为直径作☉O,☉O与BC边的交点恰好为BC边的中点D,过点D作☉O的切线交AC于点E,(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.四、解答题(本大题2个小题,每小题10分,共20分,解答时每小题必须给出必要的演算过程或推理步骤,将解答书写在答题卡中对应的位置上)25.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图像上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图像上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图像上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足-2<x1<2,|x1-x2|=2,令t=b2-b+,试求t的取值范围.26.如图,抛物线y=ax2+bx+c(a≠0,a,b,c为常数)的对称轴为y轴,且经过(0,0),两点,点P在抛物线上运动,以P为圆心的☉P经过定点A(0,2),(1)求a,b,c的值;(2)求证:点P在运动过程中,☉P始终与x轴相交;(3)设☉P与x轴相交于M(x1,0),N (x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.二○一四年长沙市初中毕业会考、高级中等学校招生考试数学试卷参考答案1.A2.C3.B4.B5.D6.B7.C8.C9.A10.D11.110°12.(2,5)13.50°14.215.16.1817.618.(-1,0)19.1.20.-,代入求值得.21.(1)略;(2)560;(3).22.(1)略;(2).23.(1)甲300棵,乙100棵;(2)甲种树苗至少购买240棵.24.(1)略;(2)设DE=b,EC=a,则AB=3b,AE=3b-a,∵AD⊥BC,DE⊥AC,易证∠C=∠ADE,则△ADE∽△DCE,∴DE2=AE·EC,即b2=(3b-a)·a,化简得b2-3ab+a2=0,解得b=a,则,故tan∠ACB=.25.(1)y=(2)由y=3kx+s-1得当y=x时,(1-3k)x=s-1,当k=,且s=1时,x有无数个解,此时的“梦之点”存在,有无数个;当k=,且s≠1时,方程无解,此时的“梦之点”不存在;当k≠,方程的解为x=--,此时的“梦之点”存在,坐标为----.(3)由得ax2+(b-1)x+1=0,则x1,x2为此方程的两个不等实根,由|x1-x2|=2,又-2<x1<2,得-2<x1<0时,-4<x2<2;0≤x1<2时,-2≤x2<4.又∵抛物线y=ax2+(b-1)x+1的对称轴为x=-,故-3<-<3.由|x1-x2|=2,得(b-1)2=4a2+4a,故a>.t=b2-b+=(b-1)2+=4a2+4a+=4,当a>-时,t随a的增大而增大,当a=时,t=,∴a>时, t>.26.(1)a=,b=c=0.(2)设P(x,y),☉P的半径r=-,又y=x2,则r=-,化简得r=x2,∴点P在运动过程中,☉P始终与x轴相交.(3)设P,∵PA=,作PH⊥MN于H,则PM=PN=.又PH=m2,则MH=NH=-=2,故MN=4,∴M(m-2,0),N(m+2,0).又A(0,2),∴AM=-,AN=,当AM=AN时,解得m=0;当AM=MN时,-=4,解得m=2±2,则m2=4±2;当AN=MN时,=4,解得m=-2±2,则m2=4±2.综上所述,P的纵坐标为0或4+2或4-2.。
2014年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A、2B、-2C、12D、-122.下列几何体中,主视图、左视图、俯视图完全相同的是()A.圆锥B.六棱柱C.球D.四棱锥+=6.(3分)(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()7.(3分)(2014•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()8.(3分)(2014•长沙)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()C9.(3分)(2014•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转C D10.(3分)(2014•长沙)函数y=与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()C D二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014•长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=110度.12.(3分)(2014•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).13.(3分)(2014•长沙)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.14.(3分)(2014•长沙)已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=2.15.(3分)(2014•长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.16.(3分)(2014•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.17.(3分)(2014•长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.18.(3分)(2014•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).三、解答题(共2小题,每小题6分,共12分)19.(6分)(2014•长沙)计算:(﹣1)2014+﹣()﹣1+sin45°.20.(6分)(2014•长沙)先简化,再求值:(1+)+,其中x=3.四、解答题(共2小题,每小题8分,共16分)21.(8分)(2014•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.22.(8分)(2014•长沙)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E 处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.五、解答题(共2小题,每小题9分,共18分)23.(9分)(2014•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?24.(9分)(2014•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC 的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.六、解答题(共2小题,每小题10分,共20分)25.(10分)(2014•长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.26.(10分)(2014•长沙)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.。
自主招生考试数学试卷及参考答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22第2自主招生考试 数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。
2.全卷由试题卷和答题卷两部分组成。
试题的答案必须做在答题卷的相应位置上。
做在试题卷上无效。
3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。
4.答题过程不准使用计算器。
祝你成功!一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则 A S S S 123<< B S S S 213<< C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是33第5A π-1B π-2C 121-πD 221-π4.由325x y a x y a x y a m-=+⎧⎪+=⎪⎨>⎪⎪>⎩得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是 A 0 B 1 C 2 D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =ax 2+(a -b )x —b 的图象如图所示,44那么化简222||a ab b b -+-的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S 正方形ABCD = ▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张第10题 第7题第8题5511.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答: ▲ . (2)作DE ∥AB 的目的是: ▲ .(3) 判断四边形ABED 为平行四边形的依据是: ▲ . (4)判断四边形ABCD 是等腰梯形的依据是 ▲ .(5)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗为什么 答 ▲ .自主招生考试第11题第12题66数学标准答案一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8. 256 9. 57610.(1) 13 (2) 3n+1 (3) 15250 11. a b12.(1)没有错误 (2)为了证明AD ∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义 (5) 不一定,因为当AD =BC 时,四边形ABCD 是矩形 三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。
2014年长沙市中考数学试卷(本卷共26个小题,满分120分,考试时间120分钟)一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡对应的题号内. 1.21的倒数是( ) A .2B .-2C .21 D .-21 2.下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是 ( )A . 3和3B . 3和4C . 4和3D . 4和4 4.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C . 互相垂直D .互相垂直且相等 5 .下列计算正确的是( )A .752=+ B .422)(ab ab = C .a a a 632=+ D .43a a a =⋅6 .如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10cm,BC=4cm,则AD 的长等于( )A . 2 cmB . 3 cmC . 4 cmD . 6 cm 7 .一个关于x 的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是( )A . x >1B .x ≥1C .x >3D .x ≥3 8.如图,已知菱形ABCD 的边长等于2,∠DAB=60°, 则对角线BD 的长为 ( )A . 1 BC . 2D .9.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )10.函数a y x=与函数2y ax =(0a ≠)在同一坐标系中的图像可能是( ) A B DCA D B二、填空题:(本大题8个小题,每小题3分,共24分)在每小题中,请将答案直接填在答题卡中对应的横线上.11.如图,直线a ∥b,直线c 与a,b 相交,∠1=70°,则∠2= 度; 12.抛物线23(2)5y x =-+的顶点坐标为 ;13.如图,A 、B 、C 是⊙O 上的三点,∠A OB=100°,则∠ACB= 度;14.已知关于x 的 一元二次方程22340x kx -+=的一个根是1,则k= . 15.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为 . 16.如图,△ABC 中,DE ∥BC,23DE BC =,△AD E 的面积为8,则△ABC 的面积为 ;17.如图,B 、E 、C、F 在同一直线上,AB ∥DE,AB=DE,BE=CF,AC=6,则DF= ;18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x 轴上存在点P ,使P 到A,B 两点的距离之和最小,则P 的坐标为 ;三、解答题:(本大题2个小题,每小题6分,共12分) 19.计算:201411(1)()453--+︒20.先化简,再求值:22121(1)24x x x x -++÷--,其中,x =3;四、解答题:(本大题2个小题,每小题8分,共16分)21.某数学兴趣小组在全校范围内随机抽取了50同学进行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所示的不完整条形统计图.a bc 12 第11题图 第13题图 AEDC第16题图 C AF DE 第17题图小吃类别口味人数臭豆唆螺 糖油粑请根据所给信息解答以下问题: (1) 请补全条形统计图;(2) 若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人; (3) 在一个不透明的口袋中有四个完全相同的小球,把他们分别标号为四种小吃的序号A,B,C,D ,随机摸出一个小球然后放回,再随机摸出一个小球,请用列表或画树形图的方法,求两次都摸到“A ”的概率;22.如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O, (1) 求证:△AEO ≌△CDO ;(2)若∠OCD=30°,求△ACO 的面积;五、解答题:(本大题2个小题,每小题9分,共18分)23. 为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼的进行,某施工队准备购买甲、乙两种树苗共400棵,对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元。
湖南省长沙市2014年中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A、2B、-2C、1D、-1=4.+=AC=43m=120°;=90°;=180°;=72°;10.(3分)(2014•长沙)函数y=与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()的函数图象位于第一三象限,y=解:∠ACB=∠AOB=×100°=50°.15.(3分)(2014•长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.件进行检测,抽到不合格产品的概率是:=故答案为:16.(3分)(2014•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18 .∵=∴(,的坐标代入得:解得19.(6分)(2014•长沙)计算:(﹣1)2014+﹣()﹣1+sin45°.20.(6分)(2014•长沙)先简化,再求值:(1+)+,其中x=3.====.四、解答题(共2小题,每小题8分,共16分)21.(8分)(2014•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸×100%=560(人).于点O.(1)求证:△AOE≌△COD;AB=∴CO=CD÷cos30°==2AO•CD=×2×=五、解答题(共2小题,每小题9分,共18分)23.(9分)(2014•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;∴∴x=∴tan∠ACB=25.(10分)(2014•长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.,运用待定系数法即可求出反比例函数的,==2b+=.再由﹣<,进而求出y=(y=k≠x=k=k=k≠(,,,s≠1,=(﹣4•=4=2+.<∴a>>+=∴t>.26.(10分)(2014•长沙)如图,抛物线y=ax+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;,进而与)和(,)∴(解得:a=±∵图象开口向上,∴a=,x,,又∵y=xr=>xa,∵PA=PM=PN=,又∵PH=aMH=NH=,∴AM=,,时,=,时,=4解得:a=2±2a;时,=4﹣2±2(负数舍去),则;4+2或.。
2014-2015学年湖南省长沙一中高一(下)期末数学模拟试卷一.单项选择题:(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中有且只有一项是符合题目要求的)1.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位2.(5分)把函数y=sinx(x∈R)的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是()A.,x∈R B.,x∈RC.,x∈R D.,x∈R3.(5分)在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5) D.(2,4)4.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE 的延长线与CD交于点F.若=,=,则=()A. B. C. D.5.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.26.(5分)设向量=(1,cosθ)与=(﹣1,2cosθ)垂直,则cos2θ等于()A.B.C.0 D.﹣17.(5分)已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数8.(5分)函数f(x)=cos2x+2sinx的最小值和最大值分别为()A.﹣3,1 B.﹣2,2 C.﹣3,D.﹣2,9.(5分)=()A.B.C.2 D.10.(5分)在锐角△ABC中,设x=sinA•sinB,y=cosA•cosB.则x,y的大小关系为()A.x≤y B.x>y C.x<y D.x≥y11.(5分)已知函数f(x)=asinx﹣bcosx(a、b为常数,a≠0,x∈R)在x=处取得最小值,则函数y=f(﹣x)是()A.偶函数且它的图象关于点(π,0)对称B.偶函数且它的图象关于点对称C.奇函数且它的图象关于点对称D.奇函数且它的图象关于点(π,0)对称12.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.9二.填空题(本大题共5个小题,共25分,将答案填写在题中的横线上). 13.(5分)角α终边上一点的坐标为(1,2),则tan2α=.14.(5分)若,则cos2θ=.15.(5分)若向量,满足且与的夹角为,则=.16.(5分)已知||=1,||=,•=0,点C在∠AOB内,且∠AOC=45°,设=m+n,其中m,n∈R,则等于.三.解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)化简:[2sin50°+sin10°(1+tan10°)]•.18.(12分)已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.19.(12分)已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.20.(12分)已知函数f(x)=cos(2x﹣)+2sin(x﹣)sin(x+).(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x)在区间上的值域.21.(12分)已知向量=(sinA,cosA),=(,﹣1),•=1,且A为锐角.(1)求角A的大小;(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.22.(12分)有一圆心角为60°半径为1的扇形铁板.工人师傅要裁出一个面积最大的矩形,下列两种裁法哪一种更好,说明理由.2014-2015学年湖南省长沙一中高一(下)期末数学模拟试卷参考答案与试题解析一.单项选择题:(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中有且只有一项是符合题目要求的)1.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.2.(5分)把函数y=sinx(x∈R)的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是()A.,x∈R B.,x∈RC.,x∈R D.,x∈R【解答】解:由y=sinx的图象向左平行移动个单位得到y=sin(x+),再把所得图象上所有点的横坐标缩短到原来的倍得到y=sin(2x+)故选:C.3.(5分)在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5) D.(2,4)【解答】解:∵,故选B.4.(5分)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE 的延长线与CD交于点F.若=,=,则=()A. B. C. D.【解答】解:∵由题意可得△DEF∽△BEA,∴==,再由AB=CD可得=,∴=.作FG平行BD交AC于点G,∴=,∴===.∵=+=+=+==,∴=+=+,故选:B.5.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为()A.1 B.C.D.2【解答】解:由题意知:f(x)=sinx、g(x)=cosx令F(x)=|sinx﹣cosx|=|sin(x﹣)|当x﹣=+kπ,x=+kπ,即当a=+kπ时,函数F(x)取到最大值故选:B.6.(5分)设向量=(1,cosθ)与=(﹣1,2cosθ)垂直,则cos2θ等于()A.B.C.0 D.﹣1【解答】解:∵=(1,cosθ),=(﹣1,2cosθ),且两向量垂直,∴•=0,即﹣1+2cos2θ=0,则cos2θ=2cos2θ﹣1=0.故选:C.7.(5分)已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数【解答】解:∵f(x)=(1+cos2x)sin2x=2cos2xsin2x=sin22x==,故选:D.8.(5分)函数f(x)=cos2x+2sinx的最小值和最大值分别为()A.﹣3,1 B.﹣2,2 C.﹣3,D.﹣2,【解答】解:∵,∴当时,,当sinx=﹣1时,f min(x)=﹣3.故选:C.9.(5分)=()A.B.C.2 D.【解答】解:原式====2,故选:C.10.(5分)在锐角△ABC中,设x=sinA•sinB,y=cosA•cosB.则x,y的大小关系为()A.x≤y B.x>y C.x<y D.x≥y【解答】解:令A=60°,B=45°x=sinA•sinB=×=,y=cosA•cosB=×=,∴x>y.故选:B.11.(5分)已知函数f(x)=asinx﹣bcosx(a、b为常数,a≠0,x∈R)在x=处取得最小值,则函数y=f(﹣x)是()A.偶函数且它的图象关于点(π,0)对称B.偶函数且它的图象关于点对称C.奇函数且它的图象关于点对称D.奇函数且它的图象关于点(π,0)对称【解答】解:已知函数f(x)=asinx﹣bcosx(a、b为常数,a≠0,x∈R),∴的周期为2π,若函数在处取得最小值,不妨设,则函数=,所以是奇函数且它的图象关于点(π,0)对称,故选:D.12.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.9【解答】解:由题意,AC为直径,所以||=|2+|所以B为(﹣1,0)时,|2+|≤7.所以||的最大值为7.另解:设B(cosα,sinα),|2+|=|2(﹣2,0)+(cosα﹣2,sinα)|=|(cosα﹣6,sinα)|==,当cosα=﹣1时,B为(﹣1,0),取得最大值7.故选:B.二.填空题(本大题共5个小题,共25分,将答案填写在题中的横线上).13.(5分)角α终边上一点的坐标为(1,2),则tan2α=.【解答】解:角α终边上一点的坐标为(1,2),则tanα=2,tan2α===﹣.故答案为:.14.(5分)若,则cos2θ=.【解答】解:由可知,,而.故答案为:﹣.15.(5分)若向量,满足且与的夹角为,则=.【解答】解:∵且与的夹角为,∴===,故答案为:16.(5分)已知||=1,||=,•=0,点C在∠AOB内,且∠AOC=45°,设=m+n,其中m,n∈R,则等于.【解答】如图所示,建立直角坐标系.则=(1,0),=(0,),∴=m +n=(m,n),∴tan45°==1∴=.故选B三.解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)化简:[2sin50°+sin10°(1+tan10°)]•.【解答】解:原式=[2sin50°+sin10°(1+tan10°)]•=[2sin50°+sin10°(1+)]•=[2sin50°+sin10°()]•=(2sin50°+2sin10°•)•cos10°=2(sin50°cos10°+sin10°•cos50°)=2sin60°=.18.(12分)已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.【解答】解:(1)依题意有A=1,则f(x)=sin(x+φ),将点代入得,而0<φ<π,∴,∴,故.(2)依题意有,而,∴,.19.(12分)已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.【解答】解:(Ⅰ)解:=sin2ωx+cos2ωx+2==由题设,函数f(x)的最小正周期是,可得,所以ω=2.(Ⅱ)由(Ⅰ)知,.当,即时,取得最大值1,所以函数f(x)的最大值是,此时x的集合为.20.(12分)已知函数f(x)=cos(2x﹣)+2sin(x﹣)sin(x+).(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x)在区间上的值域.【解答】解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,因为在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x)取最小值,所以函数f(x)在区间上的值域为.21.(12分)已知向量=(sinA,cosA),=(,﹣1),•=1,且A为锐角.(1)求角A的大小;(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.【解答】解:(1)由题意得•=sinA﹣cosA=1,2sin(A﹣)=1,sin(A﹣)=,由A为锐角得A﹣=,A=.(2)由(1)知cosA=,所以f(x)=cos2x+2sinx=1﹣2sin2x+2sinx=﹣2(sinx﹣)2+,因为x∈R,所以sinx∈[﹣1,1],因此,当sinx=时,f(x)有最大值.当sinx=﹣1时,f(x)有最小值﹣3,所以所求函数f(x)的值域是[﹣3,].22.(12分)有一圆心角为60°半径为1的扇形铁板.工人师傅要裁出一个面积最大的矩形,下列两种裁法哪一种更好,说明理由.【解答】解:如图乙方案:设∠POG=θ,则FG=Rsinθ,在△OEF中,HG=,又设矩形EFGH的面积为S,那么S=FG•HG==•[cos (2θ﹣60°)﹣],又∵0°<θ<60°,故当cos(2θ﹣60°)=1,即θ=30°时,S取最大R2;如图甲方案,设∠QOB=θ,则AB=2Rsin(30°﹣θ),在△OFG中,∠OCB=150°,=,即BC=2Rsinθ设矩形的面积为S.那么S EFFG=4R2sinθsin(30°﹣θ)=2R2[cos(2θ﹣30°)﹣cos30°]=2R2[cos(2θ﹣30°)﹣],又∵0<θ<30°,故当cos(2θ﹣30°)=1即θ=15°时,S取最大R2(2﹣),显然R2>R2(2﹣),乙方案矩形的最大面积.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
20一、选择题(共5小题,每小题6分,满分30分。
以下每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项时正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填都得0分)1.方程组⎪⎩⎪⎨⎧=+=+612y x y x 的实数解的个数为( )(A ) 1 (B ) 2 (C ) 3 (D ) 42.口袋中有20个球,其中白球9个,红球5个,黑球6个。
现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) (A ) 14 (B ) 16 (C ) 18 (D ) 203.已知c b a 、、是三个互不相等的实数,且三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abccabbca222++的值为( )(A ) 0 (B ) 1 (C ) 2 (D ) 34.已知△ABC 为锐角三角形,⊙O 经过点B 、C ,且与边AB 、AC 分别相交与点D 、E 。
若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ) (A ) 内心 (B ) 外心 (C ) 重心 (D ) 垂心5.方程256323+-=++y y x x x 的整数解()y x ,的解的个数( ) (A ) 0 (B ) 1 (C ) 3 (D ) 无穷多 二、填空题(共5小题,每小题6分,满分30分)6.如图点A 、C 都在函数()033 x xy =的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为 。
7.如图,在直角三角形ABC 中,︒=∠90ACB ,4=CA ,点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB (指半圆和三角形ABC 组成的图形)分成两部分,则这两部分面积之差的绝对值是 。
2014年长沙市中考数学试卷1.21的倒数是( ) A .2B .-2C .21 D .-21 2.下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是 ( )A . 3和3B . 3和4C . 4和3D . 4和4 4.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C . 互相垂直D .互相垂直且相等 5 .下列计算正确的是( )A .752=+ B .422)(ab ab = C .a a a 632=+ D .43a a a =⋅6 .如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10cm,BC=4cm,则AD 的长等于( )A . 2 cmB . 3 cmC . 4 cmD . 6 cm7 .一个关于x 的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是( )A . x >1B .x ≥1C .x >3D .x ≥3 8.如图,已知菱形ABCD 的边长等于2,∠DAB=60°, 则对角线BD 的长为 ( )A . 1B 3C . 2D .39.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )A B DC ·。
60°A D B10.函数a y x=与函数2y ax =(0a ≠)在同一坐标系中的图像可能是( )二、填空题:(本大题8个小题,每小题3分,共24分)在每小题中,请将答案直接填在答题卡中对应的横线上.11.如图,直线a ∥b,直线c 与a,b 相交,∠1=70°,则∠2= 度; 12.抛物线23(2)5y x =-+的顶点坐标为 ;13.如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB= 度;14.已知关于x 的 一元二次方程22340x kx -+=的一个根是1,则k= . 15.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为 . 16.如图,△ABC 中,DE ∥BC,23DE BC =,△ADE 的面积为8,则△ABC 的面积为 ;17.如图,B 、E 、C 、F 在同一直线上,AB ∥DE,AB=DE,BE=CF,AC=6,则DF= ; 18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x 轴上存在点P ,使P 到A,B 两点的距离之和最小,则P 的坐标为 ;三、解答题:(本大题2个小题,每小题6分,共12分) 19.计算:2014131(1)8()2453--︒ab c12第11题图 A BO C第13题图 AE D C 第16题图 C AB FD E 第17题图20.先化简,再求值:22121(1)24x x x x -++÷--,其中,x =3;四、解答题:(本大题2个小题,每小题8分,共16分)21.某数学兴趣小组在全校范围内随机抽取了50同学进行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所示的不完整条形统计图.请根据所给信息解答以下问题: (1) 请补全条形统计图; (2) 若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人; (3) 在一个不透明的口袋中有四个完全相同的小球,把他们分别标号为四种小吃的序号A,B,C,D ,随机摸出一个小球然后放回,再随机摸出一个小球,请用列表或画树形图的方法,求两次都摸到“A ”的概率;小吃类别 口味人数臭豆唆螺 糖油粑22.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O,(1) 求证:△AEO≌△CDO;(2)若∠OCD=30°,,求△ACO的面积;AEOCD第22题五、解答题:(本大题2个小题,每小题9分,共18分)23. 为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼的进行,某施工队准备购买甲、乙两种树苗共400棵,对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元。
2014年长沙市中考数学试卷1.21的倒数是( ) A .2B .-2C .21 D .-21 2.下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是 ( )A . 3和3B . 3和4C . 4和3D . 4和4 4.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C . 互相垂直D .互相垂直且相等 5 .下列计算准确的是( )A .752=+ B .422)(ab ab = C .a a a 632=+ D .43a a a =⋅6 .如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10cm,BC=4cm,则AD 的长等于( )A . 2 cmB . 3 cmC . 4 cmD . 6 cm7 .一个关于x 的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是( )A . x >1B .x ≥1C .x >3D .x ≥3 8.如图,已知菱形ABCD 的边长等于2,∠DAB=60°, 则对角线BD 的长为 ( )A . 1B 3C . 2D .39.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )A B DC ·。
60°A D B10.函数ay x=与函数2y ax =(0a ≠)在同一坐标系中的图像可能是( )二、填空题:(本大题8个小题,每小题3分,共24分)在每小题中,请将答案直接填在答题卡中对应的横线上.11.如图,直线a ∥b,直线c 与a,b 相交,∠1=70°,则∠2= 度; 12.抛物线23(2)5y x =-+的顶点坐标为 ;13.如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB= 度;14.已知关于x 的 一元二次方程22340x kx -+=的一个根是1,则k= . 15.100件外观相同的产品中有5件不合格,从中任意抽出1件实行检测,则抽到不合格产品的概率为 . 16.如图,△ABC 中,DE ∥BC,23DE BC =,△ADE 的面积为8,则△ABC 的面积为 ;17.如图,B 、E 、C 、F 在同一直线上,AB ∥DE,AB=DE,BE=CF,AC=6,则DF= ; 18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x 轴上存有点P ,使P 到A,B 两点的距离之和最小,则P 的坐标为 ;三、解答题:(本大题2个小题,每小题6分,共12分) 19.计算:2014131(1)8()2453--+︒ab c12第11题图 A BO C第13题图 AE D C 第16题图 C AB FD E 第17题图20.先化简,再求值:22121(1)24x x x x -++÷--,其中,x =3;四、解答题:(本大题2个小题,每小题8分,共16分)21.某数学兴趣小组在全校范围内随机抽取了50同学实行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所示的不完整条形统计图.请根据所给信息解答以下问题: (1) 请补全条形统计图; (2) 若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人; (3) 在一个不透明的口袋中有四个完全相同的小球,把他们分别标号为四种小吃的序号A,B,C,D ,随机摸出一个小球然后放回,再随机摸出一个小球,请用列表或画树形图的方法,求两次都摸到“A ”的概率;小吃类别 口味人数臭豆唆螺 糖油粑22.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O,(1) 求证:△AEO≌△CDO;(2)若∠OCD=30°,求△ACO的面积;AEOCD第22题五、解答题:(本大题2个小题,每小题9分,共18分)23. 为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼的实行,某施工队准备购买甲、乙两种树苗共400棵,对芙蓉路的某标段道路实行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元。
2014年湖南省长沙一中自主招生考试数学试卷一、选择题(每小题5分,共30分.每小题均给出了A、B、C、D的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1.(5分)有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为()A.3 B.7 C.8 D.112.(5分)如图是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入﹣支出费用).由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格.下面给出四个图象(如图所示)则()A.①反映了建议(2),③反映了建议(1)B.①反映了建议(1),③反映了建议(2)C.②反映了建议(1),④反映了建议(2)D.④反映了建议(1),②反映了建议(2)3.(5分)已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x ﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b4.(5分)记S n=a1+a2+…+a n,令,称T n为a1,a2,…,a n这列数的“理想数”.已知a1,a2,…,a500的“理想数”为2004,那么8,a1,a2,…,a500的“理想数”为()A.2004 B.2006 C.2008 D.20105.(5分)以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB 交于点D,若,且AB=10,则CB的长为()A.B.C.D.46.(5分)某汽车维修公司的维修点环形分布如图.公司在年初分配给A、B、C、D四个维修点某种配件各50件.在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.18二、填空题(每小题6分,共48分)7.(6分)若[x]表示不超过x的最大整数(如等),则=.8.(6分)在△ABC中,D、E分别是BC、AC上的点,AE=2CE,BD=2CD,AD、BE交于点F,若S△ABC=3,则四边形DCEF的面积为.9.(6分)有红、黄、蓝三种颜色的旗帜各三面,在每种颜色的旗帜上分别标有号码1、2、3,现任意抽取3面,它们的颜色与号码均不相同的概率是.10.(6分)已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为.11.(6分)三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形的个数为.12.(6分)如图,已知点(1,3)在函数的图象上.正方形ABCD 的边BC在x轴上,点E是对角线BD的中点,函数的图象又经过A、E两点,则点E的横坐标为.13.(6分)按下列程序进行运算(如图)规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行次才停止;若运算进行了5次才停止,则x的取值范围是.14.(6分)给你两张白纸一把剪刀.你的任务是:用剪刀剪出下面给定的两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠的情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪的这一刀(分别在旁边的白纸上画出来)三、解答题(本大题共5小题,12'+12'+14'+18'+16'=72')15.(12分)已知:如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b 厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,(1)求a和b的值;(2)△A′B′C′与△ABC开始时完全重合,然后让△ABC固定不动,将△A′B′C′以1厘米/秒的速度沿BC所在的直线向左移动.ⅰ)设x秒后△A′B′C′与△ABC 的重叠部分的面积为y平方厘米,求y与x之间的函数关系式,并写出x的取值范围;ⅱ)几秒后重叠部分的面积等于平方厘米?16.(12分)已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O 的切线交x轴于点A.(1)求直线HA的函数解析式;(2)求sin∠HAO的值;(3)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P 不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF 是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.17.(14分)青海玉树发生7.1级强震,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发前往距营地30千米的A镇,二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路.已知一分队的行进速度为b千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问要使二分队在最短时间内赶到A镇,一分队的行进速度至少为多少千米/时?(2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?18.(18分)如图1、2是两个相似比为1:的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.19.(16分)定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:、、、、、、、(由于和是相等向量,因此只算一个).(1)作两个相邻的正方形(如图一).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),试求f(2)的值;(2)作n个相邻的正方形(如图二)“一字型”排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(n),试求f(n)的值;(3)作2×3个相邻的正方形(如图三)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2×3),试求f(2×3)的值;(4)作m×n个相邻的正方形(如图四)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(m×n),试求f(m×n)的值.2014年湖南省长沙一中自主招生考试数学试卷参考答案与试题解析一、选择题(每小题5分,共30分.每小题均给出了A、B、C、D的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1.(5分)有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为()A.3 B.7 C.8 D.11【解答】解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5,同理,立方体面上数字3对6.故立方体面上数字2对4.则a=3,b=4,那么a+b=3+4=7.故选:B.2.(5分)如图是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入﹣支出费用).由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格.下面给出四个图象(如图所示)则()A.①反映了建议(2),③反映了建议(1)B.①反映了建议(1),③反映了建议(2)C.②反映了建议(1),④反映了建议(2)D.④反映了建议(1),②反映了建议(2)【解答】解:∵建议(1)是不改变车票价格,减少支出费用;也就是y增大,车票价格不变,即平行于原图象,∴①反映了建议(1),∵建议(2)是不改变支出费用,提高车票价格,也就是图形增大倾斜度,提高价格,∴③反映了建议(2).故选B.3.(5分)已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x ﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,综合一下,只有D可能成立.故选D.4.(5分)记S n=a1+a2+…+a n,令,称T n为a1,a2,…,a n这列数的“理想数”.已知a1,a2,…,a500的“理想数”为2004,那么8,a1,a2,…,a500的“理想数”为()A.2004 B.2006 C.2008 D.2010【解答】解:∵∴n×T n=(S1+S2+…+S n)T500=2004设新的理想数为T x501×T x=8×501+500×T500T x=(8×501+500×T500)÷501==8+500×4=2008故选C5.(5分)以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB 交于点D,若,且AB=10,则CB的长为()A.B.C.D.4【解答】解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选A.6.(5分)某汽车维修公司的维修点环形分布如图.公司在年初分配给A、B、C、D四个维修点某种配件各50件.在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.18【解答】解:设A到B调x1件,B到C调x2件,C到D调x3件,D到A调x4件,这里若x i(i=1,2,3,4)为负数,则表明调动方向改变.则由题意得:,解得:,则调动总件数为|x1|+|x2|+|x3|+|x4|=|x1|+|x1+5|+|x1+1|+|x1﹣10|,它的最小值为16.故选:B.二、填空题(每小题6分,共48分)7.(6分)若[x]表示不超过x的最大整数(如等),则=2000.【解答】解:∵[x]表示不超过x的最大整数,∴=[]+[]+…+[],=[1+]+[1+]+…+[1+],=1+1+ (1)=2000.故答案为:2000.8.(6分)在△ABC中,D、E分别是BC、AC上的点,AE=2CE,BD=2CD,AD、BE交于点F,若S△ABC=3,则四边形DCEF的面积为.【解答】解:连接DE,∵AE=2CE,BD=2CD,∴=,且夹角∠C为公共角,∴△DCE∽△ABC,∴∠CED=∠CAB , ∴AB ∥DE , ∴△CDE ∽△CBA ,∴==,∴=,∵S △ABC =3, ∴S △CDE =3×=,且∠EDA=∠BAD ,∠BED=∠ABE , ∴△DEF ∽△ABF ,∴==,∴设S △DEF =x ,则S △AEF =S △BDF =3x ,S △ABF =9x , ∴x +3x +3x +9x=3﹣, 解得:x=, ∴S △DEF =,∴S △DEF +S △CDE =+=. 故答案为:.9.(6分)有红、黄、蓝三种颜色的旗帜各三面,在每种颜色的旗帜上分别标有号码1、2、3,现任意抽取3面,它们的颜色与号码均不相同的概率是 .【解答】解:根据乘法公式可知:任意抽取3面旗,一共有9×8×7=504种情况,三面旗颜色与号码都不一样的情况一共有9×4×1=36种情况∴它们的颜色与号码均不相同的概率是=.故答案为:.10.(6分)已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为(2,﹣6).【解答】解:∵抛物线经过点A(4,0),∴×42+4b=0,∴b=﹣2,∴抛物线的解析式为:y=x2﹣2x=(x﹣2)2﹣2,∴抛物线的对称轴为:直线x=2,∵点C(1,﹣3),∴作点C关于x=2的对称点C′(3,﹣3),直线AC′与x=2的交点即为D,因为任意取一点D(AC与对称轴的交点除外)都可以构成一个△ADC.而在三角形中,两边之差小于第三边,即|AD﹣CD|<AC′.所以最大值就是在D是AC′延长线上的点的时候取到|AD﹣C′D|=AC′.把A,C′两点坐标代入,得到过AC′的直线的解析式即可;设直线AC′的解析式为y=kx+b,∴,解得:,∴直线AC′的解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点的坐标为(2,﹣6).故答案为:(2,﹣6).11.(6分)三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形的个数为201.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×100+1=201,故答案为:201.12.(6分)如图,已知点(1,3)在函数的图象上.正方形ABCD 的边BC在x轴上,点E是对角线BD的中点,函数的图象又经过A、E两点,则点E的横坐标为.【解答】解:把(1,3)代入到y=得:k=3,故函数解析式为y=,设A(a,)(a>0),根据图象和题意可知,点E(a+,),因为y=的图象经过E,所以将E代入到函数解析式中得:(a+)=3,即a2=,求得:a=或a=﹣(不合题意,舍去),∴a=,∴a+=,则点E的横坐标为.故答案为:.13.(6分)按下列程序进行运算(如图)规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行4次才停止;若运算进行了5次才停止,则x的取值范围是2<x≤4.【解答】解:(1)x=5.第一次:5×3﹣2=13第二次:13×3﹣2=37第三次:37×3﹣2=109第四次:109×3﹣2=325>244→→→停止(2)第1次,结果是3x﹣2;第2次,结果是3×(3x﹣2)﹣2=9x﹣8;第3次,结果是3×(9x﹣8)﹣2=27x﹣26;第4次,结果是3×(27x﹣26)﹣2=81x﹣80;第5次,结果是3×(81x﹣80)﹣2=243x﹣242;∴由(1)式子得:x>2,由(2)式子得:x≤4∴2<x≤4.即:5次停止的取值范围是:2<x≤4.故答案为:4;2<x≤4.14.(6分)给你两张白纸一把剪刀.你的任务是:用剪刀剪出下面给定的两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠的情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪的这一刀(分别在旁边的白纸上画出来)【解答】解:三、解答题(本大题共5小题,12'+12'+14'+18'+16'=72')15.(12分)已知:如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b 厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,(1)求a和b的值;(2)△A′B′C′与△ABC开始时完全重合,然后让△ABC固定不动,将△A′B′C′以1厘米/秒的速度沿BC所在的直线向左移动.ⅰ)设x秒后△A′B′C′与△ABC 的重叠部分的面积为y平方厘米,求y与x之间的函数关系式,并写出x的取值范围;ⅱ)几秒后重叠部分的面积等于平方厘米?【解答】解:(1)∵三角形ABC是直角三角形,且AB=5厘米,BC=a厘米,AC=b 厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,∴∴(a+b)2﹣2ab=25即:(m﹣1)2﹣2(m+4)=25因式分解得(m﹣8)(m+4)=0解得:m=8或m=﹣4(舍去)∴m=8∴方程为x2﹣7x+12=0解得:x=3或x=4∴a=4,b=3(2)ⅰ)∵△A′B′C′以1厘米/秒的速度沿BC所在的直线向左移动,∴x秒后BB′=x则B′C′=4﹣x,∵C′M∥AC∴△BC′M∽△BCA∴=∴MC′=(4﹣x)∴S=y=(4﹣x)×(4﹣x)=(0≤x≤4)△BCMⅱ)当y=时,=解得:x=3或x=5(不合题意)∴3秒后重叠部分的面积等于平方厘米.16.(12分)已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O 的切线交x轴于点A.(1)求直线HA的函数解析式;(2)求sin∠HAO的值;(3)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P 不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF 是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.【解答】解:(1)如图,连OH,作HK⊥x轴于k,∵点D(3,4),点H与点D关于x轴对称,∴H点坐标为(3,﹣4),∵AH为⊙O的切线,∴OH⊥AH,∴∠AOH+∠OAH=90°,∠KOH+∠KHO=90°,∴∠OAH=∠KHO,∴Rt△AKH∽Rt△HKO,∴AK:HK=HK:OK,即AK:4=4:3,∴AK=,∴OA=OK+AK=3+=,∴A点坐标为(,0),设直线HA的函数解析式为y=kx+b,把H(3,﹣4),A(,0)代入得,解得,∴直线HA的函数解析式为y=x﹣;(2)在Rt△OKH中,OH==5,在Rt△OAH中,sin∠HAO===;(3)sin∠CGO的大小不变.理由如下:过点D作DM⊥EF于M,并延长DM交⊙O于N,连接ON,交BC于T,如图,则OM垂直平分DN,即D点与N点关于x轴对称,则N点坐标为(3,﹣4),ON=5,又∵△DEF为等腰三角形,DM⊥EF,∴DN平分∠BDC,即∠CDN=∠BDN,∴弧BN=弧CN,∴OT⊥BC,∴∠TGO+∠GOT=90°,而∠MNO+∠MON=90°,∴∠TGO=∠MNO,在Rt△OMN,OM=3,MN=4,∴sin∠MNO==,∴sin∠CGO=.即当E、F两点在OP上运动时(与点P不重合),sin∠CGO的值不变.17.(14分)青海玉树发生7.1级强震,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发前往距营地30千米的A镇,二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路.已知一分队的行进速度为b千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问要使二分队在最短时间内赶到A镇,一分队的行进速度至少为多少千米/时?(2)若b=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?【解答】解:(1)根据塌方地形复杂,必须由一分队用1小时打通道路一个小时后道路畅通,那么我们再看二分队,二分队到达塌方处(距离营地10KM)需要小时,那么在二分队经过小时后到达塌方处的时候,一分队必须清理好塌方,也就是说一分队至少提前一小时到达塌方处(距离营地10KM)而一分队只要保证比二分队提前一个小时到达塌方处再利用一个小时打通塌方,那么当二分队到达塌方处才不会影响时间,而后二分队按照(4+a)千米/时的速度前行与一分队无关,这样就很好算了,路程10KM,二分队速度:(a+4)KM每小时,那么二分队到达塌方处需要小时,所以一分队需要至少(﹣1)小时(以前)到达塌方处,这样路程10KM,一分队所用时间(﹣1)小时,一分队的行进速度至少为=千米/时;当a=0时,一分队的行进速度至少为千米/时;(2)要使二分队和一分队同时赶到A镇,二分队应在营地休息a小时.根据题意得:+1=+a,解得:a=或a=(不合题意舍去)这样a=大于3,不符合题意.∴当二分队不休息,也就是=,解得:a=0,∴二分队应在营地休息0小时.18.(18分)如图1、2是两个相似比为1:的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.【解答】证明:(1)连CD,如图4,∵两个等腰直角三角形的相似比为1:,而小直角三角形的斜边等于大直角三角形的直角边,∴点D为AB的中点,∴CD=AD,∠4=∠A=45°,又∵∠1+∠2=∠2+∠3=90°,∴∠3=∠1,∴△CDF≌△ADE,∴CF=AE,同理可得△CED≌△BFD,∴CE=BF,而CE2+CF2=EF2,∴AE2+BF2=EF2;(2)结论AE2+BF2=EF2仍然成立.理由如下:把△CFB绕点C顺时针旋转90°,得到△CGA,如图5∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,∴∠GAE=90°,而∠3=45°,∴∠2+∠4=90°﹣45°=45°,∴∠1+∠2=45°,∴△CGE≌△CFE,∴GE=EF,在Rt△AGE中,AE2+AG2=GE2,∴AE2+BF2=EF2;(3)线段BM、MN、DN能构成直角三角形的三边长.理由如下:把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,如图∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,∵△CEF的周长等于正方形ABCD的周长的一半,∴EF=BE+DF,∴EF=EP,∴△AEF≌△AEP,∴∠1=∠3+∠4,而AQ=AN,∴△AMQ≌△AMN,∴MN=QM,而∠ADN=∠QBA=45°,∠ABD=45°,∴∠QBN=90°,∴BQ2+BM2=QM2,∴BM2+DN2=MN2.19.(16分)定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:、、、、、、、(由于和是相等向量,因此只算一个).(1)作两个相邻的正方形(如图一).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),试求f(2)的值;(2)作n个相邻的正方形(如图二)“一字型”排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(n),试求f(n)的值;(3)作2×3个相邻的正方形(如图三)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2×3),试求f(2×3)的值;(4)作m×n个相邻的正方形(如图四)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(m×n),试求f(m×n)的值.【解答】解:(1)作两个相邻的正方形,以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数f(2)=14;(2)分别求出作两个、三个、四个相邻的正方形(如图1).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同的向量个数,找出规律,∵f(1)=6×1+2=8,f(2)=6×2+2=14,f(3)=6×3+2=20,f(4)=6×4+2=26,∴f(n)=6n+2;(3)f(2×3)=34;(4)∵f(2×2)=24,f(2×3)=34,f(2×4)=44,f(3×2)=34,f(3×3)=48,f(3×4)=62∴f(m×n)=2(m+n)+4mn.。