高中数学文科第一至第四章测试1
- 格式:doc
- 大小:1.99 MB
- 文档页数:4
普通高中课程标准实验教科书——数学选修2—1(文科)[人教版]高中学生学科素质训练新课标高二数学同步测试(9)(1-2第四章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为()A.26 B.24 C.20 D.192.有一堆形状、大小相同的珠子,其中只有一粒重量比其它的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C.27 D.303.“对于大于2的整数,依次从2~n 检验是不是n的因数,即整除n的数。
若有这样的数,则n不是质数;若没有这样的数,则n是质数”,对上面流程说法正确的是()A.能验证B.不能验证C.有的数可以验证,有的不行D.必须依次从2~n-1检验4.“韩信点兵”问题:韩信是汉高祖手下大将,他英勇善战,谋略超群,为建立汉朝立下不朽功勋。
据说他在一次点兵的时候,为保住事秘密,不让敌人知道自己里的事实力,采用下述点兵方法:先令士兵1~3报数,结果最后一个士兵报2;又令士兵1~5报数,结果最后一个士兵报3;又令士兵1~7报数,结果最后一个士兵报4;这样韩信很快算出自己士兵的总数。
士兵至少有多少人()A.20 B.46 C.53 D.395.注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单如图,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,连线标位时间内传递的最大信息量为()A.26 B.24 C.20 D.196.“烧开水泡壶茶喝”是我国著名数学家华罗庚教授作为“统筹法”的引子,虽然是生活中的小事,但其中有不少的道理。
一、选择题(每题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c应满足的条件是:A. a > 0,b = 0,c > 0B. a < 0,b = 0,c < 0C. a ≠ 0,b ≠ 0,c ≠ 0D. a ≠ 0,b ≠ 0,c ≠ 02. 下列各式中,正确的是:A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. sin^2x + cos^2x = 23. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an+1 - an =?A. 2dB. dC. 2a1D. 2d + a14. 已知等比数列{bn}的公比为q,首项为b1,第n项为bn,则bn/q^n =?A. b1B. b2C. b3D. b1 b25. 若复数z = a + bi(a、b为实数),则|z|^2 =?A. a^2 + b^2B. a^2 - b^2C. a^2 b^2D. a^2 / b^26. 下列函数中,为偶函数的是:A. f(x) = x^2 - 1B. f(x) = |x| + 1C. f(x) = x^3D. f(x) = 1/x7. 若函数f(x)在区间[a, b]上单调递增,则下列结论正确的是:A. f(a) < f(b)B. f(a) > f(b)C. f(a) = f(b)D. f(a) ≥ f(b)8. 已知函数f(x) = (x - 1)(x - 2),则f(x)的零点为:A. x = 1B. x = 2C. x = 1 或 x = 2D. x = 0 或 x = 39. 若函数f(x)在区间[0, 1]上连续,在区间(0, 1)内可导,且f(0) = f(1),则下列结论正确的是:A. f'(x)在区间(0, 1)内恒大于0B. f'(x)在区间(0, 1)内恒小于0C. f'(x)在区间(0, 1)内恒等于0D. f'(x)在区间(0, 1)内可能大于0,也可能小于010. 已知等差数列{an}的前n项和为Sn,首项为a1,公差为d,则Sn =?A. (n/2)(a1 + an)B. (n/2)(a1 + a2)C. (n/2)(a1 + 2d)D. (n/2)(a1 + 3d)二、填空题(每题5分,共50分)11. 若函数f(x) = x^3 - 3x + 2在x=1时取得极值,则极值为______。
高二数学选修1-2、4-4测试题(文科)一、选择题1.设i 为虚数单位,则复数 5-i1+i=( )A .-2-3iB .-2+3iC .2-3iD .2+3i 2.已知x 与y 之间的一组数据:则y 与x 的线性回归方程为 +=a x b y 必过点( ) A .(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2)3.用反证法证明命题“220,0(a b a a +=∈若则、b 全为、b R)”,其反设正确的是( )A. 0a b 、至少有一个为B. 0a b 、至少有一个不为C. 0a b 、全不为D. 0a b 、中只有一个为4.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是( )A .3-B .3-或1C .3 或1-D .15.设有一个回归方程为y=2-3x ,变量x 增加1个单位时,则y 平均( ) A.增加2个单位 B.减少2个单位 C.增加3个单位 D.减少3个单位 6.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标可能为( ) A. (3,π43) B. (3,π45) C. (23,π43) D. (23,π45) 7. 极坐标系中,以(9,3π)为圆心,9为半径的圆的极坐标方程为( )A. )(θπρ-3cos 18= B. )(θπρ-3cos 18-= C. )(θπρ-3sin 18= D. )(θπρ-3cos 9= 8. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 ( ) A.3 B.6 C. 8 D. 109.在同一坐标系中,将曲线x y 3sin 2=变为曲线'sin 'y x =的伸缩变换是( )⎪⎩⎪⎨⎧==''23.A y y x x ⎪⎩⎪⎨⎧==y y x x 23.B ''⎪⎩⎪⎨⎧==y y x x 213.C '' ⎪⎩⎪⎨⎧==''213.D yy x x 10.若实数y x 、 满足:221169x y +=,则x + y + 10的取值范围是( ) A .[5,15] B .[10,15] C .[ -15,10] D .[ -15,35] 二、填空题11.计算:12⨯|3+4i|-10⨯(i2010+i2011+i2012+i2013)=______ . (其中i 为虚数单位)12.点()22-,的极坐标为 。
第四章综合测试一、选择题(本大题共10小题,共50分)1.若3log 14a ,则实数a 的取值范围是( )A .304æöç÷èø,B .34æö+¥ç÷èøC .314æöç÷èø,D .()3014æö+¥ç÷èøU ,,2.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A .a b c<<B .a c b<<C .c a b<<D .b c a<<3.设227a =,则3log 2等于( )A .3aB .3a C .13aD .3a4.已知a ,b ,c 均大于1,且1log log 4c c a b =g ,则下列不等式一定成立的是( )A .ac b≥B .bc a≥C .ab c≥D .ab c≤5.已知5log 2x =,2log y =123z -=,则下列关系正确的是( )A .x z y<<B .x y z<<C .z x y<<D .z y x<<6.“{}12m Î,”是“ln 1m <”成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件7.已知函数()()log 2a f x x =+,若图象过点()63,,则()2f 的值为( )A .2-B .2C .12D .12-8.已知2510a b ==,则11a b+=( )A .1B .2C .12D .159.已知函数()ln xf x x=,若()2a f =,()3b f =,()5c f =,则a ,b ,c 的大小关系是( )A .b c a<<B .b a c<<C .a c b<<D .c a b<<10.如果函数()f x 的图象与函数()x g x e =的图象关于直线y x =对称,则()24f x x -的单调递增区间为( )A .()0+¥,B .()2+¥,C .()02,D .()24,二、填空题(本大题共6小题,共30分)11.已知函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,则a 取值范围是________.12.不等式()2log 1020x -≥的解集为________.13.已知函数()()2log 13f x x =++,若()25f a +=,则a =________.14.已知()12log 11x +≥,则实数x 的取值范围是________.15.若()lg lg 2lg 2x y x y +=-,则xy=________.16.已知函数()()()log 201a f x x a a =-¹>,恒过定点M 的坐标为________;若2a =则()34f =________.三、解答题(本大题共5小题,共70分)17.(1)()()3122log 22641log ln 349e p -+æö+-+++ç÷èø;(2)若lg 2a =,lg3b =,求5log 12的值(结果用a ,b 表示)18.(1()1132081274e p -æöæö--++ç÷ç÷èøèø;(2(3)已知a ,b ,c 为正实数,x y z a b c ==,1110x y z++=,求abc 的值.19.函数()()2log 21x f x =-.(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围.20.已知函数()()()()log 2log 201a a f x x x a a =+--¹>,且.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性;(3)解关于x 的不等式()()log 3a f x x ≥.21.设函数()13lg 1x xf x x-=++.(1)试判断函数()()()2f x f xg x +-=和函数()()()2f x f x h x --=在定义域内的奇偶性;(2)令()()3x x f x j =-,求不等式()()2x x j j --<的解集.第四章综合测试答案解析一、1.【答案】C【解析】解:3log 14a 等价于:3log log 4a a a >,可得134a a ìïíïî>>(无解)或034a a ìïíïî<<1>,解得314a æöÎç÷èø.故选:C.2.【答案】B【解析】解:22log 0.2log 10a ==<,0.20221b ==>,0.3000.20.21=∵<<,()0.30.201c =Î∴,,a c b ∴<<,故选B.3.【答案】D【解析】因为227a =,所以2233log 273log 3log 2a ===,则33log 2a=.4.【答案】C【解析】a ∵,b ,c 均大于1,且1log log 4c c a b =g ,log c a ∴、log c b 大于零,则2log log log log 2c c c c a b a b +æöç÷èøg ≤,即2log log 142c c a b +æöç÷èø≤,()log 1c ab ∴≥或()log 1c ab -≤,当且仅当log log c c a b =,即a b =时取等号,a ∵,b ,c 均大于1,则log 1c ab ≥,解得ab c ≥,故答案选C.5.【答案】A【解析】解:551log 2log 2x ==<,2log 1y =,121312z -æö==ç÷èø,.x z y ∴<<.故选:A.6.【答案】A【解析】解:对数函数的性质知ln10=,ln 2ln 1e =<,从而知{}12m Î,是ln 1m <的充分条件,反过来由ln 0m <得到0m e <<,m ∴并不是只能为1,2,“{}12m Î,”是“ln 1m <”成立的充分不必要条件,故选A.7.【答案】B【解析】解:将点()63,代入()()log 2a f x x =+中,得()3log 62log 8a a =+=,即38a =,2a =,所以()()2log 2f x x =+,所以()()22log 222f =+=.故选B.8.【答案】A【解析】解:2510a b ==∵,2log 10a =∴,5log 10b =,101010251111log 2log 5log 101log 10log 10a b +=+=+==∴,故选A.9.【答案】D【解析】解:由已知ln 2ln 33ln 22ln 3ln8ln 902366a b ---=-==<,所以a b <,ln 2ln 55ln 22ln 5ln 32ln 250251010a c ---=-==>,所以a c >,c a b ∴<<.故选D.10.【答案】C【解析】解:由题意可得函数()f x 与()x g x e =的互为反函数,故()ln f x x =,()()224ln 4f x x x x -=-,令240t x x =->,解得04x <<.故()24f x x -的定义域为()04,,本题即求函数()24f x x -在()04,上的增区间.再利用二次函数的性质可得函数()24f x x -在()04,上的增区间为()02,,故选:C.二、11.【答案】()14,【解析】解:因为0a >,所以4t ax =-是减函数,又因为函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,所以log a y t =是增函数,所以得1410a a ìí-´î>>,解得14a <<,a 取值范围是()14,.故答案为()14,.12.【答案】92æù-¥çúèû,【解析】解:不等式()2log 1020x -≥可化为()22log 102log 1x -≥,即1021x -≥,解得92x ≤;所以函数()f x 的解集为92æù-¥çúèû,.故答案为:92æù-¥çúèû,.13.【答案】1【解析】解:由题意可得()()22log 335f a a +=++=,故()2log 32a +=,解得1a =.故答案为1.14.【答案】[)1112æù--+¥çúèûU ,,【解析】解:()12log 11x +≥,()12log 11x +∴≥或()12log 11x +-≤,解得1012x +<≤或12x +≥,即112x --<≤或1x ≥;∴实数x 的取值范围是[)1112æù--+¥çúèûU ,,.故答案为:[)1112æù--+¥çúèûU ,,.15.【答案】4【解析】因为()lg lg 2lg 2x y x y +=-,所以()22xy x y =-,即22540x xy y -+=,解得x y =或4x y =.由已知得0x >,0y >,20x y ->,所以x y =不符合题意,当4x y =时,得4xy=.故答案为4.16.【答案】()30,5【解析】解:令()()log 20a f x x =-=,解得3x =,所以点()30M ,,当2a =时,()52234log 32log 25f ===.故答案为()30,;5.三、17.【答案】(1)解:()()3122log 22641log ln 349e p -+æö+-+++ç÷èø12281109278æö´-ç÷èøæö=++++´ç÷èø711182088=+++=;(2)lg 2a =∵,lg3b =,5lg122lg 2lg32log 12lg51lg 21a ba++===--∴.18.【答案】(1)解:原式1312325252121223333´æö-´-ç÷èøæö=--+=--+=ç÷èø;(2)原式()28125lg lg1025411lg10lg1022´´===-´--;(3)a ∵,b ,c 为正实数,0x y z a b c k ===>,1k ¹.lg lg k x a =∴,lgk lg y b =,lg lg k z c=,1110x y z ++=∵,()lg lg lg lg 0lg lg abc a b c k k ++==∴,1abc =∴.19.【答案】(1)解:()1f x <即()2log 211x -<,0212x -∴<<,123x ∴<<,20log 3x ∴<<,故不等式()1f x <的解集为{}20log 3x x <<;(2)()()24log 21log 4x x m -=-∵有实数解, 210x -∵>,0x ∴>,且40x m ->,()2214x x m -=-∴,在0x >上有解,即22241x x m =-++g g 在0x >上有解,设()21x t t =>即2221m t t =-+在1t >上有解,当1t >时,22112212122m t t t æö=-+=-+ç÷èø,故实数m 的取值范围:1m >.20.【答案】(1)解:要是函数有意义,则2020x x +ìí-î>>,解得22x -<<,故函数()f x 的定义域为()22-,;(2)()()()()()()log 2log 2log 2log 2a a a a f x x x x x f x -=--+=-é+--ù=-ëû,所以函数()f x 为奇函数;(3)()()()2log 2log 2log 2a a axf x x x x+=+--=-∵,()()log 3a f x x ≥.()2log log 32aa xx x+-∴≥,02x <<.当01a <<时,232x x x +-0<,解得213x ≤;当1a >时,2302x x x +->,解得12x ≤<或203x <≤.21.【答案】(1)解:()g x 和()h x 的定义域都是()11-,,且()()()3322x xf x f xg x -+-+==,()()()331lg 221x x f x f x xh x x-----==++,所以对任意()11x Î-,有,()()332x xg x g x -+-==,()()331331lg lg 2121x x x x x xh x h x x x---+---=+=--=--+,故函数()g x 在()11-,内是偶函数,函数()h x 在()11-,内是奇函数;(2)因为()()13lg1x xx f x x j -=-=+,所以()()2x x j j --<就是11lg lg 211x xx x-+-+-<,即1lg 11x x -+<,10101x x -+<<,解得9111x -<<.故此不等式的解集是9111æö-ç÷èø.。
第四章数列章末检测(原卷版)(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n-1,若35是这个数列的第n项,则n=()A.20B.21C.22D.232.已知3,a+2,b+4成等比数列,1,a+1,b+1成等差数列,则等差数列的公差为()A.4或-2B.-4或2C.4D.-43.用数学归纳法证明1+12+14+…+12n-1>12764(n∈N*)成立,某初始值至少应取()A.7B.8C.9D.104.公差不为0的等差数列{a n},其前23项和等于其前10项和,a8+a k=0,则正整数k =()A.24B.25C.26D.275.(2021年长春模拟)已知等比数列{a n}的各项均为正数,其前n项和为S n,若a2=2,S6-S4=6a4,则a5=()A.10B.16C.24D.326.设等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9=()A.54B.45C.36D.277.已知各项都为正数的等比数列{a n}中,a2a4=4,a1+a2+a3=14,则满足a n·a n+1·a n+2>19的最大正整数n的值为()A.3B.4C .5D .68.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2021=()A .12021B .12022C .20202021D .20212022二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是()A .a n ,n 为奇数,,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =|sinn π2|10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有()A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为2911.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则()A .数列{a 2n }是等比数列B C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是()A .S 2019<S 2020B.a2019a2021-1<0C.T2020是数列{T n}中的最大值D.数列{T n}无最大值三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n}满足a1=1,a n+1=2a n(n∈N*),S n为{a n}的前n项和,则S8=________.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n},则a1=________,a n=________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).15.(2021年淮北期末)已知数列{a n}的通项公式为a n=[lg n]([x]表示不超过x的最大整数),T n为数列{a n}的前n项和,若存在k∈N*满足T k=k,则k的值为__________.16.(2022年武汉模拟)对任一实数序列A=(a1,a2,a3,…),定义新序列△A=(a2-a1,a3-a2,a4-a3,…),它的第n项为a n+1-a n.假定序列△(△A)的所有项都是1,且a12=a22=0,则a2=________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2022年北京二模)已知数列{a n}的前n项和为S n,a1=1,________.是否存在正整数k(k>1),使得a1,a k,S k+2成等比数列?若存在,求出k的值;若不存在,说明理由.-2a n=0;②S n=S n-1+n(n≥2);③S n=n2这三个条件中任选一个,补充在上面从①a n+1问题中并作答.18.(12分)(2022年平顶山期末)在等差数列{a n}中,设前n项和为S n,已知a1=2,S4=26.(1)求{a n}的通项公式;}的前n项和T n.(2)令b n=1a n a n+1,求数列{b n19.(12分)设a>0,函数f(x)=ax=1,a n+1=f(a n),n∈N*.a+x,令a1(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.20.(12分)(2022年潍坊模拟)若数列{a n}的前n项和S n满足S n=2a n-λ(λ>0,n∈N*).(1)求证:数列{a n}为等比数列,并求a n;(2)若λ=4,b n n ,n 为奇数,2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值;(2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.第四章数列章末检测(解析版)(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n -1,若35是这个数列的第n 项,则n =()A .20B .21C .22D .23【答案】D【解析】由2n -1=35=45,得2n -1=45,即2n =46,解得n =23.2.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为()A .4或-2B .-4或2C .4D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a+2)2=3(b +4),2(a +1)=1+b +1=-2,4=4,=8.=-2,=-4时,a +2=0与3,a +2,b +4=4,=8时,等差数列的公差为(a +1)-1=a=4.3.用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,某初始值至少应取()A .7B .8C .9D .10【答案】B 【解析】1+12+14+…+12n -1=1-12n1-12>12764,整理得2n >128,解得n >7,所以初始值至少应取8.4.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =()A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0,∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.5.(2021年长春模拟)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=()A .10B .16C .24D .32【答案】B【解析】设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4.因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,解得q =2,则a 5=2×23=16.6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=()A .54B .45C .36D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6,∴S 9=9a 5=54.7.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为()A .3B .4C .5D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2,∴a 1+a 2=12,1+a 1q =12,1q 2=2,消去a 1,得1+q q2=6.∵q >0,∴q =12,∴a 1=8,∴a n =8-1=24-n ,∴不等式a n a n +1a n +2>19化为29-3n >19,当n =4时,29-3×4=18>19,当n =5时,29-3×5=164<19,∴最大正整数n =4.8.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2021=()A .12021B .12022C .20202021D .20212022【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又∵S n >0,∴n (n +1)S n -1=0,∴S n =1n (n +1)=1n -1n +1,∴S 1+S 2+…+S 2021…20212022.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是()A .a n ,n 为奇数,,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =|sinn π2|【答案】ABC 【解析】检验知A ,B ,C 都是所给数列的通项公式.10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有()A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为29【答案】BC 【解析】由S 9=S 20⇒9a 1+12×9×8d =20a 1+12×20×19d ⇒a 1+14d =0⇒a 15=0.因为d >0,所以有S 30=30a 1+12×30×29d =30·(-14d )+435d =15d >0,故A 不正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以当n =15或n =14时,S n 取得最小值,故B 正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以a 10+a 22=2a 16=2(a 15+d )=2d >0,故C 正确;因为d >0,n ∈N *,所以由S n =na 1+12n (n -1)d =n (-14d )+12n (n -1)d =12dn (n -29)>0,可得n >29,n ∈N *,因此n 的最小值为30,故D 不正确.故选BC .11.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则()A .数列{a 2n }是等比数列BC .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列【答案】AC【解析】等比数列{a n }中,由a 1=1,q =2,得a n =2n -1,∴a 2n =22n -1,∴数列{a 2n }是等比数列,故A B 不正确;∵log 2a n =n -1,故数列{log 2a n }是等差数列,故C 正确;数列{a n }中,S 10=1-2101-2=210-1,同理可得S 20=220-1,S 30=230-1,不成等比数列,故D 错误.12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是()A .S 2019<S 2020B .a 2019a 2021-1<0C .T 2020是数列{T n }中的最大值D .数列{T n }无最大值【答案】AB 【解析】若a 2019a 2020>1,则a 1q 2018×a 1q 2019=a 21q 4037>1.又由a 1>1,必有q >0,则数列{a n }各项均为正值.又由a 2019-1a 2020-1<0,即(a 2019-1)(a 2020-1)<0,则有2019<1,2020>1或2019>1,2020<1,又由a 1>1,必有0<q <1,2019>1,2020<1.有S 2020-S 2019=a 2020>0,即S 2019<S 2020,则A正确;有a 2020<1,则a 2019a 2021=a 22020<1,则B 2019>1,2020<1,则T 2019是数列{T n }中的最大值,C ,D 错误.三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为{a n }的前n 项和,则S 8=________.【答案】255【解析】由a 1=1,a n +1=2a n 知{a n }是以1为首项、2为公比的等比数列,所以S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n },则a 1=________,a n =________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).【答案】815n -7【解析】被3除余2的正整数可表示为3x +2,被5除余3的正整数可表示为5y +3,其中x ,y ∈N *,∴数列{a n }为等差数列,公差为15,首项为8,∴a 1=8,a n =8+15(n -1)=15n -7.15.(2021年淮北期末)已知数列{a n }的通项公式为a n =[lg n ]([x ]表示不超过x 的最大整数),T n 为数列{a n }的前n 项和,若存在k ∈N *满足T k =k ,则k 的值为__________.【答案】108【解析】a n,1≤n <10,,10≤n <100,,10k ≤n <10k +1.当1≤k <10时,T k =0,显然不存在;当10≤k <100时,T k =k -9=k ,显然不存在;当100≤k <1000时,T k =99-9+(k -99)×2=k ,解得k =108.16.(2022年武汉模拟)对任一实数序列A =(a 1,a 2,a 3,…),定义新序列△A =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列△(△A )的所有项都是1,且a 12=a 22=0,则a 2=________.【答案】100【解析】令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1,a 2-a 1=b 1,a 3-a 2=b 2,…,a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2.分别令n =12,n =22,得a 2-10a 1+55=0①,a 2-20a 1+210=0②,①×2-②,得a 2=100.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2022年北京二模)已知数列{a n }的前n 项和为S n ,a 1=1,________.是否存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列?若存在,求出k 的值;若不存在,说明理由.从①a n +1-2a n =0;②S n =S n -1+n (n ≥2);③S n =n 2这三个条件中任选一个,补充在上面问题中并作答.解:若选①a n +1-2a n =0,则a 2-2a 1=0,说明数列{a n }是首项为1,公比为2的等比数列,∴a 1=1,a k =2k -1,S k +2=1-2k +21-2=2k +2-1.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(2k +2-1)=2k +2-1.左边为偶数,右边为奇数,即不存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列.若选②S n =S n -1+n (n ≥2),即S n -S n -1=n ⇒a n =n (n ≥2)且a 1=1也适合此式,∴{a n }是首项为1,公差为1的等差数列,∴a k =k ,S k +2=(k +2)(k +3)2.若a 1,a k ,S k +2成等比数列,则k 2=1×(k +2)(k +3)2⇒k 2-5k -6=0⇒k =6(k =-1舍去),即存在正整数k =6,使得a 1,a k ,S k +2成等比数列.若选③S n =n 2,∴a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),且a 1=1适合上式.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(k +2)2⇒3k 2-8k -3=0⇒k ==-13舍去即存在正整数k =3,使得a 1,a k ,S k +2成等比数列.18.(12分)(2022年平顶山期末)在等差数列{a n }中,设前n 项和为S n ,已知a 1=2,S 4=26.(1)求{a n }的通项公式;(2)令b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由已知得4×2+4×32d =26,解得d =3,所以a n =a 1+(n -1)d =2+3(n -1)=3n -1.(2)b n =1a n a n +1=1(3n -1)(3n +2)=所以T n…=16-13(3n +2)=n 6n +4.19.(12分)设a >0,函数f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N *.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式;(2)用数学归纳法证明你的结论.(1)解:∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a,a 3=f (a 2)=a 2+a ,a 4=f (a 3)=a3+a ,猜想a n =a(n -1)+a.(2)证明:①易知n =1时,猜想正确;②假设n =k 时,a k =a (k -1)+a成立,则a k +1=f (a k )=a ·a k a +a k =a ·a (k -1)+a a +a (k -1)+a=a (k -1)+a +1=a [(k +1)-1]+a ,∴n =k +1时成立.由①②知,对任何n ∈N *,都有a n =a (n -1)+a.20.(12分)(2022年潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)求证:数列{a n }为等比数列,并求a n ;(2)若λ=4,b nn ,n 为奇数,2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ.当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)解:∵λ=4,∴a n =4·2n -1=2n +1,∴b nn +1,n 为奇数,+1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1)=4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的公比为q .∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18,∴q =a 3+a 2a 2+a 1=189=2.又∵2a 1+a 1=9,∴a 1=3,∴a n =3·2n -1,n ∈N *.(2)∵b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1①,∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n ②,①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n 1-2-n ×2n =(1-n )2n -1,∴S n =3(n -1)2n +3.22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值;(2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意,得(1-a 2)2=a 1(1+a 3),∴(1-a 1q )2=a 1(1+a 1q 2).∵q =12,∴a 1=12,∴a n.1=λb 2,2=2λb 3,=λ(8+d ),+d =2λ(8+2d ),∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1),∴1T n =令C n =1T 1+1T 2+…+1T n =…∴18≤C n <14.∵S n =21-12=1,∴12S n =121∴14≤12S n <12,∴C n <12S n 即1T 1+1T 2+1T 3+…+1T n <12S n .。
迄今为止最全,最适用的高一数学试题(必修1、4)(特别适合按14523顺序的省份)必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5MNAMNBNMCMND9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A.B. B A IC. B C A C U U ID. B C A C U U Y11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A I ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
中学(文科)数学书目表必修(一)第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质其次章基本初等函数2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修(二)第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图红日直观图1.3空间几何体的表面与体积第二章点直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修(三)第一章算法初步1.1算法与程序款图1.2基本算法语句1.3算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事务的概率3.2 古典概型3.3 几何概型必修(四)第一章三角函数1.1随意角与弧度制1.2随意角的三角函数1.3三角函数的诱导公式1.4三角函数的图像与性质1.5函数y=Asin()ϕωχ+的图像1.6三角函数模型的简洁应用第二章平面对量2.1 平面对量的实际背景及其概念2.2 平面对量的线性运算2.3 平面对量的基本定理及坐标表示2.4 平面对量的数量积2.5 平面对量的应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简洁的三角恒等变换必修(五)第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1 数列的概念与简洁表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简洁的线性规划问题3.4 基本不等式:ab2ba+≤选修(1—1)第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简洁的逻辑联接词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 改变率与导数3.2 导数的计算3.3 导数在探讨函数中的应用3.4 生活中的优化问题举例选修(1—2)第一章统计案例1.1 回来分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第三章推理与证明2.1 合情推理与演绎推理2.2 干脆证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图选修(4—1)第一讲相像三角形的判定及有关性质一、平行线等分线段定理二、平行线分线段成比例定理三、相像三角形的判定及性质四、直角三角形的射影定理其次讲直线与圆的位置关系一、圆周角定理二、圆内接四边形的性质与判定定理三、圆的切线的性质及判定定理四、弦切角的性质五、与圆有关的比例线段第三讲圆锥曲线性质的探讨一、平行射影二、平面与圆柱面的截线三、平面与圆锥面的截线选修(4—4)第一讲坐标系一、平面直角坐标系二、极坐标系三、简洁曲线的极坐标方程四、柱坐标系与球坐标系简介其次讲参数方程一、曲线的参数方程二、圆锥曲线的参数方程三、直线的参数方程四、渐开线与摆线选修(4—5)第一讲不等式和肯定值不等式一、不等式1.不等式的基本性质2.基本不等式3.三个正数的算术——几何平均不等式二、肯定值不等式1.肯定值不等式2.肯定值不等式的解法其次讲证明不等式的基本方法一、比较法二、综合法与分析法三、反证法与放缩法第三讲柯西不等式与排序不等式一、二维形式的柯西不等式二、一般形式的柯西不等式三、排序不等式第四讲数学归纳法证明不等式一、数学归纳法二、用数学归纳法证明不等式。
高二第二学期文科数学期末试题 (内容:选修1-1、选修1-2、选修4-4)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.用反证法证明:“a b >”,应假设为( )A.a b >B.a b <C.a b =D.a b ≤ 2.根据右边的结构图,总经理的直接下属是( ) A .总工程师和专家办公室 B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部 3. (1-i )2·i = ( )A .2-2iB .2C .2+2iD .-24.设有一个回归方程ˆ2 2.5yx =-,变量x 增加一个单位时,变量ˆy 平均( ) A.增加2.5 个单位 B.增加2个单位 C.减少2.5个单位 D.减少2个单位5.下列说法错误的是( )A .命题“若0232=+-x x ,则1=x ”的逆否命题为:“若1≠x ,则0232≠+-x x ”.B .命题p :“01,2<++∈∃x x R x 使得”,则p ⌝:“R x ∈∀,均有012≥++x x ”.C .若p 且q 为假命题,则p 、q 均为假命题.D .命题“2,330x x x ∀∈-+=R 都不是方程的根”是真命题.6.已知a ∈R ,则“2a >”是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.椭圆221259x y +=上有一点P 到左准线的距离是5,则点P 到右焦点的距离是( )A.4B.5C.6D.78.有一段演绎推理是这样的:直线平行于平面,则平行于平面内所有直线.已知直线b ⊄平面α,直线a ⊂平面α,直线b //平面α,则直线b //直线a ,这个结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 9.设函数f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f '(x )可能为( )10.已知双曲线()222210,0x yCa b a b-=>>:的右焦点为F ,过F交C 于A B 、两点,若4AF FB =,则C 的离心率为( )A .65 B. 75 C. 58 D. 95二、填空题:本大题共5小题,每小题5分,满分20分.本大题分必做题和选做题两部分.(一)必做题:第11、12、13题是必做题,每道试题考生都必须做答. 11.实数,x y 满足(2)(1)3i x i y -++=,则x y +的值是 __________.12.曲线3()2f x x x在0p 处的切线平行于直线41y x ,则0p 点的坐标为_______________________.13.观察下列的图形中小正方形的个数,则第6个图中有 个小正方形,第n 个图中有 个小正方形.AB C D(二)选做题:第14、15题是选做题,考生只能选做一题,两题全答的,只计算第一题的得分.14.若直线3x +4y +m =0与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m的取值范围是 ________. 15.在极坐标系中,曲线3=ρ截直线1)4cos(=+πθρ所得的弦长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16. (本小题满分12分)已知z =(m 2-2m-3)+(m 2-4m +3)i ,当实数m 取何值时,复数z :(1)是纯虚数;(2)对应点在第三象限. 17.(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)18.(本小题满分14分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值(1)求,a b 的值;(2)函数()f x 的单调区间.19.(本小题满分14分)已知p :方程210x mx ++=有两个不等的负实根, q :方程244(2)10x m x +-+=无实根.若p q ∨为真,p q ∧为假,求m 的取值范围.20.(本小题满分14分)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||33PF F F PF PF ⊥== .(1)求椭圆C 的方程;(2)若直线l 过圆x 2+y 2+4x -2y=0的圆心M ,交椭圆C 于,A B 两点,且A 、B 关于点M 对称,求直线l 的方程. 21.(本小题满分14分)已知函数()x f x e x =-(e 为自然对数的底数). (1)求函数()f x 的最小值;(2)若*n ∈N ,证明:1211n nn nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭高二数学期末试题答案及评分标准(文科)一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.C 3.B 4.C 5.C 6.A 7.C 8.A 9.D 10.A二、填空题:本大题共5小题,每小题5分,满分20分.11.2 12.(1,0)和(1,4)-- 13.28(2分),1)(2)2n n ++( (3分)14. (,0)(10,)-∞⋃+∞ 15.24三.解答题:(共6题,满分80分) 16.解:(1)由题意可得:{22230430m m m m --=-+≠----4分 ∴m = -1 -----6分(2)由题意得:{22230430m m m m --<-+<------10分 ∴1<m <3------12分17.解:(1) 列联表补充如下:-------------------5分0∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯------------------------11分 ∴有99.5%的把握认为喜爱打篮球与性别有关.------------------12分18.解:(1)32'2(),()32f x x ax bx c f x x ax b =+++=++---------2分由'2124()0393f a b -=-+=,'(1)320f a b =++=得1,22a b =-=-----6分(2)'2--12分所以函数()f x 的递增区间是(,)3-∞-与(1,)+∞,递减区间是2(,1)3-;-14分19.解: p :关于x 的方程2m 10x x ++=有两个不等的负根;,则⎩⎨⎧<->-042m m ,------3分 解得m >2;---4分 q: 关于x 的方程244(m 2)10x x +-+=无实根,则[]016)2(42<--m ,-----6分 解得1<m <3.---7分若“p ∨q ”为真,“P ∧q ”为假,则p 与q 必定一真一假-----8分所以 ⎩⎨⎧≥≤>312m m m 或或⎩⎨⎧<<≤312m m ,-----12分解得m ≥3或1<m ≤2所以,m 的取值范围是(][)+∞,32,1 -----14分20.解:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a =3.---2分 在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,--4分从而b 2=a 2-c 2=4,----5分所以椭圆C 的方程为4922y x +=1.---6分 (Ⅱ)解法一:设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2).已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y=k (x +2)+1,代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.---10分因为A ,B 关于点M 对称., 所以.29491822221-=++-=+kkk x x ---12分 解得98=k , 所以直线l 的方程为,1)2(98++=x y即8x -9y +25=0. (经检验,所求直线方程符合题意)---14分(Ⅱ) 解法二:已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为 (-2,1).设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+y x ① ,1492222=+y x ②-----9分 由①-②得.04))((9))((21212121=+-++-y y y y x x x x ③----11分因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2,代入③得2121x x y y --=98,即直线l 的斜率为98,所以直线l 的方程为y -1=98(x +2),即8x -9y +25=0.(经检验,所求直线方程符合题意.)---14分 21.(1)解:∵()1x f x e '=-,令()0f x '=,得0x =.----2分∴当0x >时,()0f x '>,当0x <时,()0f x '<.∴函数()x f x e x =-在区间(),0-∞上单调递减,在区间()0,+∞上单调递增.-----4分∴当0x =时,()f x 有最小值1. ---6分(2)证明:由(1)知,对任意实数x 均有1x e x -≥,即1x x e +≤.令kx n=-(*,1,2,,1n k n ∈=-N ),则01k n ke n-<-≤,---8分∴1(1,2,,1)nnkk n k e e k n n --⎛⎫⎛⎫-≤==- ⎪ ⎪⎝⎭⎝⎭. --9分即(1,2,,1)nk n k e k n n --⎛⎫≤=- ⎪⎝⎭. --10分∵1,nn n ⎛⎫= ⎪⎝⎭ ∴(1)(2)211211nnn nn n n n e e e e n n n n -------⎛⎫⎛⎫⎛⎫⎛⎫++++≤+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.11分∵(1)(2)2111111111n n n e eeee e e e e ----------+++++=<=---,---13分 ∴ 1211nnn nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.---14分。
第四章综合测试一、单项选择题1.式子 )A B C .D .2.函数()lg 3f x x x =+-的零点所在区间为( )A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( )A .12a a b-+B .12a a b -+C .12a a b++D .12a a b++4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .b c a<<C .c a b<<D .a c b<<5.函数1()(0,1)x f x a a a a=-¹>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ì-£=í->î,a R Î,若函数()f x 在R 上有两个零点,则a 的取值范围是( )A .(,1)-¥-B .(,1]-¥-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-¥上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+¥D .[2,)+¥8.已知函数()|lg |f x x =。
若0a b <<,且()()f a f b =,则2a b +的取值范围是( )A .)+¥B .)+¥C .(3,)+¥D .[3,)+¥二、多项选择题9.(多选)下列计算正确的是()A .=B .21log 3223-=C =D .233log (4)4log 2-=10.对于函数()f x 定义域内的任意()1212,x x x x ¹,当()lg f x x =时,下述结论中正确的是( )A .(0)1f =B .()()()1212f x x f x f x +=×C .()()()1212f x x f x f x -=+D .()()1212f x f x x x --E .()()121222f x f x x x f ++æöç÷èø<11.下列函数中,能用二分法求函数零点的有( )A .() 3 1f x x =-B .2()21f x x x =-+C .4()log f x x=D .()2x f x e =-12.在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y (单位:千克)与时间x (单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是( )A .在前三小时内,每小时的产量逐步增加B .在前三小时内,每小时的产量逐步减少C .最后一小时内的产量与第三小时内的产量相同D .最后两小时内,该车间没有生产该产品三、填空题13.已知函数6()log (1)f x x =+,则(1)(2)f f +=________,()0f x >的解集为________。
6处取得最大值,则函数y=cos(2x+ϕ)的图C.充要条件D.既不充分也不必要条件6.已知函数y=sin(2x+ϕ)在xA.关于点 ,0⎪对称B.关于点 ,0⎪对称6对称3对称3>1>log a,则a的取值范围是(位3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草A. ,1⎪B. ,⎪⎝34⎭C. ,1⎪D. 0,⎪4,BC边上的高恰为BC边长的一半,则cos A=5B.5C.3D.{}装号A.(-2,1)B.(0,1]C.[1,5)考3.阅读如下框图,运行相应的程序,若输入n的值为10,则输出n的值为()2019届高三文科数学测试卷(一)注意事项:⎛π⎫⎛π⎫⎝6⎭⎝3⎭1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
C.关于直线x=πD.关于直线x=π2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
7.若实数a满足log2a34)号封座稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
⎛2⎫⎛23⎫⎛3⎫⎛2⎫8.在△ABC中,角B为3π⎝3⎭⎝4⎭⎝3⎭密第Ⅰ卷A.255253一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选号场项中,只有一项是符合题目要求的.不考1.复数z的共轭复数为z,且z(3+i)=10(i是虚数单位),则在复平面内,复数z对应的点位于()订A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x-2<x<5},B=x y=x-1,则A B=()D.(1,5)证准只卷A.0B.1C.3名4.已知函数 f (x ) = ⎨⎣ 2 ⎦C . [0,6]D .[0,3]B . ⎢0, ⎥9.某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .136πB .144πC . 36πD . 34π 10.若函数 f (x ) = x ,则函数 y = f (x )- log x 的零点个数是( )1 2A .5 个B .4 个C .3 个D .2 个11.已知抛物线 C : y 2 = 4 x 的焦点为 F ,准线为 l ,点 A ∈ l ,线段 AF 交抛物线 C 于点 B ,若 FA = 3FB ,则 AF = ( )姓⎧ g (x ), x > 0⎩2 x + 1, x ≤ 0是 R 上的奇函数,则 g (3) = ( )A .3B .4C .6D .712.已知 △ABC 是边长为 2 的正三角形,点 P 为平面内一点,且 CP = 3 ,则此A .5B . -5C .7D . -75.“ a = 1 ”是“直线 ax + y - 2 = 0 和直线 ax - y + 7a = 0 互相垂直”的( )PC ⋅ (P A + PB )的取值范围是( )级A .充分不必要条件B .必要不充分条件A . [0,12]⎡ 3 ⎤班(14.若x,y满足约束条件⎨x+y≥0,则z=y+1⎩15.已知tan α-⎪=2,则sin 2α-⎪的值等于__________.{}4040第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.计算:log32-7log73=________.818.12分)2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如图所示的频率分布直方图.问:⎧x-y≤0⎪⎪y≤1x+2的最大值为________.⎛π⎫⎛π⎫⎝4⎭⎝4⎭16.已知双曲线C的中心为坐标原点,点F(2,0)是双曲线C的一个焦点,过点F作渐近线的垂线l,垂足为M,直线l交y轴于点E,若FM=3ME,则双曲线C的方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a}的前n项和是S,且S=2a-1(n∈N*).n n n n(1)求数列{a}的通项公式;n(2)令b=log a,求数列(-1)n b2前2n项的和T.n2n n (1)求这80名群众年龄的中位数;(2)若用分层抽样的方法从年龄在[20,)中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在[30,)的概率.19.(12分)如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC=60︒,E是DP中20.(12分)已知动点M(x,y)满足:(x+1)2+y2+(x-1)2+y2=22.点.(1)证明:PB∥平面ACE;(2)若AP=PB=2,AB=PC=2,求三棱锥C-PAE的体积.(1)求动点M的轨迹E的方程;(2)设过点N(-1,0)的直线l与曲线E交于A,B两点,点A关于x轴的对称点为C(点C与点B不重合),证明:直线BC恒过定点,并求该定点的坐标.21.(12分)已知函数f(x)=ln x,g(x)=a(x-1),(1)当a=2时,求函数h(x)=f(x)-g(x)的单调递减区间;(2)若x>1时,关于x的不等式f(x)<g(x)恒成立,求实数a的取值范围;(3)若数列{a}满足a=1+a,a=3,记{a}的前n项和为S,求证:n n+1n3n nln(1⨯2⨯3⨯4⨯...⨯n)<S.n 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy中,抛物线C的方程为y2=4x.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;⎧x=2+t cosα(2)直线l的参数方程是⎨(t为参数),l与C交于A,B两点,AB=46,⎩y=t sinα求l的倾斜角.23.(10分)【选修4-5:不等式选讲】已知函数f(x)=a-3x-2+x.(1)若a=2,解不等式f(x)≤3;(2)若存在实数a,使得不等式f(x)≥1-a+22+x成立,求实数a的取值范围.2=n(2n-1),18.【答案】(1)55;(2).群众6⨯44+8=2人,记为1,2;随机抽取年龄在[30,40)的群众6⨯4+8=4 ((((((((((x=16.【解析】(1)由⎨高三文科数学(一)答案T=-b2+b2-b2+b2-1234-b22n-1+b2=(b2-b2)+(b2-b2)+(b2-b22n21432n2n-1)一、选择题.1.【答案】A 2.【答案】C 3.【答案】C 4.【答案】A 5.【答案】A 6.【答案】A 7.【答案】C 8.【答案】A 9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】A 二、填空题.13.【答案】-4 314.【答案】2=1+5++(4n-3)=(1+4n-3)⨯n所以T=n(2n-1).15【解析】(1)设80名群众年龄的中位数为x,则0.005⨯10+0.010⨯10+0.020⨯10+0.030⨯(x-50)=0.5,解得x=55,即80名群众年龄的中位数55.(2)由已知得,年龄在[20,30)中的群众有0.005⨯10⨯80=4人,年龄在[30,40)的群众有0.01⨯10⨯80=8人,按分层抽样的方法随机抽取年龄在[20,30)的8 b,c,d.则基本事件有:a,b,c),a,b,d),(a,b,1),(a,b,2),(a,c,d),(a,c,1),a,c,2),(a,d,1),a,d,2),b,c,d),b,c,1),b,c,2),b,d,1),b,d,2),c,d,1),c,d,2),a,1,2),(b,1,2),(c,1,2),(d,1,2)共20个,参加座谈的导游中有3名群众年龄都在[30,40)的基本事件有:(a,b,c),(a,b,d),(a,c,d),(b,c,d)共4个,设事件A为“从这6名群众中15.【答案】2 1016.【答案】x2-y2三、解答题.17.【答案】(1)a=2n-1;(2)T=n(2n-1).n 选派3人外出宣传黔东南,选派的3名群众年龄都在[30,40)”,则p(A)= 19.【答案】(1)见解析;(2)3【解析】(1)如图,连接BD,BD AC=F,连接EF,∵四棱锥P-ABCD的底面为菱形,∴F为BD中点,又∵E是DP中点,⎧S=2a-1n n⎩S n-1=2a n-1-1得a=2an n-1(n∈N*,n≥1),∴在△BDP中,EF是中位线,∴E F∥PB,又∵EF⊂平面ACE,而PB⊄平面ACE,∴P B∥平面ACE.∴{a}是等比数列,令n=1得a=1,所以a=2n-1.n1n(2)b=log a=log2n-1=n-1,n2n2于是数列{b}是首项为0,公差为1的等差数列.n(2)如图,取AB的中点Q,连接PQ,CQ,x - 2 = x,2 或 x < 0 (舍去),所以函数 h (x ) = f (x )- g (x )的单调递减区间为 , +∞ ⎪ . ∴V= V11 V 6 . a x - ⎪ 令 F (x ) = a (x -1)- ln x ,则 F ' (x ) = a - 1x ,令 F ' (x ) = 0 ,得 x =x = ⎝a . 2 +y 2 = 1 ;(2)见解析.a ≤ 1, F ' (x ) > 0 ,∴ F (x ) > F (1) = 0 ,所以 a (x -1) > lnx ,②当 0 < a < 1 时, 1 ⎛ 1 ⎫ > 1 , F (x ) 在 1, ⎪ 上为减函数,在 , +∞ ⎪ 上为增函数, 2 + y 2 = 1 .( ) 由 ⎨ x 2 得 1 + 2k 2 x 2 + 4k 2 x + 2k 2 - 2 = 0 , ⎩ 2 + y 2 = 12 = 2 , 1 + 2k 2 , x x = 1 + 2k 2 , 直线 BC 的方程为 y - y = y + y ( x - x ) ,所以 y = 2 1 x - x y + x y2 1 ,x - x x - x x -x 令 y = 0 ,则 x = x y + x yk (x + x )+ 2k(x+ x )+ 2所以 ln1 + ln 2 + ln 3 + ln 4 + ⋅⋅⋅ + ln n < 1 + 2 + 3 + 4 + ⋅⋅⋅ + n = n (1 + n )1 2 12∵ ABCD 为菱形,且 ∠ABC = 60︒ ,≥?ABC 为正三角形,∴ C Q ⊥ AB ,【解析】(1)由 a = 2 ,得 h (x ) = f (x )- g (x ) = ln x - 2x + 2 , (x > 0).AP = PB = 2 , AB = PC = 2 ,∴ C Q = 3 ,且 △P AB 为等腰直角三角形, 所以 h ' (x ) = 11 -2 x即 ∠APB = 90︒ , PQ ⊥ AB ,且 PQ = 1,∴ PQ 2 + CQ 2 = CP 2 ,∴ PQ ⊥ CQ ,又 AB CQ = Q ,∴ PQ ⊥ 平面 ABCD ,令 h ' (x ) < 0 ,解得 x > 1⎛ 1 ⎫ ⎝ 2 ⎭C - PAEE - ACP2 D - ACP2 P - ACD = 1 1 13 ⋅ ⋅ ⋅ 2 ⋅ 3 ⋅1 =2 3 2(2)由 f (x ) < g (x )得, a (x -1)- ln x > 0 ,当 a ≤ 0 时,因为 x > 1 ,所以 a (x -1)- ln x > 0 显然不成立,因此 a > 0 .⎛ 1 ⎫ a ⎭ 120.【答案】(1) x 2 ①当 a ≥ 1 时, 0 < 1【解析】(1)由已知,动点 M 到点 P ( -1 , 0), Q (1 , 0)的距离之和为 2 2 ,且 PQ < 2 2 ,所以动点 M 的轨迹为椭圆,而 a = 2 , c = 1 ,所以 b = 1, 即有 f (x ) < g (x ).因此 a ≥ 1 时, f (x ) < g (x ) 在 (1,+∞)上恒成立.⎛ 1 ⎫ a ⎝ a ⎭ ⎝ a ⎭所以,动点 M 的轨迹 E 的方程为 x 2∴ F (x )min< F (1) = 0 ,不满足题意.(2)设 A (x , y ), B (x , y ) ,则 C (x , - y ),由已知得直线 l 的斜率存在,设斜率为 k ,112211综上,不等式 f (x ) < g (x )在 (1,+∞)上恒成立时,实数 a 的取值范围是 [1,+∞).则直线 l 的方程为 y = k (x + 1),(3)由 an +1= 1 + a , a = 3 知数列 {a }是 a = 3 , d = 1 的等差数列,n 3 n 3⎧ y = k (x + 1)⎪⎪所以 a = a + (n - 3)d = n ,所以 S = n 3 n又 ln x < x 在 (1,+∞)上恒成立.n (a + a ) n (1 + n )1 n所以 x + x = -1 24k 2 2k 2 - 21 2所以 ln 2 < 2 , ln3 < 3 , ln 4 < 4 , ⋅⋅⋅ , ln n < n .2 1 1 2 222121 2 12kx x + k (x + x )2 x x + (x + x )y+ y211 2 1 2所以直线 BC 与 x 轴交于定点 D (-2,0 ).y + y1 2 2 1 = 1 2 1 2 = = -2 , 将以上各式左右两边分别相加,得ln 2 + ln3 + ln 4 +⋅⋅⋅+ ln n < 2 + 3 + 4 +⋅⋅⋅+ n .因为 ln1 = 0 < 1所以 ln (1⨯ 2 ⨯ 3⨯ 4 ⨯⋅⋅⋅⨯ n ) < S .2=Sn,⎛1⎫⎝2⎭22.【选修4-4:坐标系与参数方程】【答案】(1)ρsin2θ-4cosθ=0;(2)α=π3π21.【答案】(1) ,+∞⎪;(2)[1,+∞);(3)证明见解析.4或α=4.⎪ 1 sin 2 α ∴ ⎨ sin 2 α ⎪ ∴ sin α = 2,∴ α = 或 α = . 【答案】(1) ⎨ x - ≤ x ≤ ⎬ ;(2) a ≥ - . 42 ⎭ 2 或 ⎨ , 2 - 3x + x + 2 ≤3 2 或 ⎨ 解得 - ≤ x ≤ . ∴ a + 6 ≥ 1 - a ,即 a + 6 ≥ 1 - a 或 a + 6 ≤ a - 1 ,解得 a ≥ - . ⎧ x = ρ cos θ 【解析】(1)∵ ⎨ ,代入 y 2 =4 x ,∴ ρ sin 2 θ - 4cos θ = 0 . ⎩ y = ρ sin θ(2)不妨设点 A , B 对应的参数分别是 t , t , 1 2 把直线 l 的参数方程代入抛物线方程得: t 2sin 2α - 4cos α ⋅ t - 8 = 0 ,⎧ 4cos α t + t = 2 ⎪ ⎪ -8 t t = 1 2 ⎪∆ = 16 + 16sin 2 α > 0 ,则 AB = t - t = 1 2 16 + 16sin 2 α sin 2 α = 4 6 , ⎪ ⎩π 3π 2 4 4 23.【选修 4-5:不等式选讲】⎧ 3 7 ⎫ 5 ⎩ 【解析】解:(1) a = 2 时, f (x ) = 3x - 2 - x + 2 ≤ 3 ,⎧ ⎧ 2 ⎪ x ≥ ⎪-2 < x < ⎨ 3 3 ⎪⎩3x - 2 - x - 2 ≤ 3 ⎪⎩2 - 3x - x - 2 ≤ 3⎧ x ≤ -2 ⎩3 74 2(2)存在实数 a ,使得不等式 f (x ) ≥ 1 - a + 2 2 + x 成立,即 3x - a - 3x + 6 ≥ 1 - a ,由绝对值不等式的性质可得 3x - a - 3x + 6 ≤ (3x - a )- 3x - 6 = a + 6 ,即有 f (x )的最大值为 a + 6 ,5 2。
高中数学文科第一至第四章测试题(1)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1、设集合{}{}|1|22A x x B x x =>-=-<<,,则A B = ( ) A、{}|2x x >- B、{}
1x x >-| C、{}|21x x -<<- D、{}|12x x -<<
2、已知命题:p x ∀∈R ,sin 1x ≤,则( ) A、:p x ⌝∃∈R ,sin 1x ≥ B、:p x ⌝∀∈R ,sin 1x ≥ C、:p x ⌝∃∈R ,sin 1x > D、:p x ⌝∀∈R ,sin 1x >
3、
2
121i
(i )
+=- A 、112i -- B 、112i -+ C 、112i + D 、1
12i -
、21i
+=
5、已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且
PA PB PB PC PC PA ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的( )
A 、重心 外心 垂心
B 、重心 外心 内心
C 、外心 重心 垂心
D 、外心 重心 内心
6、曲线2
x
y x =+在点()1,1--处的切线方程为 A 、21y x =+ B 、21y x =- C 、23y x =-- D 、22y x =--
7、函数1
1y x
=
-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 A 、2 B 、 4 C 、 6 D 、8
8、已知函数f(x)=
1
ln(1)x x
+-,则y=f(x)的图像大致为
(C)
9、当102
x <≤时,4log (0,1)x
a x a a <>≠且,则实数a 的取值范围是 A 、(0,22) B 、(2
2
,1) C 、(1,2) D 、(2,2)
10、函数πsin 23y x ⎛⎫=- ⎪⎝
⎭在区间ππ2⎡⎤-⎢⎥⎣⎦
,的简图是( )
11
、若
cos 2πsin 4αα=⎛
⎫- ⎪
⎝
⎭,则cos sin αα+的值为( )
A.
B.12
-
C.
12
12、已知0,ω>函数()sin()4f x x πω=+
在(,)2π
π单调递减。
则ω的取值范围是 A 、15[,]24 B 、13
[,]24
C 、1(0,]2
D 、(0,2]
二、填空题
13、已知向量a ,b 夹角为45°
,且|a |=1,|2a -b |=10,则|b |=
14、、曲线21x
y x e x =⋅++在点(0,1)处的切线方程为 。
15、已知平面向量(1,3)a =- ,(4,2)b =-
,a b λ+ 与a 共线,则λ=
16、在ABC ∆中,D 为BC 边上一点,3BC BD =
,AD =
135ADB ο∠=.
若AC =,
则BD=_____
x
A. B.
C.
D.
三、解答题 17、(本小题满分10分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为
θ,求塔高AB .
18、(本小题满分12分)
已知,,a b c 分别为△ABC 三个内角A ,B ,C 的对边cos sin 0a C C b c +--= (1)求A
(2)若a =2,△ABC 求b,c 19、(本小题满分12分)已知函数()sin()(0,0)f x x R ωϕωϕπ=+>≤≤是上的偶函数,其
图象关于点3(,0)4M π
对称,且在区间0,2π⎡⎤⎢⎥⎣⎦
上是单调函数求ωϕ和的值
20、(本小题满分12分)
己知函数2()x
f x x e
-=⋅
(I )求()f x 的极小值和极大值;
(II )当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.
21、(本小题满分12分)设函数2
()ln()f x x a x =++
(I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2
. 22、(本小题满分12分)
已知函数3223
()39f x x ax a x a =--+. (1)设1a =,求函数()f x 的极值; (2)若14
a >,且当[]1,4x a ∈时,)('
x f ≤12a 恒成立,试确定a 的取值范围.。