第一章行列式第二讲
- 格式:pdf
- 大小:679.63 KB
- 文档页数:12
第二篇线性代数目录第一讲行列式(1-11)第二讲矩阵及其运算(12-31)第三讲向量(32-51)第四讲线性方程组(52-75)第五讲矩阵对角化(76-99)第六讲二次型(100-118)第一讲行列式考纲要求1.了解行列式的定义,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.问题1.1 何谓行列式?行列式在线性代数中有哪些应用?答行列式是方阵的元素按一定规则运算得到的一个数,这个数从不同的角度反映了方阵的性质. 行列式在线性代数中有广泛应用,请看下面的定理.定理1 设A为n阶方阵,则下列命题等价:⑴0A≠(A非奇异);⑵A可逆;⑶存在方阵B,使得A B EB A E;=或者=⑷A可表示为有限个初等方阵的乘积;⑸()r n(A满秩);A=⑹A的特征值全不为零;⑺A的行(列)向量组线性无关;⑻A x=0只有零解;⑼A x b=有惟一解;⑽TA A为正定矩阵.定理2设A为n阶方阵,则下列命题等价:A=(A奇异);⑴0⑵A不可逆;⑶()r nA;<⑷0是A的一个特征值;⑸A的行(列)向量组线性相关;⑹A x=0有非零解;=有无穷多解或者无解.⑺A x b▲上述定理反映了行列式与矩阵的可逆性、矩阵的秩、矩阵的特征值、向量组的线性相关性、线性方程组之间的联系,随着复习的深入,要加深对定理的理解,理顺知识间的关系,打开解题思路.问题1.2 余子式、代数余子式答 划去n 阶行列式中元素ij a 所在的第i 行、第j 列留下的1n -阶行列式称为元素ija 的余子式,记作ij M ,并称(1)i jij ij A M +=-为元素ij a 的代数余子式. 由定义知,余子式ij M 和代数余子式ij A 与第i 行、第j 列的元素的取值无关.例题设4521011130112101--=D ,求41424344A A A A +++;41424344.M M M M +++解 (方法一)根据定义计算(略).(方法二)41424344A A A A +++是将行列式第四行的元素全部改为1,然后按第四行展开的展开式,得414243441012101210111031103110111101110111111101--+++===-=-A A A A , 类似可得414243444142434410121103511101111-+++=-+-+==---M M M M A A A A .问题1.3 行列式的性质 答 行列式的性质有⑴行列互换,行列式不变; ⑵两行互换,行列式反号; ⑶一行的公因子可以提出来;⑷两行成比例,行列式为零;⑸行列式可以按一行拆分为两个行列式之和;⑹一行的倍数加到另一行,行列式不变.▲⑴由性质⑴知,行列式对行成立的性质,对列也成立. ⑵利用行列式的性质,可以简化行列式的计算.问题1.4 行列式按一行(列)展开公式 答 1122i i i i in in a A a A a A =+++A (按第i 行展开)1122j j j j nj nj a A a A a A =+++A (按第j 列展开)▲一行元素与另一行对应元素的代数余子式乘积之和为零,即11220()i j i j in jn a A a A a A i j +++=≠ ;一列元素与另一列对应元素的代数余子式乘积之和为零,即11220()i j i j ni nj a A a A a A i j +++=≠ .问题1.5 如何计算数字、字母型行列式? 答 数字、字母型行列式的计算方法有⑴化三角形法; ⑵展开降阶法; ⑶展开递推法; ⑷数学归纳法; ⑸公式法. ▲常用公式有:公式1 上(下)三角形行列式 112212************n nna a a a a a a a a ==.公式2 关于副对角线的上(下)三角形行列式 11(1)22212******(1)******n n n nna a a a a a a a a -==-.公式3 范德蒙德行列式 12111112111()n i j j i nn n n nx x x x x x x x ≤<≤---=-∏.▲计算行列式时,根据行列式的特点(例如行和相等、爪形、可化为爪形、三对角等),采用适当的变形方法,可以简化运算.常用变形方法⑴把某一行(列)的倍数加到其余各行(列);⑵把其余各行(列)的倍数加到某一行(列); ⑶把上一行(列)的倍数加到下一行(列).例题1.设方阵3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,且0λ-=A E ,求λ的值. 解 【求矩阵的特征值,关键是计算特征多项式λ-A E 】322122101423123k k k λλλλλλλλ-----=---=-------A E212201(1)(1)001k λλλλλ--=--=---=--,故1231,1λλλ==-=.2.求方程0347534453542333322212223212=---------------x x x xx x x x x x x x x x x x 的根.解 【关键是计算左端四阶行列式】212321012221222322101333245353312244357434373x x x x x x x x x x x x x x x x x x x x xx ------------=-------------210022100212155033121221764376x x x x x x x x x x xx ()-----===--+=---------,故0x =或者1x =.3.设63121024221421)(++--=x x xx x xx f ,证明0)(='x f 有小于1的正根.解 【用罗尔定理】f x ()是一个多项式,它在01[,]上可导,且01241224002012136f ()==,112411*********147f ()==,由罗尔定理知,0)(='x f 有小于1的正根.4.计算行列式1111111111111111--+---+---=x x x x D .解 【行和相等,首先将第2、3、4列加到第1列】12341111111111111111111111111111c c c c x xx x x x D x x x x x+++-----+--+-==----+----2131414334211111001111100(1)111110011111c c c c c c x x x x xx x x x x x +-⨯+---+-===⋅-=----.5.计算43211001001111a a a a D =,其中0432≠a a a .解 【爪形行列式,将第2、3、4列的适当倍数加到第1列,化为上三角行列式】112342233441111111111000001000001a a a a a a a D a a a a ---==2341234111a a a a a a a ()=---.6.计算43214321432143214321++++=a a a a a a a a a a a a a a a a D .解 【除对角元外,各行元素相同,只要将第2、3、4行减去第1行,就化为爪形】12341234123412341234112120031030414a a a a a a a a a a a a D a a a a a a a a +++-==+-+-32414!(1)234a a a a =++++.▲除对角元外,各行元素成比例的行列式,都可以化为爪形行列式.7.计算22221111000000c d a b d c b a D =.解 (方法一 多零,按第一行展开)111111111212222222220000000000000a b c d c d c d D a a b b b a d c d c d c ==+ 12121212121212121212()()()()a a c c d d b b c c d d a a b b c c d d =---=--.(方法二)23231111111111222222112222220000000000000000000c c r r a b a b a b cd c d b a D b a b a c d d c d c d c ↔↔==-=12121212()()a a b b c c d d =--.8.计算12564271625169454321111=D .解 【利用行列式的拆分性质和范德蒙德行列式】1111111101112345234503454916254916250916251627641258276412582764125D ==+32425243535484353544()()()()()()()()()=----------=-.9.计算abbb a b b b a D n=.解 (方法一)各行元素之和相等,各列加到第一列,再化为上三角形行列式:1111n a b b b b b a b a b D a n b bba ba[()]==+-1100110n bb a b a n b a n b a b a b[()][()]()--=+-=+---.(方法二)各行减去第一行,化为爪形行列式:n a b b b a b D bba =1010n a b b b a a b a n b a b b aa b[()]()---==+----.10.设()ij a =A 为n 阶矩阵,其中ij a i j =-,求A .解 从第n 行开始,依次用下面一行减去上面一行,再把第n 列加到前面各列,化为上三角行列式:01221012211013211111210431111123401111111231011111A ---------------==--------n n n n n n n n n n n n n n12112310222100221(1)(1)200021001---+---------==-----n n n n n n n n .11.abcdb a dc cd a b d c b a D ------=.解 【T DD 为对角行列式】T0000000000ab c d a b c d k b a d cba d c k D Dc d a b c d a b k dcba dcba k------==------,其中2222k a b c d =+++, 故222224()D a b c d =+++,又D 的展开式中4a 的系数为1,所以22222()D a b c d =+++.12.计算aa a a a a a a a D ---------=111100011000110001.解 【这是一个三对角行列式,可以用下面三种方法计算】(方法一)按第一行展开(这是计算三对角行列式的基本方法)5111243(1)(1)D D a A aA a D aD ==-+=-+一般地,有递推公式12(1)n n n D a D aD --=-+,11D a =-,221D a a =-+,23321(1)1D a D aD a a a =-+=-+-,234432(1)1D a D aD a a a a =-+=-+-+, 2345543(1)1D a D aD a a a a a =-+=-+-+-.(方法二)化为三角形行列式,为此,先将行列式拆分成两个行列式之和:510000001100010001100110001100110001100011aa a aa a a D D a a a a a a a a a a----==+------------1000000010010000100110000100110010011a a a a a a a a a a a a a--=+------2234543211(1)1(1)1aD a aD a a aD a a a a a =-=--=-+-=-+-+-.问题1.6 如何计算抽象行列式?答 计算抽象行列式,除了掌握行列式的性质,还必须熟记关于矩阵行列式的结论:⑴若A 为n 阶矩阵,则nk k=A A .⑵若A 为n 阶矩阵,则T =A A ,1*n -=A A .⑶若A 为n 阶可逆矩阵,则11--=A A.⑷若A ,B 为n 阶矩阵,则AB A B =⋅.⑸若A 为n 阶矩阵,(1,2,,)i i n λ= 是A 的特征值,则12A λλλ= n . ⑹设A ,B 分别为m 阶,n 阶矩阵,则==⋅A C A O A B OB CB,(1)m nC A O A A B BO BC ==-⋅.例题1.设123,,,,αααβγ都是4维列向量,且123,,,a αααβ=,321,,,b βγααα+=,1232,,,γααα= .解 【用拆分性质】123,,,a αααβ=,321321321,,,,,,,,,bβγαααβαααγααα+=+=321321,,,,,,b b a γαααβααα⇒=-=-,故1231232,,,2,,,2()a b γαααγααα==-.2.设123,,2ααα=,则112123,2,23αααααα+++= .解 【用倍加性质】1121231223,2,23,2,23αααααααααα+++=+123123,2,36,,12αααααα===.3.设123,,ααα都是3维列向量,记矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,如果1A =,那么B = .解 【用倍加性质】123123123,24,39B =++++++ααααααααα1232323123233,3,28,3,2ααααααααααααα=++++=+++12323312231232,3,2,,2,,2=+++=+==ααααααααααααα.4.设A 与B 均为n 阶矩阵,2,3==-A B ,则*12A B -= .解 2111*1*122223A BABA B -----===-n n nn.5.设A 为3阶方阵,且2A =,则1*(2)A A --= .解 1*1*1(2)2A A A A ---=-**112A A A=-2*3*333327()()44416A A A=-=-=-=-.6.设210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭,矩阵B 满足**2ABA BA E =+,则B = . 解 3=A ,**3===AA A A A E E ,用A 右乘**2ABA BA E =+,得36A B B A =+,(36)A E B A -=,36A E B A -=,030363002703A E --=-=-,故19B =.7.设,A B 为3阶矩阵,且13,2,2A B A B -==+=,则1A B -+= .解 【用矩阵乘积的行列式】111()()---+=+=+=+B A B B A E B A A A B A A ,取行列式,得11--+=+B A B B A A ,将13,2,2A B A B -==+=代入上式,得13-+=A B .8.设A 为3阶方阵,且,2,2A E A E A E --+均不可逆,则A = .解 【用特征值】,2,2A E A E A E --+均不可逆⇒10,20,2802A E A E A E A E -=-=+=+=,11由特征方程0A E λ-=知,A 的特征值为11,2,2-,故112()12A =⨯⨯-=-.9.设4阶方阵A 与B 相似,A 的特征值为51,41,31,21,则1B E --= . 解 A 与B 相似⇒A 与B 有相同的特征值⇒B 的特征值为51,41,31,21⇒1B E --的特征值为1,2,3,4,故1123424B E --=⨯⨯⨯=. 10.设A 与B 相似,001020300B ⎛⎫⎪= ⎪ ⎪⎝⎭,则A E -= . 解 (方法一)A 与B 相似⇒A 与B 有相同的特征值201020(2)(3)30B E λλλλλλ-⎛⎫⎪-=-=-- ⎪ ⎪-⎝⎭, B的特征值为故A的特征值为2,A E -的特征值为1,1故11)(1)2A E -=⨯⨯=-.(方法二)A 与B 相似,则A E -与B E -相似,故A E -101010231B E -=-==--. 11.设A ,B ,C 都是行列式为2的3阶方阵,求12()3OAB C--.解 【关于副对角线的分块下三角行列式】33131321127(1)()(1)22238()()333⨯---=--=--==O A A B AAB CBB.。
第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。
即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。