纳米材料的概述及化工制备方法
- 格式:doc
- 大小:741.50 KB
- 文档页数:18
纳米材料的制备方法与应用贾警(11081002) 蒙小飞(11091001)1引言自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。
铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。
引起了世界各国科学家的浓厚兴趣。
几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。
纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。
颗粒直径一般为1~100nm之间。
颗粒可以是晶体,亦可以是非晶体。
由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。
2纳米材料的制备方法纳米材料有很多制备方法,在此只简要介绍其中几种。
2.1溶胶-凝胶法溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。
溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。
2.2热合成法热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。
主要集中在陶瓷氧化物材料的制备中。
2.3有机液相合成有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。
通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。
最常用的反应方式就是在有机溶剂中进行回流制备。
2.4惰性气体冷凝法惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。
其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。
纳米材料的制备方法
纳米材料是一种具有纳米尺度特征的材料,其在材料科学领域具有重要的应用
价值。
制备纳米材料的方法多种多样,包括物理方法、化学方法、生物方法等。
下面将介绍几种常见的纳米材料制备方法。
首先,物理方法是一种常见的纳米材料制备方法。
其中,溅射法是一种常用的
物理方法。
通过在真空环境中,利用高能粒子轰击靶材,使靶材表面的原子或分子脱落,从而在基底上形成纳米薄膜。
此外,还有气溶胶法、机械合金化等物理方法也被广泛应用于纳米材料的制备过程中。
其次,化学方法也是一种常见的纳米材料制备方法。
溶胶-凝胶法是一种常用
的化学方法。
通过将溶胶中的溶质在溶剂中溶解,并在一定条件下使其成为凝胶,然后通过热处理或化学处理,形成纳米材料。
此外,还有水热法、溶剂热法等化学方法也被广泛应用于纳米材料的制备过程中。
另外,生物方法也是一种新兴的纳米材料制备方法。
生物合成法是一种常用的
生物方法。
通过利用微生物、植物或动物等生物体内的代谢活性,将金属离子还原成金属纳米颗粒,从而实现纳米材料的制备。
此外,还有基因工程法、生物矿化法等生物方法也被广泛应用于纳米材料的制备过程中。
总的来说,纳米材料的制备方法多种多样,每种方法都有其独特的优势和适用
范围。
在实际应用中,可以根据需要选择合适的制备方法,以获得所需的纳米材料。
随着纳米材料制备技术的不断发展和创新,相信纳米材料将在材料科学领域发挥越来越重要的作用。
化学纳米材料
化学纳米材料是指至少有一个尺寸在纳米尺度范围内的材料,通常是1-100纳米。
这些材料具有独特的物理、化学和生物学特性,因此在许多领域都具有重要的应用前景。
在本文中,我们将探讨化学纳米材料的制备方法、特性和应用。
首先,化学纳米材料可以通过多种方法制备,包括溶剂热法、溶胶-凝胶法、
气相沉积法等。
这些方法可以控制纳米材料的形貌、尺寸和结构,从而调控其性能。
例如,通过溶剂热法可以制备出形貌各异的金纳米颗粒,而溶胶-凝胶法则可制备
出高比表面积的二氧化硅纳米材料。
其次,化学纳米材料具有许多独特的特性。
首先,由于其尺寸在纳米尺度范围内,纳米材料表面积大大增加,使得其具有优异的催化性能和光学特性。
其次,纳米材料的量子效应和表面效应使得其具有优异的电子传输性能和化学反应活性。
此外,纳米材料还具有优异的机械性能和生物相容性,这些特性使得纳米材料在催化、传感、生物医学等领域具有广泛的应用前景。
最后,化学纳米材料在许多领域都具有重要的应用价值。
在催化领域,纳米材
料可以作为催化剂用于催化反应,提高反应速率和选择性。
在传感领域,纳米材料可以制备成传感器,用于检测环境中的有害物质。
在生物医学领域,纳米材料可以用于药物传输、肿瘤治疗和影像诊断。
此外,纳米材料还可以用于制备纳米电子器件、纳米光子器件等,推动纳米科技的发展。
综上所述,化学纳米材料具有独特的制备方法、特性和应用前景。
随着纳米科
技的不断发展,相信化学纳米材料将在更多领域展现出其重要的作用,为人类社会的发展做出更大的贡献。
纳米材料在化工领域中的应用一、引言纳米科技是21世纪最具前景的领域之一,其应用范围涵盖医疗、电子、材料等多个领域。
其中,在化工领域中,纳米材料也得到了广泛的应用。
本文将从纳米材料的定义、制备方法以及在化工领域中的应用等方面进行详细阐述。
二、纳米材料的定义纳米材料是指粒径在1-100nm之间的物质,其特殊的物理和化学性质使其在许多领域中都具有重要的应用价值。
与传统材料相比,纳米材料具有更大的比表面积和更高的活性。
三、纳米材料的制备方法1. 气相法:通过气相反应制备纳米粉末或薄膜,常见的气相法有物理气相沉积(PVD)和化学气相沉积(CVD)等。
2. 溶液法:通过溶液反应制备纳米粒子或薄膜,常见的溶液法有溶胶-凝胶法、微乳液法和水热合成法等。
3. 机械法:通过机械力作用制备纳米粉末或薄膜,常见的机械法有球磨法、高能球磨法和喷雾干燥法等。
四、纳米材料在化工领域中的应用1. 催化剂:纳米材料具有更高的比表面积和更高的活性,因此在催化剂领域中得到了广泛的应用。
例如,纳米铜、纳米镍等金属材料可以作为氢化反应催化剂;纳米氧化铝、纳米二氧化钛等无机材料可以作为光催化剂。
2. 涂料:由于纳米材料具有较高的比表面积和更好的分散性,因此可以增强涂料的耐候性、耐腐蚀性和抗污染性。
例如,将纳米二氧化硅添加到涂料中可以增强其耐候性;将纳米银添加到涂料中可以增强其抗菌性能。
3. 聚合物复合材料:将纳米材料与聚合物相结合可以改善聚合物的力学性能和导电性能。
例如,将碳纤维与碳纳米管复合可以制备出高强度、高导电性的材料。
4. 燃料电池:纳米材料可以作为燃料电池的催化剂和电极材料。
例如,将纳米铂作为燃料电池催化剂可以提高其效率和稳定性;将纳米碳管作为电极材料可以提高其导电性能。
5. 纳米吸附剂:由于纳米材料具有较高的比表面积和更好的吸附性能,因此可以制备出高效的吸附剂。
例如,将纳米氧化铁作为吸附剂可以去除水中的重金属离子;将纳米硅胶作为吸附剂可以去除空气中的有害气体。
目录摘要 (1)引言 (2)1 纳米材料的概述 (3)1.1纳米材料的定义 (3)1.2纳米材料的制备方法 (4)1.2.1机械法 (4)1.2.2化学制备方法 (5)2 微乳反应器原理 (6)2.1微乳液 (6)2.2微乳反应器原理 (7)2.2.1分别增溶有反应物A、B的微乳液混合 (8)2.2.2反应物A的微乳液与反应物B水溶液混合 (9)2.2.3反应物A的微乳液与反应物B气体 (9)2.3微乳反应器的形成及结构 (10)2.3.1微乳液的形成机理 (10)2.3.2微乳液的结构 (11)3 微乳反应器的应用——纳米颗粒材料的制备 (12)3.1纳米催化材料的制备 (12)3.2聚合物纳粒的制备 (12)3.3金属单质和合金的制备 (13)3.4无机化合物纳粒的制备 (13)3.5磁性氧化物颗粒的制备 (13)结论 (14)致谢 (16)参考文献 (17)摘要本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。
并简单的对什么是纳米材料,纳米材料的一系列制备方法做了介绍,从而了解到微乳化法相对于其它制备方法的优缺点。
关键词:纳米粒子;微乳液;微乳反应器;纳米材料制备引言纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。
早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。
1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。
纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。
当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。
1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~10nm)。
从此以后,不断有文献报道用微乳液合成各种纳米粒子。
美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。
由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。
作为高级纳米结构材料和纳米器件的基本构成单元(Bui1ding Blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。
纳米材料的概述及化工制备方法1 纳米材料的概述及制备方法1.1纳米材料的定义纳米级结构材料简称为纳米材料(nano material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。
纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。
这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。
就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。
一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。
因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。
纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。
金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。
纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。
纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。
我国已努力赶上先进国家水平,研究队伍也在日渐壮大。
1.2纳米材料的制备方法1.2.1机械法机械法有机械球磨法、机械粉碎法以及超重力技术。
机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。
范景莲等采用球磨法制备了钨基合金的纳米粉末。
xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。
机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。
超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。
刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。
(1)气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。
蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。
Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。
杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50 nm范围内可控。
魏胜用蒸发冷凝法制备了纳米铝粉。
溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。
深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。
有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。
(2)溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。
在该法中靶材料无相变,化合物的成分不易发生变化。
目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。
等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。
等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。
以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。
1.2.2化学制备方法(1)溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。
Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm 之间。
Marcus Jones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,QY)为13.8%。
(2)离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。
即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。
因此,离子液是合成不同形貌纳米结构的一种良好介质。
Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。
他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。
他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。
赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。
(3)溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。
Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。
Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的Bi2S3纳米带。
(4)微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。
1943年Hoar 等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。
自那以后,微乳理论的应用研究得到了迅速发展。
微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外广泛关注。
2 微乳反应器原理2.1微乳液微乳液是在较大量的一种或多种两亲性有机物(表面活性剂和助表面活性剂)存在下,不相混溶的两种液体自发形成的各向同性的胶体分散体系。
具有热力学稳定、各向同性、外观透明或半透明和质点粒径小[(10~100)nm]等特点,可将类型广泛的物质增溶到其中某一相,因此,可作为各种反应的介质。
其结构类型可分为水包油型、油包水型和双连续型。
近年来还开发了含有离子液体或超临界物质的新型微乳体系。
制备纳米催化剂所用的微乳体系一般采用油包水型。
微乳质点的纳米级尺寸为制备设计大小及形状可控的纳米粒子提供了基本条件。
微乳液中的微团体系为动态,质点像分子一样不停地作布朗运动,不同质点碰撞后连接成一体,进行物质交换后在表面活性剂的作用下又自发重新分散,此时,微团内包含的反应物相互混合发生化学反应。