2015.1上海市普陀区初三数学一模试卷无答案PDF版
- 格式:pdf
- 大小:378.70 KB
- 文档页数:5
2015 年上海市初中毕业一致学业考试数学试卷一、选择题: (每题 4 分,共 24 分 )1、以下实数中, 是有理数的为 ,,,,,,,,,,,,,,,,,,,,,,,, A 、2 ;B 、 3 4 ;C 、 π;D 、 0.【答案】 D【解析】整数或有限小数是有理数,无量不循环小数为无理数,应选 D 。
2、当 a >0 时,以下对于幂的运算正确的选项是 ,,,,,,,,,,,,,,,,,,1()()A 、 a 0= 1;B 、 a -1=- a ;C 、 (- a)2=- a 2;D 、 a2【答案】 A.【解析】除了 0 之外,任何数的 0 次都等于 1,由于 a > 0,所以, a 0= 13、以下 y 对于 x 的函数中,是正比率函数的为 ,,,,,,,,,,,,,,,,(A 、 y =x 2;B 、 y = 2;C 、 y = x;D 、y =x 1.x22【答案】 C【解析】 yx 1x ,是正比率函数,选C 。
221a 2.)4、假如一个正多边形的中心角为 72°,那么这个正多边形的边数是,,,,,,,,A 、4;B 、 5;C 、 6;D 、7.【答案】 B.【解析】边数为 n360= 5。
725、以下各统计量中,表示一组数据颠簸程度的量是 ,,,,,,,,,,,,,,(A 、均匀数;B 、众数;C 、方差;D 、频次.【答案】 C( ))【解析】方差反响数据颠簸程度,方差大,颠簸大,方差小,颠簸小,坚固。
6、如图,已知在⊙ O 中, AB 是弦,半径 OC ⊥AB ,垂足为点 D ,要使四边形 OACB 为 菱 形 , 还 需 要 添 加 一 个 条 件 , 这 个 条 件 可 以是,,,,,,,,,,,,,,,,,, ()A 、 AD = BD ;B 、 OD = CD ;AC 、∠ CAD =∠ CBD ; D 、∠ OCA =∠ OCB .【答案】 BODBC【解析】因 OC ⊥ AB ,由垂径定理,知 AD = BD ,若 OD = CD ,则对角线相互垂直且均分,所以, OACB为菱形。
2015年上海市六区联考初三一模数学试卷(满分150分,时间100分钟) 2015.1一. 选择题(本大题满分4×6=24分)1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值( ) A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为( ) A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是( )A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于( ) A. 2; B. 4; C.245; D. 365;5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于( ) A. 2sin m α⋅; B. 2cos m α⋅; C. 2tan m α⋅; D. 2cot m α⋅;6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;二. 填空题(本大题满分4×12=48分) 7. 已知34x y =,那么22x yx y-=+ ;8. 计算:33()22a ab -+-= ; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于 cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为 ; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC = ; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于 ;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值范围是 ; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于 ;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC = 米(结论可保留根号)16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是 ;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时(如图1),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH = 米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为 ;三. 解答题(本大题满分10+10+10+10+12+12+14=78分)19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;(1)求抛物线的表达式; (2)求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; (1)求AD (用向量,a b 的式子表示)(2)如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D 的仰角为45°,求旗杆CD 的长度;(结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)22. 用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题: (1)用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即填空:32= = = =…; (2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; (1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;(3)在第(2)小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域; (2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年上海市六区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二. 填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 9 15.26 16. (3,3)- 17.3518. (3,0)- 三. 解答题19.(1)256y x x =-+; (2)(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=;20.(1)12b a -; (2)略; 21. 3.84CD m ≈22.(1)sin 60︒,cos30︒,tan 45sin60︒⋅︒; (2)(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.(1)24y x x =-; (2)(2,4)M m -; (3)92m =; 25.(1)4y x x =-(25x <≤); (2)3tan 4EBP ∠=; (3)5373+;崇明县2014学年第一学期教学质量调研测试卷九年级数学(测试时间: 100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)1、已知52a b =,那么下列等式中,不一定正确的是………………………………( ) (A)25a b = (B)52a b = (C)7a b += (D)72a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………( )(A)tan b a B = (B)cos a c B = (C)sin ac A= (D)cos a b A =3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………( ) (A)0a >(B)0b >(C)0c <(D)240b ac ->4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………( ) (A)2(1)1y x =++ (B)2(1)1y x =+-(C)2(1)1y x =-+(D)2(1)1y x =--5、下列说法正确的是……………………………………………………( )(A) 相切两圆的连心线经过切点 (B) 长度相等的两条弧是等弧(C) 平分弦的直径垂直于弦(D) 相等的圆心角所对的弦相等6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三等分,那么下列结论正确的是 ………………………………………( ) (A)14DE FG = (B)1DF EGFB GC==(C)ADFB(D)AD DB =(第3题图) (第6题图)二、填空题(本大题共12题,每题4分,满分48分)7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm . 8、如果两个相似三角形的面积比为1:4,那么它们的周长比为 . 9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m = .ABCDE F G10、抛物线221y x =-在y 轴右侧的部分是 (填“上升”或“下降”).11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为 .12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是 . 13、某飞机的飞行高度为1500m ,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为 m .14、已知正六边形的半径为2cm ,那么这个正六边形的边心距为 cm .15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH = .16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm ,那么公共弦AB 的长为 cm .17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为 米.18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C落在Q 处,EQ 与BC 交于点G ,那么EBG ∆的周长是 cm .(第15题图) (第17题图) (第18题图)三、解答题(本大题共7题,满分78分)19、(本题满分10分)计算:2014cos301(cot 45)sin 60︒-+-︒+︒20、(本题满分10分,其中第(1)小题5分,第(2)小题5分)已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =. (1)用,a b 的线性组合表示FA ;(2)先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.CFEDABC ABCDFGH QE21、(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.(1)求AC 和AB 的长; (2)求sin BAD ∠的值.22、(本题满分10分,其中第(1)小题5分,第(2)小题5分)如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. (1)求证:AC AB ⊥;(2)轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.23、(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠. (1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值. DDABCEF北AB C东24、(本题满分12分,其中每小题各4分)如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且90ABC ∠=︒. (1)求抛物线的解析式;(2)求点C 坐标;(3)直线112y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由.25、(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点(不与A 、B 重合),以O 为圆心OB 为半径的圆交BC 于点D ,设OB x =,DC y =. (1)如图1,求y 关于x 的函数关系式及定义域;(2)当⊙O 与线段AC 有且只有一个交点时,求x 的取值范围;(3)如图2,若⊙O 与边AC 交于点E (有两个交点时取靠近C 的交点),联结DE ,当DEC ∆与ABC ∆相似时,求x 的值.CADOB · · · (图1)BCA (备用图1)E CA D OB· ·· ·(图2) BCA(备用图2)2014学年徐汇区数学一模一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( ) A. 22(1)2y x =--+; B. 22(1)2y x =---; C. 22(1)2y x =-++; D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A.2BE EC =; B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅; D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( ) A. 第一象限; B. 第二象限; C. 第三象限; D. 第四象限; 6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;二. 填空题 7. 如果53a b =,那么a b a b -+的值等于 ;8. 抛物线2(1)2y x =-+的顶点坐标是 ;9. 二次函数245y x x =--的图像的对称轴是直线 ; 10. 计算:cot30sin60︒-︒= ;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为 米(保留根号);15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示); 16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN = ;三. 解答题19. 已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:A B C Dx1-0 13 y1-353(1(2)求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =; (1)设BA a =,BC b =,试用a ,b 表示BO ; (2)先化简,再求作:3(2)2()2a b a b +-+(直接作在原图中)21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ;(1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ; (1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B (A 在B 的左边),与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; (1)求抛物线1C 的对称轴和函数解析式;(2)把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;(3)在(2)的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标;25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =; (1)试用x 的代数式表示FC ; (2)设FGy EF=,求y 关于x 的函数关系式,并写出定义域; (3)当△AEG 是等腰三角形时,直接写出BE 的长;参考答案1、A2、C3、C4、D5、C6、B7、148、(1,2)9、x=210、3211、1512、12y y13、614、6515、16、1217、17 18、19、20、21、22、23、24、25、所以,BE=72014学年上海市宝山区初三一模数学试卷一. 选择题(24分)1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,AC =,下列判断正确的是( )A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D. tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误的是( ) A.AD AE DB EC =; B. AD DE DB BC =; C. AD AE AB AC =; D. AD DEAB BC=;3. 如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等; 4. 已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ; 5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交; 6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D.二. 填空题(48分)7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ; 8. 两个相似三角形的相似比为2:3,则它们的面积比为 ;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ; 10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为 ;11. 在△ABC 中,cot 3A =,cos 2B =,那么C ∠= ; 12. B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;13. 抛物线2(3)4y x =--+的对称轴是 ;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y2y ;16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE = ;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =AB 的长为 ;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;三. 解答题(78分) 19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒;20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC 相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;(直接写出结果)21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以及该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证:PA PB =;24. 如图,正方形ABCD 中,(1)E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GFFH; (2)E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GFFH的值;25. (1)数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦 确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同 组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系XOY 中,上述(1)中的抛物线与x 轴交于A 、B 两点(A 在B 的左 边),请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,AC =D 为边AB 上一动点(D 和A 、B 不重合),过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,(1)请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值; (2)设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数及其定义域; (3)点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;2014学年第一学期长宁区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)一. 选择题(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的面积比是1:6,那么它们的相似比是( ) A .1:36 B.1:6 C . 1:3 D . 1:62. 在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .35 B . 45 C . 34 D . 433. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC (点D 和点A 对应,点B 和E 对应),则点M 对应是F 、G 、H 、K 四点中的( )A . FB . GC . KD . H第3题图 4. 已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( ) A . 1或7 B . 1 C . 7 D . 2 5. 抛物线22212,2,2y x y x y x ==-=共有的性质是( ) A . 开口向下; B . 对称轴是y 轴C . 都有最低点D . y 的值随x 的增大而减小 6. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的过程中速度不变,则以点B 为圆心,线段B P 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为图中的( )A .B .C .D .二. 填空题(本大题共12题,每题4分,满分48分)7. 已知线段a =2c m ,c =8c m ,则线段a 、c 的比例中项是_________c m. 8. 计算:3()3a b a --=_________.9. 已知⊙P 在直角坐标平面内,它的半径是5,圆心P (-3,4),则坐标原点O 与⊙P 的位置位置关系是_________.10. 如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个. 11. 抛物线23(1)2y x =--+的顶点坐标是________.12.抛物线223y x =-向左移动3个单位后所得抛物线解析式是________.13. 已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________. 14. 已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值随x 的增大而减小,则实数a 的值为_________.15. 某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新品研发资金y (元)关于x 的函数关系式为 y =_________.16. 如图所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平宽度BE =33m ,则斜坡AB =_________m.17. 如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE ,则S △ABC :S △GED 的值为_________.18. 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分的面积是原正方形面积的14时,1sin '2B AD ∠ _________.GED CBAD 'C 'B 'D CBA第16题图 第17题图 第18题图三. (本大题共7题,满分78分)19.(本题满分10分)计算:201(sin30)(2015tan45).sin60cos60o oo o--+--20. (本题满分10分)如图,已知O为△ABC内的一点,点D、E分别在边AB、AC上,且11,.34AD AEDB AC==设,,OB m OC n==试用m、n表示DE.OEDCBA21. (本题满分10分)如图,AB是⊙O的弦,点C、D在弦AB上,且AD=BC,联结OC、OD.求证:△OCD是等腰三角形.22. (本题满分10分)如图,在△ABC中,AD是BC上的高,点G在AD上,过点G作BC的平行线分别与AB、AC交于P、Q两点,过点P作PE⊥BC于点E,过点Q作QF⊥BC于点F. 设AD=80,BC=120,当四边形PEFQ为正方形时,试求正方形的边长.QPFGE D23. (本题满分12分)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶. 已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)CBA24. (本题满分12分)如图,已知平面直角坐标平面上的△ABC ,AC =CB ,∠ACB =90°,且A (-1,0),B (m ,n ) C (3,0),若抛物线23y ax bx =+-经过A 、C 两点. (1) 求a 、b 的值(2) 将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式.(3) 设(2)中的新抛物线的顶点为P 点,Q 为新抛物线上P 点至B 点之间一点,以点Q 为圆心画圆,当⊙Q 与x 轴和直线BC 都相切时,联结PQ 、BQ ,求四边形ABQP 的面积.25. (本题满分14分)如图,已知△ABC 是等边三角形,AB =4,D 是AC 边上一动点(不与A 、C 重合),EF 垂 直平分BD ,分别交AB 、BC 于点E 、F ,设CD =x ,AE =y . (1) 求证:△AED ∽△CDF ;(2) 求y 关于x 的函数关系式,并写出定义域;(3) 过点D 作DH ⊥AB ,垂足为点H ,当EH =1时,求线段CD 的长.备用图ABCFEDCBA2014学年嘉定区九年级第一次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每小题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.对于抛物线2)2(-=x y ,下列说法正确的是(▲)(A )顶点坐标是)0,2(; (B )顶点坐标是)2,0(; (C )顶点坐标是)0,2(-; (D )顶点坐标是)2,0(-. 2.已知二次函数bx ax y +=2的图像如图1所示, 那么a 、b 的符号为(▲)(A )0>a ,0>b ; (B )0<a ,0>b ; (C )0>a ,0<b ; (D )0<a ,0<b . 3.在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边, 下列等式中正确的是(▲) (A )c a A =cos ; (B )b c B =sin ; (C )b a B =tan ; (D )abA =cot . 4.如图2,已知AB ∥CD ,AD 与BC 相交于点O ,2:1:=DO AO ,那么下列式子正确的是(▲)(A )2:1:=BC BO ; (B )1:2:=AB CD ; (C )2:1:=BC CO ; (D )1:3:=DO AD .5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b的是(▲)(A )a=b 2-; (B )=,3=; (C )=+2,-=-; (D=.6.在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,图1ABCDO图2半径为cm 3的圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B , 则圆A 与圆B 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切. 二、填空题:(本大题共12题,每小题4分,满分48分) 7.如果函数2)1(x a y -=是二次函数,那么a 的取值范围是 ▲ .8.在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的表达式为 ▲ .9.已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ▲ .10.请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是 ▲ .11.已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ▲ . 12.如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ▲ .13.如图3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=, 那么DF 的长为 ▲ .14.在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC ▲ .15.小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的仰角是 ▲ 度. 16.正九边形的中心角等于 ▲ 度.17.如图4,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,那么=MN ▲ . 18.在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图5),△ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD ▲.三、解答题:(本大题共7题,满分78分)N MOCBA图4DFABCD图519.(本题满分10分)计算: ︒-+︒⋅︒+︒-45cos 21260tan 30cot 2130sin 1.20.(本题满分10分)已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.21.(本题满分10分,每小题各5分)如图6,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M .(1)求OM 的长; (2)求弦CD 的长.22.(本题满分10分,每小题各5分)如图7,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB 的长为56米,车库的高度为AH (BC AH ⊥),为了让行车更安全,现将斜坡的坡角改造为︒14(图中的︒=∠14ACB ).(1)求车库的高度AH ;(2)求点B 与点C 之间的距离(结果精确到1米).(参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒)23.(本题满分12分,每小题各6分)B图6ABCH图7已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠. (1)求证:ACAGAB AD =; (2)当BC GC ⊥时,求证:︒=∠90BAC .24.(本题满分12分,每小题各4分)如图9,在平面直角坐标系xoy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB , 抛物线c bx x y ++-=241经过A 、B 两点. (1)求b 、c 的值;(2)过点B 作OB CB ⊥,交这个抛物线于点C ,以点为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r 为半径长的圆记作圆A .若圆C 与圆A外切,求r 的值; (3)若点D 在这个抛物线上,△AOB 的面积 是△OBD 面积的8倍,求点D 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 图8已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC .(1)如图10,如果DC ∥AB ,求AP 的长;(2)如图11,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;(3)如图12,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与 △CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由.图10图11。
2015年上海初中毕业统一学业考试数学试卷(含答案)一、选择题:(每题4分,共24分)1、下列实数中,是有理数的为………………………………………………………………( ) A 、2; B 、34; C 、π; D 、0.2、当a >0时,下列关于幂的运算正确的是………………………………………………( ) A 、a 0=1; B 、a -1=-a ; C 、(-a )2=-a 2; D 、2211a a=. 3、下列y 关于x 的函数中,是正比例函数的为…………………………………………( ) A 、y =x 2; B 、y =x 2; C 、y =2x; D 、y =21+x .4、如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………( ) A 、4; B 、5; C 、6; D 、7.5、下列各统计量中,表示一组数据波动程度的量是……………………………………( ) A 、平均数; B 、众数; C 、方差; D 、频率.6、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是………………………………………………( ) A 、AD =BD ; B 、OD =CD ; C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB .二、填空题:(每题4分,共48分) 7、计算:=+-22_______.8、方程223=-x 的解是_______________. 9、如果分式32+x x有意义,那么x 的取值范围是____________. 10、如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________. 11、同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =59x +32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.12、如果将抛物线y =x 2+2x -1向上平移,使它经过点A (0,3),那么所得新抛物线的表达 式是_______________.D CBAO13、某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.14、已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:那么“科技创新社团”成员年龄的中位数是_______岁. 15、如图,已知在△ABC 中,D 、E 分别是边AB 、边AC 的中点,=,=,那么向量用向量、表示为______________.16、已知E 是正方形ABCD 的对角线AC 上一点,AE =AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠F AD =________度.17、在矩形ABCD 中,AB =5,BC =12,点A 在⊙B 上.如果⊙D 与⊙B 相交,且点B 在⊙D 内,那么⊙D 的半径长可以等于___________.(只需写出一个符合要求的数)18、已知在△ABC 中,AB =AC =8,∠BAC =30°.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于___________.三、解答题19、(本题满分10分)先化简,再求值:2124422+--+÷++x x x x x x x ,其中12-=x .20、(本题满分10分)EDCBA解不等式组:⎪⎩⎪⎨⎧+≤-->9131624x x x x ,并把解集在数轴上表示出来.21、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知:如图,在平面直角坐标系xOy 中,正比例函数y =34x 的图像经过点A ,点A 的纵坐标为4,反比例函数y =xm的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC =AB . 求:(1)这个反比例函数的解析式; (2)直线AB 的表达式.22、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)yxAO如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:3≈1.7)23、(本题满分12分,每小题满分各6分)已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE .(1)求证:DE ⊥BE ; (2)如果OE ⊥CD ,求证:BD ·CE =CD ·DE .OEDBA24、(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图),抛物线y =ax 2-4与x 轴的负半轴相交于点A ,与y 轴相交于点B ,AB =25.点P 在抛物线上,线段AP 与y 轴的正半轴交于点C ,线段BP 与x 轴相交于点D .设点P 的横坐标为m . (1)求这条抛物线的解析式;(2)用含m 的代数式表示线段CO 的长; (3)当tan ∠ODC =23时,求∠P AD 的正弦值.25、(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分) 已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ =OP ,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),AB =20,cos ∠AOC =54.设OP =x ,△CPF 的面积为y . (1)求证:AP =OQ ;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当△OPE 是直角三角形时,求线段OP 的长.OPQ F EDC备用图DC。
2015年上海市中考数学试卷及答案(Word版)
2015年上海市初中毕业统一学业考试数学试卷
;B、;C、π;D、0.----.;C、y=;D、y=...A、AD=BD;B、OD=CD;
C、∠CAD=∠CBD;
D、∠OCA=∠OCB._______.的解是_______________.有意义,那么x的取值范围是____________.-.x+32..-A(0,3),那么所得新抛物线的表达式是_______________..那么“科技创新社团”成员年龄的中位数是_______岁.,,那么向量用向量、表示为______________.......,其中.,并把解集在数轴上表示出来.已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图像经过点A,点A的纵坐标为4,反比例函数y=的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB.....(2)降低噪音的一种方法是在高架道路旁安装隔音板.≈1.7)
23、(本题满分12分,每小题满分各6分)
已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.
(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.
已知在平面直角坐标系xOy中(如图),抛物线y=ax2-...时,求∠PAD的正弦值....。
2015年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 下列实数中,是有理数的为( )A .B ;C .π;D .0.2. 当0a >时,下列关于幂的运算正确的是( )A .01a =;B .1a a -=-;C .()22a a -=-; D .. 3. 下列y 关于x 的函数中,是正比例函数的为( )A .2y x =;B .2y x =;C .2x y =;D ..4. 如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A .4;B .5;C .6;D .7.5. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数;B .众数;C .方差;D .频率.6. 如图,已知在⊙O 中,AB 是弦,半径OC AB ⊥,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A .AD BD =;B .OD CD =;C .CAD CBD ∠=∠; D .OCA OCB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 计算:22-+= .8. 方程322x -=的解是 .9. 如果分式23x x +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程240x x m +-=没有实数根,那么m 的取值范围是 .11.同一温度的华氏度数()y F 及摄氏度数()x C 之间的函数关系是.如果某一温度的摄氏度数是25C,那么它的华氏度数是F.12.如果将抛物线221=+-向上平移,使它经过点A(0,3),那么所得新抛物y x x线的表达式是.13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加此次活动的概率是.14.已知某校学生“科技创新社团”成员的年龄及人数情况如下表所示:1112131415年龄(岁)人数55161512那么“科技创新社团”成员年龄的中位数是岁.15.如图,已知在△ABC中,D、E分别是边AB、边AC的中点,AB m=,=,AC n 那么向量DE用向量m、n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE AD=,过点E作AC的垂线,交边CD于点F,那么FAD∠=度.17.在矩形ABCD 中,5AB =,12BC =,点A 在⊙B 上.如果⊙D 及⊙B 相交,且点B在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符号要求的数)18.已知在△ABC 中,8AB AC ==,30BAC ∠=.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于.三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =.20.(本题满分10分)解不等式组:,并把解集在数轴上表示出来.图 321.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知,如图,在平面直角坐标系xOy 中,正比例函数的图像经过点A ,点A 的纵坐标为4,反比例函数的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC AB .求:(1)这个反比例函数的解析式;(2)直线AB 的表达式.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线及MN相交于点D,且30∠=,BDN假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车及点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它及这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到13 1.7)图4图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE OB =,联结DE .(1)求证:DE BE ⊥;(2)如果OE CD ⊥,求证:BD CE CD DE ⋅=⋅.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-及x 轴的负半轴相交于点A ,及y 轴相交于点B ,25AB =P 在抛物线上,线段AP 及y 轴的正半轴相交于点C ,线段BP 及x 轴相交于点D .设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长度;(3)当时,求PAD的正弦值.图7 备用图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线及射线OQ 相交于点E ,及弦CD 相交于点F (点F 及点C 、D 不重合),20AB =,.设OP x =,△CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP 的长.2015年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、D ;2、A ;3、C ;4、B ;5、C ;6、B二、 填空题7、4; 8、2; 9、3x ≠- ; 10、4m <- ; 11、77; 12、223y x x =++ ; 13、750; 14、14; 15、 ; 16、22.5; 17、14等(大于13且小于18 的数);18、4.三、 解答题19.解:原式2221=(2)2x x x x x x +-⋅-++当1x =时,原式1=20.解:由426x x >-,得3x >-由 ,得2x ≤∴ 原不等式组的解集是32x -<≤.x21.解:(1)∵正比例函数的图像经过点A ,点A 的纵坐标为4,∴ ∴3x = ∴点A 的坐标是(3,4)∵反比例函数的图像经过点A ,∴ ,12m =∴反比例函数的解析式为(2)∵AC AB =,∴点A 在线段BC 的中垂线上.∵BC x ∥轴,点C 在y 轴上,点A 的坐标是(3,4),∴点B 的横坐标为6.∵点B 在反比例函数的图像上,∴点B 的坐标是(6,2).设直线AB 的表达式为y kx b =+ ,将点A 、B 代入表达式得:解得∴直线AB 的表达式为.22.解:(1)联结AP .由题意得 ,15(),39()AH MN AH m AP m ⊥==.在Rt APH ∆中,得36()PH m =.答:此时汽车及点H 的距离为36米. (2)由题意可知,PQ 段高架道路旁需要安装隔音板,QC AB ⊥,30,39()QDC QC m ∠=︒=.在Rt DCQ ∆中,278()DQ QC m ==.在Rt ADH ∆中,cot 30)DH AH m =⋅︒=,∴11415 1.788.589()PQ PH DH DQ m =-+≈-⨯=≈.答:高架道路旁安装的隔音板至少需要89米长.23.证明:(1)∵,OE OB OBE OEB =∠=∠.∵平行四边形ABCD 的对角线相交于点O ,∴OB OD =.∴OE OD =. ∴ODE OED ∠=∠.在BDE ∆中,∵180,OBE OEB OED ODE ∠+∠+∠+∠=︒∴090,OEB ED BED ∠+∠=∠=︒ 即DE BE ⊥.(2)∵OE CD ⊥,∵90CDE DEO ∠+∠=︒.又∵90,.CEO DEO CDE CEO ∠+∠=︒∴∠=∠,.OBE OEB OBE CDE ∠=∠∴∠=∠在DBE ∆和CDE ∆中:∴.DBE CDE ∆∆∽ ∴ ∴ BD CE CD DE ⋅=⋅24.(1)由抛物线24=-及y轴相交于点B,得点B的坐标为(0,-4)y ax∵点A在x轴的负半轴上,AB=∴点A的坐标为(-2,0)∵抛物线24=-及x轴相交于点A,∴1y axa=∴这条抛物线的表达式为24=-y x(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为2(,4)m m-由题意,得点P在第一象限内,因此2>->0,40m m过点P作PH⊥x轴,垂足为H∵CO∥PH,∴∴,解得24CO m=-(3)过点P作PG⊥y轴,垂足为点G∵OD∥PG,∴∴,即在Rt△ODC中,∵∴,解得3m=-(舍去)。
AC普陀区2015学年度第一学期初三质量调研数学试卷一、选择题1. 如图1,BD 、CE 相交于点A ,下列条件中,能推得DE ∥BC 地条件是( ) (A)AE:EC=AD:DB ;(B)AD:AB=DE:BC ; (C)AD:DE=AB:BC ;(D)BD:AB=AC:EC .2. 在△ABC 中,点D 、E 分别是边AB 、AC 地中点,DE ∥BC ,如果△ADE 地面积等于3,那么△ABC 地面积等于( ) (A)6;(B)9;(C)12;(D)15.3. 如图2,在Rt △ABC 中,∠C=90°,CD 是斜边AB 上地高,下列线段地比值不等于cos A 地值地是( )(A)ADAC ; (B)ACAB ; (C)BD BC;(D)CD BC.4. 如果a 、b 同号,那么二次函数地大致图像是( )5. 下列命题中,正确地是( )(A)圆心角相等,所对地弦地弦心距相等; (B)三点确定一个圆;(C)平分弦地直径垂直于弦,并且平分弦所对地弧; (D)弦地垂直平分线必经过圆心.图1图2ABOB已知在平行四边形ABCD 中,点M、N 分别是边BC 、CD 地中点,如果,那么向量关于地分解式是( )(A); (B); (C); (D)(B).二、填空题7. 如果x:y=2:5,那么y xx y-+=__________; 8. 计算:2()+()=_________;9. 计算:2sin 45cot 30tan 60︒+︒⋅︒=____________;已知点P 把线段分割成AP 和PB (AP>PB )两段,如果AP 是AB 和PB 地比例中项,那么AP:AB 地值等于________;在函数①,②,③,④中,y 关于x 地二次函数是___________(填写序号);12. 二次函数地图像有最_______点;(填“高”或“低”)13. 如果抛物线地顶点坐标为(1,3),那么m+n 地值等于_______;14. 如图3,点G 为△ABC 地重心,DE 经过点G ,DE ∥AC ,EF ∥AB ,如果DE 长是4,那么CF 地长是_________;15. 如图4,半圆形纸片地半径长是1cm ,用如图所示地方法将纸片对折,使对折后半圆地中点M 与圆心O 重合,那么折痕CD 地长是________cm ;已知在Rt △ABC 中,∠C=90°,点P 、Q 分别在边AB 、AC 上,AC=4,BC=AQ=3,如果△APQ 与△ABC 相似,那么AP 地长等于________;图3图4图5某货站用传送带传送货物,为了提高传送过程地安全性,工人师傅将原坡角为45°地传送带AB ,调整为坡度i=地新传送带AC (如图5所示),已知原传送带AB 地长是米.那么新传送带AC 地长是________米;已知A (3,2)是平面直角坐标系中地一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边在x 轴上方作矩形ABCD ,且满足BC:AB=1:2,设点C 地横坐标是a ,如果用含a 地代数式表示点D 地坐标,那么点D 地坐标是_______.三、解答题19. 已知:如图6,在梯形ABCD 中,AD ∥BC ,AD=BC ,点M 是边BC 地中点,.(1) 填空:=_________,=_____________(结果用、表示);(2) 直接在图中画出向量(不要求写作法,但要指出图中表示结论地向量).将抛物线y=先向上平移2个单位,再向左平移m (m>0)个单位,所得新抛物线经过点(),求新抛物线地表达式及新抛物线与y 轴交点地坐标.如图7,已知AD 是地直径,AB 、BC 是地弦,AD ⊥BC ,垂足是点E ,BC=8,DE =2.求地半径长和sin ∠BAD 地值.图6FEGDCBABAED已知:如图8,有一块面积等于1200cm 2地三角形铁片ABC ,已知底边BC 与底边上地高地和为100cm(底边BC 大于底边上地高),要把它加工成一个正方形铁片,使正方形地一边EF 在边BC 上,顶点D 、G 分别在边AB 、AC 上,求加工成地正方形铁片DEFG 地边长.23. 已知:如图9,在四边形ABCD 中,∠ADB=∠ACB ,延长AD 、BC 相交于点E ,求证:(1) △ACE ∽△BDE ; (2) BE·DC=AB·DE.已知,如图10,在平面直角坐标系xOy 中,二次函数地图像经过点A (0,8)、B (6,2)、C (9,m ),延长AC 交x 轴于点D.(1)求这个二次函数地解析式及m 地值;图7图8图9(2)求∠ADO地余切值;(3)过点B地直线分别于y轴正半轴、x轴、线段AD交于点P(点A地上方)、M、Q,使以点P、A、Q为顶点地三角形与△MDQ相似,求此时点P地坐标.图10如图11,已知锐角∠MBN地正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN地边BN上,点P在∠MBN内,PD=3,BD=9.直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C.设=x,(1)求x=2时,点A到BN地距离;B(2)设△ABC 地面积为y ,求y 关于x 地函数解析式,并写出函数地定义域; (3)当△ABC 因l 地旋转成为等腰三角形时,求x 地值.备用图。
2015年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 下列实数中,是有理数的为( )A .B ;C .π;D .0.2. 当0a >时,下列关于幂的运算正确的是( )A .01a =;B .1a a -=-;C .()22a a -=-; D .. 3. 下列y 关于x 的函数中,是正比例函数的为( )A .2y x =;B .2y x =;C .2x y =;D ..4. 如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A .4;B .5;C .6;D .7.5. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数;B .众数;C .方差;D .频率.6. 如图,已知在⊙O 中,AB 是弦,半径OC AB ⊥,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A .AD BD =;B .OD CD =;C .CAD CBD ∠=∠; D .OCA OCB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 计算:22-+= .8. 方程322x -=的解是 .9. 如果分式23x x +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程240x x m +-=没有实数根,那么m 的取值范围是 .11.同一温度的华氏度数()y F 及摄氏度数()x C 之间的函数关系是.如果某一温度的摄氏度数是25C,那么它的华氏度数是F.12.如果将抛物线221=+-向上平移,使它经过点A(0,3),那么所得新抛物y x x线的表达式是.13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加此次活动的概率是.14.已知某校学生“科技创新社团”成员的年龄及人数情况如下表所示:1112131415年龄(岁)人数55161512那么“科技创新社团”成员年龄的中位数是岁.15.如图,已知在△ABC中,D、E分别是边AB、边AC的中点,AB m=,=,AC n 那么向量DE用向量m、n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE AD=,过点E作AC的垂线,交边CD于点F,那么FAD∠=度.17.在矩形ABCD 中,5AB =,12BC =,点A 在⊙B 上.如果⊙D 及⊙B 相交,且点B在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符号要求的数)18.已知在△ABC 中,8AB AC ==,30BAC ∠=.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于.三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =.20.(本题满分10分)解不等式组:,并把解集在数轴上表示出来.图 321.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知,如图,在平面直角坐标系xOy 中,正比例函数的图像经过点A ,点A 的纵坐标为4,反比例函数的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC AB .求:(1)这个反比例函数的解析式;(2)直线AB 的表达式.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线及MN相交于点D,且30∠=,BDN假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车及点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它及这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到13 1.7)图4图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE OB =,联结DE .(1)求证:DE BE ⊥;(2)如果OE CD ⊥,求证:BD CE CD DE ⋅=⋅.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-及x 轴的负半轴相交于点A ,及y 轴相交于点B ,25AB =P 在抛物线上,线段AP 及y 轴的正半轴相交于点C ,线段BP 及x 轴相交于点D .设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长度;(3)当时,求PAD的正弦值.图7 备用图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线及射线OQ 相交于点E ,及弦CD 相交于点F (点F 及点C 、D 不重合),20AB =,.设OP x =,△CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP 的长.2015年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、D ;2、A ;3、C ;4、B ;5、C ;6、B二、 填空题7、4; 8、2; 9、3x ≠- ; 10、4m <- ; 11、77; 12、223y x x =++ ; 13、750; 14、14; 15、 ; 16、22.5; 17、14等(大于13且小于18 的数);18、4.三、 解答题19.解:原式2221=(2)2x x x x x x +-⋅-++当1x =时,原式1=20.解:由426x x >-,得3x >-由 ,得2x ≤∴ 原不等式组的解集是32x -<≤.x21.解:(1)∵正比例函数的图像经过点A ,点A 的纵坐标为4,∴ ∴3x = ∴点A 的坐标是(3,4)∵反比例函数的图像经过点A ,∴ ,12m =∴反比例函数的解析式为(2)∵AC AB =,∴点A 在线段BC 的中垂线上.∵BC x ∥轴,点C 在y 轴上,点A 的坐标是(3,4),∴点B 的横坐标为6.∵点B 在反比例函数的图像上,∴点B 的坐标是(6,2).设直线AB 的表达式为y kx b =+ ,将点A 、B 代入表达式得:解得∴直线AB 的表达式为.22.解:(1)联结AP .由题意得 ,15(),39()AH MN AH m AP m ⊥==.在Rt APH ∆中,得36()PH m =.答:此时汽车及点H 的距离为36米. (2)由题意可知,PQ 段高架道路旁需要安装隔音板,QC AB ⊥,30,39()QDC QC m ∠=︒=.在Rt DCQ ∆中,278()DQ QC m ==.在Rt ADH ∆中,cot 30)DH AH m =⋅︒=,∴11415 1.788.589()PQ PH DH DQ m =-+≈-⨯=≈.答:高架道路旁安装的隔音板至少需要89米长.23.证明:(1)∵,OE OB OBE OEB =∠=∠.∵平行四边形ABCD 的对角线相交于点O ,∴OB OD =.∴OE OD =. ∴ODE OED ∠=∠.在BDE ∆中,∵180,OBE OEB OED ODE ∠+∠+∠+∠=︒∴090,OEB ED BED ∠+∠=∠=︒ 即DE BE ⊥.(2)∵OE CD ⊥,∵90CDE DEO ∠+∠=︒.又∵90,.CEO DEO CDE CEO ∠+∠=︒∴∠=∠,.OBE OEB OBE CDE ∠=∠∴∠=∠在DBE ∆和CDE ∆中:∴.DBE CDE ∆∆∽ ∴ ∴ BD CE CD DE ⋅=⋅24.(1)由抛物线24=-及y轴相交于点B,得点B的坐标为(0,-4)y ax∵点A在x轴的负半轴上,AB=∴点A的坐标为(-2,0)∵抛物线24=-及x轴相交于点A,∴1y axa=∴这条抛物线的表达式为24=-y x(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为2(,4)m m-由题意,得点P在第一象限内,因此2>->0,40m m过点P作PH⊥x轴,垂足为H∵CO∥PH,∴∴,解得24CO m=-(3)过点P作PG⊥y轴,垂足为点G∵OD∥PG,∴∴,即在Rt△ODC中,∵∴,解得3m=-(舍去)。
(第8题图)普陀区2015年初中毕业生学业考试适应性试卷数学卷(三中三模)一.选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.给出四个数2-,2,12,0,其中为无理数的是( ▲ ) A .-2B .2C .12D .02.下列运算正确的是( ▲ )A .325()a a =B .325a a a += C .32()a a a a -÷= D .331a a ÷= 3.网购已成为人们的主要消费方式,2014年,天猫“11.11”购物狂欢节总成交额达571亿元,将571亿元用科学记数法表示应为( ▲ ) A .81071.5⨯元 B .91071.5⨯元C .101071.5⨯元D .111071.5⨯元4.一条开口向上的抛物线的顶点坐标是(-1,2),则它有( ▲ )A .最大值1B .最大值-1C .最小值2D .最小值-25.学校举行红歌赛,全校21个班级均组队参赛。
所有参赛代表队的成绩互不相同,小敏在已知自己班级代表队成绩的情况下,要想知道本班代表队是否进入前10名,只需要知道所有参赛代表队成绩的( ▲ )A.平均数B.众数C.中位数D.方差 6.某几何体的三视图如图所示,则它是( ▲ )A .圆锥B .圆柱C .棱锥D .球7.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这相邻两树在坡面上的距离AB 为( ▲ )A .αsin 5B .αsin 5C .αcos 5D .αcos 58.如图,图中数轴的单位长度为1,如果R,T 表示的数互为相反数,那么图中的4个点中,哪一点表示的数的绝对值最大( ▲ )A .PB .RC .QD .T 9.正方形ABCD 内,有一个内切圆⊙O 。
电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数a 个,⊙O 内的点数b 个(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是(▲)第9题图A第13题图 A . π≈a b B .π≈4b a C . π≈a b D .π≈ba 4 10.如图,平行四边形纸片ABCD 中,AB =6,AD =10,∠B =︒60,P 为BC 边上的一点,折叠该纸片,使点A 与点P 重合,折痕为EF 。
BCBAC普陀区2015学年度第一学期初三质量调研数学试卷一、选择题1. 如图1,BD 、CE 相交于点A ,下列条件中,能推得DE ∥BC 的条件是( A ) (A)AE:EC=AD:DB ; (B)AD:AB=DE:BC ; (C)AD:DE=AB:BC ; (D)BD:AB=AC:EC .2. 在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE ∥BC ,如果△ADE 的面积等于3,那么△ABC 的面积等于( C ) (A)6;(B)9;(C)12;(D)15.3. 如图2,在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,下列线段的比值不等于cos A 的值的是( C )(A)ADAC ; (B)ACAB ; (C)BD BC;(D) CD BC.4. 如果a 、b 同号,那么二次函数的大致图像是( D )5. 下列命题中,正确的是( D )(A)圆心角相等,所对的弦的弦心距相等; (B)三点确定一个圆;(C)平分弦的直径垂直于弦,并且平分弦所对的弧; (D)弦的垂直平分线必经过圆心。
6. 已知在平行四边形ABCD 中,点M 、N 分别是边BC 、CD 的中点,如果,那图1图2OB么向量关于的分解式是( B ) (A); (B); (C); (D) (B).二、填空题7. 如果x:y=2:5,那么y xx y-+=__________; 8. 计算:2()+()=;9. 计算:2sin 45cot 30tan 60︒+︒⋅︒=___;10. 已知点P 把线段分割成AP 和PB (AP>PB )两段,如果AP 是AB 和PB 的比例中项,那么AP:AB 的值等于__;11. 在函数①,②,③,④中,y 关于x 的二次函数是___④___(12. 二次函数的图像有最__低___点;(填“高”或“低”) 13. 如果抛物线的顶点坐标为(1,3),那么m+n 的值等于__1__; 14. 如图3,点G 为△ABC 的重心,DE 经过点G ,DE ∥AC ,EF ∥AB ,如果DE 长是4,那么CF 的长是___2___;15. 如图4,半圆形纸片的半径长是1cm ,用如图所示的方法将纸片对折,使对折后半圆的中点M 与圆心O 重合,那么折痕CD 的长是_____cm ;16. 已知在Rt △ABC 中,∠C=90°,点P 、Q 分别在边AB 、AC 上,AC=4,BC=AQ=3,如果△APQ 与△ABC 相似,那么AP 的长等于__or__;17. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB ,调整为坡度i=的新传送带AC (如图5所示),已知原传送带AB 的长是米。