导入_二次函数与一元二次方程
- 格式:ppt
- 大小:207.00 KB
- 文档页数:1
二次函数与一元二次方程,不等式教案
一、教学内容:
二次函数与一元二次方程及不等式的概念、特征及应用
二、教学目标:
1、掌握二次函数的定义及一般式形式;
2、掌握一元二次方程的定义及解法;
3、掌握不等式的定义及解法;
4、能够应用一元二次方程和不等式解决实际问题;
三、教学重点:
1、引出二次函数的概念,掌握一般式形式;
2、了解一元二次方程的定义,熟练掌握解题步骤;
3、理解不等式的定义和解题步骤;
4、熟练运用一元二次方程和不等式解决实际问题;
四、教学过程:
Step1. 问题引入
1. 用图像说明二次函数的特点
2. 提出求抛物线顶点坐标的问题,引出一元二次方程 Step2. 探究解题思路
1. 引入一元二次方程的概念,介绍其一般式形式和解法
2. 通过案例让学生掌握解一元二次方程的步骤
Step3. 深入学习
1. 引入不等式的概念,介绍其定义及解答
2. 通过案例让学生熟练掌握不等式的解法
Step4. 应用与练习
1. 通过实际问题让学生熟练掌握二次函数与一元二次方程、不等式的概念,特征及应用
2. 通过实际问题让学生熟练掌握求解一元二次方程、不等式的步骤
Step5. 总结
1. 总结一元二次方程及不等式的定义、特征及求解步骤
2. 总结二次函数的定义及特征。
《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。
学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。
这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。
二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。
但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。
本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。
三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。
3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。
四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。
五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。
以实际问题为情境从数与形两个角度理解函数与方程之间的联系。
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。
通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。
但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。
三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。
2.学会运用二次函数的性质解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。
2.如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。
2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。
3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。
4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的多媒体课件和教学素材。
2.准备一些实际问题,用于让学生运用二次函数解决。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。
例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。
2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。
22.2 二次函数与一元二次方程【知识与技能】理解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式实行判别,理解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度】进一步增强学生的数形结合思想方法,增强学生的综合解题水平.【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.一、情境导入,初步理解问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.假设不考虑空气阻力,球的飞行高度h(m)与飞行时间t(s)之间具相关系:h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要飞行多长时间?(2)球的飞行高度能否达到20m?如能,需要飞行多长时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?【教学说明】教师可通过教材的引例,引用其递进式的问题链,让学生在相互交流过程中,自不过然地感受到引用方程思想来解决函数问题的思想方法.教师巡视,即时释疑解惑,并尽量予以肯定和鼓励,激发学生的学习兴趣.二、思考探究,获取新知通过对上述问题的思考,能够看出二次函数与一元二次方程之间存有着密切联系.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,能够看作解一元二次方程-x2+4x=3;反过来,解方程x2-4x+3=0又能够看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.问题1画出函数y=x2-4x+3的图象,根据图象回答以下问题:(1)图象与x轴交点的坐标是什么?(2)当x取何值时,y=0?这里x的取值与方程x2-4x+3=0有什么关系?(3)你能从中得到什么启示?问题2以下函数的图象与x轴有公共点吗?假设有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相对应的一元二次方程的根吗?(1)y=x2+x-2; (2)y=x2-6x+9; (3)y=x2-x+1.问题3一般地,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】让学生在合作交流过程中完成问题1,2,并对问题3形成一个初步理解,达到从感性理解到理性思考的飞跃,从而理解新知.教师应巡视,对学生的交流成果给予积极评价,最后教师应在黑板上实行归纳总结.【归纳结论】一般地,从二次函数y=ax2+bx+c的图象可知:(1)假设抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标为x0.那么当x=x0时,函数的值为0,所以x=x0就是方程ax2+bx+c=0的一个根;(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.所以可通过方程的根的判别式Δ<0,Δ=0和Δ>0来判别抛物线与x轴的交点的个数(Δ=b2-4ac,其中a、b、c为抛物线表达式中二次项系数,一次项系数和常数项).【试一试】1.若抛物线y=x2-mx+1与x轴没有公共点,则m的取值范围是.2.求证:抛物线y=x2+ax+a-2与x轴总有两个交点.【教学说明】让学生分组完成两个小题,使他们能体验成功的喜悦,对尚有困难的学生,应给予指导.三、使用新知,深化理解1.画出函数y=x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)x取什么值时,函数值大于0?(3)x取什么值时,函数值小于0?2.利用函数图象求方程x2-2x-2=0的实数解.【教学说明】题1可让学生自主完成,教师予以巡视,并作指导;题2的处理建议师生共同完成,这里涉及到逼近求值思想,应作为指导.评讲此题的目的是让学生能进一步体验函数与方程的密切联系,但不要求学生掌握,只要理解即可.【答案】1.图象如下列图:(1)当x1=3,x2=-1.(2)当x<-1或x>3时函数值大于0.(3)当-1<x<3时,函数值小于0.2.解:作y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.我们还能够通过持续缩小根所在的范围估计一元二次方程的根:观察函数y=x2-2x-2的图象能够发现,当自变量为2时的函数值小于0(点(2,-2)在x轴的下方),当自变量为3时的函数值大于0(点(3,1)在x轴的上方),因为抛物线y=x2-2x-2是一条连续持续的曲线,所以抛物线y=x2-2x-2在2<x<3这个段经过x轴,也就是说当自变量取2,3之间的某个值时,函数的值为0,即方程x2-2x-2=0在2,3之间有根.我们可通过取平均数的方法持续缩小根所在的范围.例如,取2,3的平均数2.5,用计算器算得自变量为2.5时的函数值为-0.75,与自变量为3时的函数值异号,所以这个根在2.5,3之间.再取2.5,3的平均数2.75,用计算器算得自变量为2.75时的函数值为0.0625,与自变量为2.5时的函数值异号,所以这个根在2.5,2.75之间.重复上述步骤,我们逐步得到:这个根在2.625,2.75之间,在2.6875,2.75之间……能够看到:根所在的范围越来越小,根所在范围的两端的值越来越接近根的值,因而能够作为根的近似值.例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,因为|2.6875-2.75|=0.0625<0.1,我们能够将2.6875作为根的近似值.四、师生互动,课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而理解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相对应的方程的根的近似值吗?从中你有哪些体会?1.布置作业:教材习题22.2第1、2、3、4、6题.2.完成创优作业中本课时练习的“课时作业”部分.本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
教学设计如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x 轴交点情况判断下列函数的图象与x 只有一个交点的是( )A .y =x 2+2x -3B .y =x 2+2x +3C .y =x 2-2x +3D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点,故选D.【类型二】利用二次函数图象与x 轴交点坐标确定抛物线的对称轴如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x 轴交点情况确定字母取值范围若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-2解析:若m ≠0,二次函数与x 轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m =0,原函数是一次函数,图象与x 轴也有一个交点.由(m +2)2-4m (12m +1)=0,解得m =2或-2,当m =0时原函数是一次函数,图象与x 轴有一个交点,所以当m =0,2或-2时,图象与x 轴只有一个交点.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.。
二次函数与一元二次方程教案教案标题:探索二次函数与一元二次方程教案目标:1. 了解二次函数与一元二次方程的定义和基本性质;2. 掌握解一元二次方程的方法;3. 掌握二次函数的图像特征和性质;4. 能够应用二次函数和一元二次方程解决实际问题。
教案步骤:一、引入(5分钟)1. 利用实例引出学生对于二次函数和一元二次方程的初步认识。
2. 引导学生思考二次函数与一元二次方程的联系,并提出学习的目标。
二、理论讲解(15分钟)1. 介绍二次函数的定义和一般形式,解释二次函数图像的特征。
2. 讲解一元二次方程的定义和一般形式,介绍解一元二次方程的方法。
三、解题演练(20分钟)1. 给学生提供一些简单的一元二次方程,引导学生运用所学方法解题。
2. 给学生提供一些简单的二次函数图像,要求学生根据图像特征写出函数的表达式。
四、拓展应用(15分钟)1. 提供一些实际问题,引导学生将问题转化为一元二次方程,并解答问题。
2. 提供一些实际问题,引导学生根据问题描述绘制对应的二次函数图像,并分析解决问题的方法。
五、总结归纳(10分钟)1. 学生总结二次函数与一元二次方程的基本性质和解题方法。
2. 教师对本节课的重点内容进行总结,并强调学生在课后的复习重点。
六、作业布置(5分钟)1. 布置一些练习题,要求学生巩固所学的知识和解题方法。
2. 鼓励学生积极思考,提出问题并准备下节课的讨论。
教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度;2. 练习题表现:检查学生对于二次函数和一元二次方程的掌握情况;3. 实际问题解决能力:评估学生运用所学知识解决实际问题的能力。
教案扩展:1. 可以引入二次函数的最值问题,进一步拓展学生对于二次函数的理解;2. 可以引入一元二次方程的根与系数之间的关系,加深学生对于一元二次方程的理解。
教案注意事项:1. 确保学生已经掌握一元一次方程的解法和基本概念,为学习二次函数和一元二次方程打下基础;2. 鼓励学生多做练习,加深对于二次函数和一元二次方程的理解;3. 教师要及时给予学生反馈,帮助他们纠正错误和提高解题能力。
教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。
2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。
3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。
二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。
难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。
三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。
提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。
这实际上涉及到一元二次方程和不等式的求解问题。
明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。
2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。
一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。
一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。
强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。
2.2.1 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。