圆的基本元素典型例题
- 格式:doc
- 大小:63.00 KB
- 文档页数:4
1.如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=答案:解析:∵OA=OB=5,∠AOB=60°,∴△OAB为等边三角形,故AB=5.题干评注:圆的基本元素问题评注:弦长公式,在这里指直线与圆锥曲线相交所得弦长d的公式。
2.请你在如图所示的12×12的网格图形中任意画一个圆,则所画的圆最多能经过169个格点中的个格点.答案:12解析:如图,以圆心为坐标原点,要想经过点多,半径必须为整数,在xy轴上必然有四个点,而在别的点作x轴的垂线并与圆心连接构成的一定是一个直角三角形,而根据勾股定理,符合这一条件的只有3、4、5这三个数,所以半径是5,其它各点是(3,4),(4,3),(-3,4),(-4,3),(3,-4),(4,-3),(-3,-4),(-4,-3),所以共有12个点.题干评注:圆的基本元素问题评注:在xy轴上必然有四个点,而在别的点作x轴的垂线并与圆心连接构成的一定是一个直角三角形3.在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有个.答案:12解析:坐标轴上到圆心距离为5的点有4个,由勾股定理,四个象限中,到圆心距离为5的点有8个,共12个,如图所示.题干评注:圆的基本元素问题评注:圆的内部可以看成是到圆心的距离。
4.如图,正方形ABCD的边长为2,E、F、G、H分别为各边中点,EG、FH相交于点O,以O为圆心,OE为半径画圆,则图中阴影部分的面积为答案:1/2π解析:由题意可得:OE=1,阴影面积= 1/2π×1= 1/2π.题干评注:圆的基本元素问题评注:扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°5.将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O为圆心,则∠ACO= 度.答案:120°解析:由图可知,∠OBC=60°∵OC=OB∴△OBC是等边三角形∴∠BCO=60°则∠ACO=120°.题干评注:圆的基本元素问题评注:圆的基本元素:弦、直径、弧、优弧、劣弧、圆心角、同心圆、等弧等6.如图,在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形成一圆环.则该圆环的面积为答案:9π解析:圆环的面积=π•AB2-π•BC2=π(AB2-BC2),在直角△ABC中,根据勾股定理得到AC2=AB2-BC2,因而圆环的面积是π•AC2=9π.题干评注:圆的基本元素问题评注:圆的基本元素:弦、直径、弧、优弧、劣弧、圆心角、同心圆、等弧等7.学校有一个圆形花坛,现要求将它三等分,以便在上面种植三种不同的花,你认为符合设计要求的图案是.(将所有符合设计要求的图案序号填上)答案:②③④解析:②和③都是首先把圆三等分,然后根据圆的旋转不变性,在每一部分内做了相同的图形;④是把圆六等分,每一种占其中的2份.题干评注:圆的基本元素问题评注:根据圆的旋转不变性,在每一部分内做了相同的图形8.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是答案:π解析:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.题干评注:圆的基本元素问题评注:圆的基本元素:弦、直径、弧、优弧、劣弧、圆心角、同心圆、等弧等9.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为答案:πab/2解析:剩下的纸板面积即阴影部分的面积.大圆的面积减去两个小圆的面积就是阴影部分的面积.题干评注:圆的基本元素问题评注:大圆的面积减去两个小圆的面积就是阴影部分的面积.10.如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为m(精确到0.1m).答案:5.1解析:首先量得图上距离,投掷圈的圆心到A点的距离大约3.6厘米,再根据实际距离=比例尺÷图上距离进行计算.题干评注:圆的基本元素问题评注:圆的基本元素:弦、直径、弧、优弧、劣弧、圆心角、同心圆、等弧等。
一.圆的定义及相干概念之杨若古兰创作【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中间对称图形.经过圆心的每一条直线都是它的对称轴.圆心是它的对称中间.考点2:确定圆的条件;圆心和半径①圆心确定圆的地位,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径.直径是圆中最大的弦.弦心距:圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做弧.弧分为半圆,优弧、劣弧三种.(请务必留意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形.弓高:弓形中弦的中点与弧的中点的连线段.(请务必留意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的曾经不克不及再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形.如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在.考点5点和圆的地位关系设圆的半径为r,点到圆心的距离为d,则点与圆的地位关系有三种.①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d <r;【典型例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM是AB 边上的中线,以点C为圆心,觉得5半径作圆,试确定A,B,M三点分别与⊙C有如何的地位关系,并说明你的理由.例2.已知,如图,CDB,且AB=OC,求∠A的度数.例3 ⊙O平面内一点P和⊙O最大为8cm,则这圆的半径是例4 在半径为5cm 的圆中,弦AB∥CD,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?例5 如图,⊙O 的直径AB 和弦CD 订交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的耽误线于点D ,求CD 的长.例8CD =4cm ,那么拱形的半径是__.思考题如图所示,已知⊙O 的半径为10cm ,P 是直径AB 上一点,弦CD 过点P,CD=16cm,过点A 和B 分别向CD 引垂线AE 和BF,求AE-BF 的值.二.垂径定理及其推论【考点速览】 考点1ABDCO·E·AB DCE P FO垂径定理:垂直于弦的直径平分这条弦,而且平分弦所对的两条孤.推论1:①平分弦(不是直径)的直径重直于弦,而且平分弦所对的两条孤.②弦的垂直平分线经过圆心,而且平分弦所对的两条孤.③平分弦所对的一条孤的直径,垂直平分弦,而且平分弦所对的另一条孤.推论2.圆的两条平行弦所夹的孤相等. 垂径定理及推论1中的三条可概括为:①经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点【典型例题】例1 如图AB 、CD 是⊙O 的弦,M 、N 分别是AB 、CD 的中点,且CNM AMN ∠=∠. 求证:AB=CD .例2已知,不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE⊥l 于E ,BF⊥l 于F.求证:CE=DF . 例3 如图所示,⊙O 的直径AB =15cm ,有一条定长为9cm 的动弦CD 在弧AmB 上滑动(点C 与点A ,点D 与B 不重合),且CE⊥CD 交AB 于E ,DF ⊥CD 交AB 于F.A BDC O ·NM(1)求证:AE =BF(2)在动弦CD 滑动的过程中,四边形CDEF 的面积是否是,请说明理由.例4 如图,在⊙O 内,弦CD 与直径弦CD 交直径AB 于点P ,且⊙O 半径为1是否为定值?若是,求出定值;若不是,请说明理由.例5.如图所示,在⊙O 中,弦AB⊥AC,弦BD⊥BA,AC 、BD 交直径MN 于E 、F.求证:ME=NF.例6.(思考题)如图,1o Θ与2o Θ交于点A ,B ,过A 的直线分别交1o Θ,2o Θ于M,N ,C 为MN 的中点,P 为21O O 的中点,求证:PA=PC. 三.圆周角与圆心角【考点速览】 考点1圆心角:顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数.Eg: 判别以下各图中的角是不是圆心角,并说明理由. 圆周角:顶点在圆周上,角两边和圆订交的角叫圆周角.两个条件缺一不成.Eg: 判断以下图示中,各图形中的角是不是圆周角,并说·OA BDCEF MN1O A B2OMNC P ABCD P O..明理由 考点2定理:一条弧所对的圆周角等于它所对的圆心角的一半. Eg: 如下三图,请证实.13.如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD 、AD . (1)求证:DB 平分∠ADC;(2)若BE =3,ED =6,求AB 的长.14.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O15.如图,在Rt△ABC 中,∠ACB=90°,,AD 是△ABC 的角平分线,过A 、C 、D AB 交于点E ,连接DE. (1)求证:AC =AE ;(2)求△ACD 16.已知:如图等边ABC △点(端点除外),耽误BP 至D (1)若AP 过圆心OB形?并说明理由.(2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为何?【考点速览】圆心角, 弧,弦,:推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.(务必留意前提为:在同圆或等圆中)例1.如图所示,点O 是∠EPF 的平分线上一点,以O 为圆心的圆和角的两边分别交于A 、B 和C 、D ,求证:AB=CD .例2、已知:如图,EF 为⊙O的直径,过EF 上一点P 作弦AB 、CD ,且∠APF=∠CPF. 求证:PA=PC.例3.如图所示,在ABC ∆中,∠A=︒72,⊙O 截ABC ∆的三条边长所得的三条弦等长,求∠BOC.例4.如图,⊙O 的弦CB 、ED 的耽误线交于点A ,且图① 图②ABE FO PC12D·OABCA B C O DEBC=DE .求证:AC=AE .例5.如图所示,已知在⊙O 中,弦AB=CB ,∠ABC=︒120,OD⊥AB 于D ,OE⊥BC 于E . 求证:ODE ∆是等边三角形.例6.如图所示,已知△ABC 是等边三角形,以BC 为直径的⊙O 分别交AB 、AC 于点D 、E. (1)试说明△ODE 的外形;(2)如图2,若∠A=60º,AB≠AC,则①的结论是否仍然成立,说明你的理由.例7弦DF∥AC,EF 的耽误线交BC 的耽误线于点G. (1)求证:△BEF 是等边三角形;(2)BA=4,CG=2,求BF 的长. 例8已知:如图,∠AOB=90°,C 、D 是弧AB 的三等分点,AB 分别交OC 、OD 于点E 、F.求证:AE=BF=CD.六.会用切线,能证切线考点速览: 考点1直线与圆的地位关系图形公共点个数 d 与r 的关系 直线与圆的地位关系d>r 相离A B CODE ·AO B E D C G F O · CAE B D ·O A DE BC考点2切线:经过半径外端而且垂直于这条半径的直线是圆的切线.符号说话∵ OA⊥ l 于A , OA 为半径∴ l 为⊙O 的切线 考点3判断直线是圆的切线的方法:①与圆只要一个交点的直线是圆的切线.②圆心到直线距离等于圆的半径的直线是圆的切线. ③经过半径外端,垂直于这条半径的直线是圆的切线. (请务必记住证实切线方法:有交点就连半径证垂直;无交点就做垂直证半径) 考点4切线的性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(请务必记住切线主要用法: 见切线就要连圆心和切点得到垂直)1、如图,在矩形ABCD 中,点O 在对角线AC 上,以OA的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB=∠DCE.(1)判断直线CE 与⊙O 的地位关系,并证实你的结论; (2)若AB=3,BC=4,DE=DC ,求⊙O 的半径.2.如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交半圆O于点E ,交AC 于点C ,使BED C ∠=∠.(1)判断直线AC 与圆O 的地位关系,并证实你的结论;3.如图,已知R t△ABC,∠ABC=90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD .(1)取BC 的中点E ,连结ED ,试证实ED 与⊙O 相切.(2)在(1)的条件下,若AB =3,AC=5,求DE 的长;4.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C的直线与AB 的耽误线交于点P ,AC=PC ,∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ;AC B DEO · CAO BE D5.如图,在△ABC 中,AB=AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F . (1)求证:BC 与⊙O 相切;(26.如图,四边形ABCD 经过点D ,E 是⊙O上一点,(1)若∠AED=45º.试判断说明理由.(2)若∠AED=60º,AD=4,求⊙O 半径.7.在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D. (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么地位时,直线ED 与⊙O 相切?请说明理由.8.如图,已知△ABC 内接于⊙O,AC 是⊙O ADCBAEC AB⌒ 的中点,过点D 作直线BC 的垂线,分别交CB 、CA 的耽误线E 、F(1)求证:EF⊙是O 的切线;(2)若AB =8,EB =2,求⊙O 如图,已知⊙O 是△ABC 的外接圆,AB PO 过AC 的中点M ,求证:PC 是⊙O 20.已知:AB 是⊙O 的弦,OD⊥AB 于M 交⊙O 于点D ,CB⊥AB 交AD 的耽误线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.20.在Rt △AFD 中,∠F=90°,点B 、C AD 、FD 上,以AB 为直径的半圆O 过点C 联结AC ,将△AFC沿AC 翻折得△AEC ,且点E 恰好落在直径AB 上.(1)判断:直线FC 与半圆O 的地位关系是_______________;并证实你的结论.(2)若OB=BD=2,求CE 的长.20.如图所示,AB 是⊙O 的直径,OD⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC=∠ODB.(1)判断直线BD 和⊙O 的地位关系,并给出证实; (2)当AB=10,BC=8时,求BD 的长.AA20.已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于点D 、E , 联结EB 交OD 于点F .(1)求证:OD⊥BE;(2)若AB=5,求AE 的长.20.如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N,交BC 的耽误线于点E,直线CF 交EN 于点F,且.ECF E ∠=∠ (1)证实CF 是O 的切线(2) 设⊙O 的半径为1.且AC=CE,求MO 的长.21.如图,AB BC CD 分别与圆O 切于E F G 且AB//CD ,连接OB OC ,耽误CO 交圆O 于点M ,过点M 作MN//OB 交CD 于N 求证 MN 是圆O 切线当OB=6cm ,OC=8cm 时,求圆O 的半径及MN 的长七.切线长定理考点速览: 考点1切线长概念:经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长和切线的区别切线是直线,不成度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 考点2切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要留意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝,求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分别切ABC ∆E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2径r .例ABCD 例3+与x n m ,C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F.(1)当四边形OBCE是矩形时,求点C的坐标;(2)如图乙,若⊙C与y轴相切于点D,求⊙C的半径r;(3)求m与n之间的函数关系式;(4)在⊙C的挪动过程中,能否使OEF是等边三角形(只回答“能”或“不克不及”)?八.三角形内切圆考点速览考点1概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.考点2三角形外接圆与内切圆比较:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心纷歧定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA 、OB 、OC 分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.考点3求三角形的内切圆的半径1、直角三角形△ABC 内切圆⊙O 的半径为2c b a r -+=.2、普通三角形①已知三边,求△ABC 内切圆⊙O 的半径r.(海伦公式S△=)c s )(b s )(a s (s --- , 其中s=2c b a ++)例1.如图,△ABC 中,∠A=m°.(1)如图(1),当O 是△ABC 的内心时,求∠BOC 的度数;(2)如图(2),当O 是△ABC 的外心时,求∠BOC 的度数;(3)如图(3),当O 是高线BD 与CE 的交点时,求BO E F D∠BOC的度数.例2.如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I 分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.考点速练21.如图,在半径为R的圆内作一个内接正方形,•然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n个内切圆,它的半径是()A.(2)nR B.(12)nR C.(12)n-1RD.(2)n-1R3.如图,已知△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,•如果AF=2,BD=7,CE=4.(1)求△ABC的三边长;(2)如果P为弧DF上一点,过P作⊙O的切线,交AB 于M,交BC于N,求△BMN的周长.十.圆与圆地位的关系考点速览:1圆和圆的地位关系(设两圆半径分别为R和r,圆心距为d)2.有关性质:(1)连心线:通过两圆圆心的直线.如果两个圆相切,那么切点必定在连心线上.(2)公共弦:订交两圆的连心线垂直平分两圆的公共弦.(3)公切线:和两个圆都相切的直线,叫做两圆的公切线.两个圆在公切线同旁 两个圆在公切线两旁3 4.相切两圆的性质定理:相切两圆的连心线经过切点经典例题:例1、如图,已知⊙1O 与⊙2O 订交于A 、B 两点,P 是⊙1O 上一点,PB 的耽误线交⊙2O 于点C ,PA 交⊙2O 于点D ,CD 的耽误线交⊙1O 于为N.(1)过点A 作AE//CN 交⊙1O 于点E.求证:PA=PE. (2)连接PN ,若PB=4,BC=2,求PN 的长. 例2 如图,在ABC ∆中,22,90===∠AC AB BAC ,圆A 的半径为1,若点O 在BC 边上活动(与点B 、C 不重合),设AOC x BO ∆=,的面积为y.(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)以点O 为圆心,BO 长为半径作⊙O,当圆⊙O与⊙A 相切时,求AOC ∆的面积.课堂练习:1.已知⊙O1与⊙O2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的地位关系为A .外离B .外切C .订交D .内切 2.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则以下结论准确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >P 2O ABC · EN·1O D OBCA3.大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的地位关系为()A.外离B.外切C.订交D.内含5.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的地位关系是()A.内切B.订交C.外切D.外离6.外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是A.11 B.7 C.4 D.3考点速览:【例题经典】有关弧长公式的利用例1 如图,Rt△ABC的斜边AB=35,AC=21,点O在AB边上,OB=20,一个以O为圆心的圆,分别切两直角边边BC、AC于D、E两点,求弧DE的长度.有关暗影部分面积的求法例2 如图所示,等腰直角三角形ABC的斜边4AB ,O是AB 的中点,觉得O圆心的半圆分别与两腰相切于D、E.求圆中暗影部分的面积.B求曲面上最短距离例3如图,底面半径为1,母线长为4的圆锥, 一只小蚂蚁若从A 点出发,绕正面一周又回到A 点,它爬行的最短路线长是()A .2B .42C .43D .5求圆锥的正面积例4如图10,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm ,高BC=8cm ,求这个零件的概况积.(结果保存根号)三、利用与探究:1.如图所示,A 是半径为1的⊙O 外一点,OA=2,AB 是⊙O 的切线,B 为切点,弦BC∥OA,连结AC ,求暗影部分的面积.2.已知:如图,△ABC 中,AC=BC ,以BC 为直径的⊙O 交AB于点D ,过点D 作DE⊥AC 于点E ,交BC 的耽误线于点F .求证:(1)AD =BD ;(2)DF A O C B FE D C B A O是⊙O 的切线.3.如图,在Rt△ABC 中,∠B=90°,∠A 的平分线与BC 订交于点D,点E 在AB 上,DE=DC,以D 为圆心,DB 长为半径作⊙D.(1)AC 与⊙D 相切吗?并说明理由.(2)你能找到AB 、BE 、AC 之间的数量关系吗?为何?4、如图,已知:ABC △内接于⊙O,点D 在OC 的耽误线上,1sin 2B =,30D ∠=.(1)求证:AD 是⊙O 的切线; (2)若6AC =,求AD 的长.圆的综合测试一:选择题1.有以下四个命题:①直径是弦;②经过三个点必定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中准确的有( )2.以下判断中准确的是( )3.如上图,已知⊙O 的弦AB 、CD 订交于点E ,的度数为60°,的度数为100°,则∠AEC 等于( )A.60°B.100°C.80°D.130°4.圆内接四边形ABCD 中,∠A、∠B、∠C 的度数比是2:3:6,则∠D 的度数是( )A.67.5°B.135°C.112.5°D.110°5.过⊙O 内一点M 的最长弦长为6cm,最短的弦长为4cm,则OM 的长为( ).A 、cm 3B 、cm 5C 、cm 2D 、cm 36.两个圆是同心圆,大、小圆的半径分别为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( )7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )A.21(a +b +c )rB.2(a +b +c )C.31(a +b +c )r D.(a +b +c )r8.已知半径分别为r 和2 r 的两圆订交,则这两圆的圆心距d 的取值范围是( )A.0<d <3rB.r <d <3rC.r≤d <3rD.r≤d≤3r9.将一块弧长为的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为() A .3 B .23 C .5 D .25 CA FO10.如图,圆 O 中弦AB 、CD 订交于点F ,AB=10,AF=2,若CF:DF=1:4,则CF 的长等于( ).A .2B .2C .3D .22 11.有一张矩形纸片ABCD ,其中AD=4cm ,上面有一个以AD 为直径的 半圆,正好与对边BC 相切,如图(甲),将它沿DE 折叠,使A 点落在BC 上,如图(乙),这时候,半圆还露在里面的部分(暗影部分)的面积是( )A.2)32(cm -π B .2)321(cm +π C .2)334(cm -π D .2)332(cm +π 12.如图,两同心圆间的圆环(即图中暗影部分)的面积为16π,过小 圆上任一点P 作 大圆的弦AB ,则PA PB ⋅的值是( )A .16B .16πC .4D .4π二、填空题13.Rt△ABC 中,∠C=90°,AC=5,BC=12,则△ABC 的内切圆半径为 .14.如图,圆O 是ABC △的外接圆,30C ∠=,BO C A D A B CA BC2cm AB =,则圆O 的半径为cm .15.(1)已知圆的面积为281cm π,其圆周上一段弧长为3cm π,那么这段弧所对圆心角的度数是.(2)如图13所示,AB 、CD 是⊙O 的直径,⊙O 的半径为R ,AB⊥CD,以B 为圆心, 以BC 为半径作弧CED ,则弧CED 与弧CAD 围成的新月形ACED 的面积为.(3)如图14,某黉舍建一个喷泉水池,设计的底面边长为4m 的正六边形,池底是水磨石地面,现用的磨光机的磨头是半径为2dm 的圆形砂轮,磨池底时磨头磨不到的部分的面积为. 16.如图2,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的正面积是.cm2.17.如图,有一个圆锥,它的底面半径是2cm母线长是8cm ,在点A 处有一只蚂蚁,它想吃到与A 点绝对且离圆锥顶点23cm 的点B 处的食物,蚂蚁爬行的最短路程是.18、如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于E ,AE=2、ED=6,则AB=.19.已知矩形ABCD ,AB=8,AD=9,工人师傅在铁皮上剪去一个和三边都相切的⊙P后,在剩余部分废料上再剪去一个最大的⊙Q,那么⊙Q 的直径是. 20.如图所示,AB 是⊙1O 的直径,1AO 是⊙2O 的直径,弦MN∥AB,且MN 与⊙2O 相切于点C .若⊙1O 的半径为2,则由1O B 、弧·· A C B D E O · A B CD · Q · P · M A O 1 O 2 C N B A C D OE B 图13图14 · · B O A·· · A B O CBN 、NC 、弧CO 1围成图形的面积等于.21.如图,已知半圆O 的直径为AB ,半径长为425,点C 在AB 上,CD AB CD OC ,,47⊥=交半圆O 于D ,那么与半圆相切,且与BC ,CD相切的圆O '的半径长是 .三、综合题22.以Rt△ABC 的直角边AC 为直径作⊙O,交斜边AB 于点D ,E 为BC 边的中点,连DE.⑴请判断DE 是否为⊙O 的切线,并证实你的结论. ⑵当AD :DB=9:16时,DE=8cm 时,求⊙O 的半径R.23. 如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的耽误线交于点P ,AC PC =,2COB PCB ∠=∠.(1)求证:PC 是O ⊙的切线;(2)求证:12BC AB =; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若4AB =,求MN*MC 的值.。
圆的概念和有关性质 知识总结和例题圆的旋转定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示. 确定一个圆的要素:一是圆心,圆心确定其位置;二是半径,半径确定其大小. 同心圆:圆心相同,半径不同 等圆 : 圆心相同,半径不同圆的集合定义:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合. 弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径 注意:1.弦和直径都是线段.2. 直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.弧: 圆上任意两点间的部分叫做圆弧,简弧.以A 、B 为端点的弧记作 ,读作“圆弧AB ”或“弧AB ”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 劣弧与优弧:小于半圆的弧叫做劣弧. ;小于半圆的弧叫做劣弧. ; 等弧:等弧仅仅存在于同圆或者等圆中.1.一点和⊙O 上的最近点距离为4cm,最远的距离为10cm, 则这个圆的半径是2.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为( )A .0个B .1C .2个D .3个3 .如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上,求证:OB=OC.图4DB O NMAC图5DBONM AC(3) (4) (5) (6)4.如图,在扇形MON 中,=45MON ,半径MO=NO=10,,正方形ABCD 的顶点B 、C 、D 在半径上,顶点A 在圆弧上,求正方形ABCD 的边长5.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.6,如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,∠A =63°,求∠B 的度数.圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
专题十 圆相关概念及必考题型过关一、单选题1.在正方形ABCD 中,以点A 为圆心,AB 长为半径作⊙A ,下列说法错误的是( ).A .点D 在圆上B .点C 在圆外C .点B 在圆上D .点A 在圆上2.如图,若⊙O 的半径为4,圆心O 到某条直线的距离为3,则这条直线可能是( )A .l 1B .l 2C .l 3D .l 43.已知一个圆心角为240°,半径为3的扇形工件,没搬动前如图所示(A ,B 两点触地放置),向右滚动工件至点B 再次触地时停止,则圆心O 所经过的路线长是( )A .6B .3πC .6πD .12π4.在平面中,已知⊙O 的半径OP 等于5,点P 在直线l 上,则圆心O 到直线l 的距离( )A .等于5B .最小值为5C .最大值为5D .不等于55.如图,⊙O 的直径AB =10,弦CD ⊥AB 于点P ,若OP =3,则CD 的长为( )A .3B .4C .6D .86.Rt △△ABC 中,∠C =90°,AB =5,AC =3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为( )A .12B .35C .67D .237.已知⊙O 的半径是6.5cm ,点P 是直线l 上一点,且OP =6cm .那么直线l 与⊙O 的公共点的个数是()A.0B.1C.2D.无法确定8.平面内,⊙O的半径为5,若直线l与⊙O相离,则圆心O到直线l的距离可能是()A.6B.5C.4D.39.如图,AB与⊙O相切于点C,OA=OB,且⊙O的直径为8cm,AB=8cm,则阴影部分的面积为()A.4π−8B.8π−20C.16−4πD.8−π10.如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=()时,直线DE与⊙O相切.A.∠B B.∠BAC C.∠C D.∠DAC11.如图,在△ABC中,∠BAC=30°,圆心O在AB上,⊙O与BC相切,C为切点.则∠B的().A.20°B.25°C.30°D.35°12.⊙O的直径是4,圆心O到直线l的距离是2,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.相离或相交13.我国古代数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,⊙O的半径是2,运用“割圆术”,以圆内接正十二边形面积近似估计⊙O的面积,可得π的估计值是()A.3.1B.3C.1+3D.2214.如图,A、D是⊙O上的两个点,BC是直径,若∠D=32°,则∠OAC等于( )A.64°B.58°C.68°D.55°15.已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定16.圆的直径是14,若圆心与直线上某一点的距离是7,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切17.如图所示,△ABC的三个顶点的坐标分别为A(−1,3)、B(−2,−2)、C(4,−2),则△ABC外接圆半径的长为().A.32B.23C.10D.1318.如图,已知⊙O的半径为5,直线AB经过⊙O上一点P,下列条件不能判定直线AB与⊙O相切的是()A.OP=5B.∠APO=∠BPO C.点O到直线AB的距离是5D.OP⊥AB19.如图,AD是⊙O的直径,AB=CD,若∠AOB=40°,则圆周角∠BPC的度数是( )A.40°B.50°C.60°D.70°202122232425A.32°B.52°C.64°D.72°26.某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为23m ,则改建后门洞的圆弧长是( )A .5π3mB .8π3mC .10π3m D +2m27.已知⊙O 的半径等于5,圆心O 到直线l 的距离为4,那么直线l 与⊙O 的公共点的个数是( )A .0B .1C .2D .无法确定28.已知⊙O 的半径等于5,圆心O 到直线l 的距离为6,那么直线l 与⊙O 的公共点的个数是( )A .0B .1C .2D .无法确定29.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为 ( )A .120°B .180°C .240°D .300°30.已知⊙O 的半径为3,点O 到直线m 的距离为d ,若直线m 与⊙O 公共点的个数为2个,则d 可取( )A .0B .3C .3.5D .431.在平面直角坐标系中,以M(2,2)为圆心,半径为2作⊙M ,判断原点O 与⊙M 的位置关系为( )A .点O 在⊙M 外B .点O 在⊙M 上C .点O 在⊙M 内D .以上都有可能二、填空题32.如图,从一块圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,若围成圆锥的底面半径为1,则该圆形铁皮⊙O 的直径是.33.如图,用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是 cm .34.四边形ABCD是⊙O的外切四边形,若∠AOB=78°,则∠COD的度数是.35363738.如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD.若∠C=18°,∠BPC=70°,则∠ADC的度数为.39.在半径为2的⊙O中,弦AB=2,弦CD=22,且AB∥CD,则AB与CD之间的距离为.40.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.41.如图,PM,PN分别与⊙O相切于A,B两点,C是⊙O上异于A,B的点,连接AC,BC.若∠P=50°,则∠ACB的大小是.42.⊙O的半径为1,弦AB=2,点C是圆上异于A、B的一动点,则∠ACB= .43.如图,⊙O是△ABC的内切圆,∠C=40°,则∠AOB的大小是.44.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为.45.如图,直线EF与⊙O相切于点C,直线EO与⊙O相交于点D,连接CD.若∠DEF=3∠D,则∠DCF=.46.如图,在扇形OAB中,OA=6,∠AOB=110°,将扇形OAB沿过点B的直线折叠,点O恰好落在AB上的点D处,折痕交OA于点C,则弧AD的长为.47.如图,A,B,C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.48496 cm50∠BPC=.51.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是.52.如图,是一个圆盘及其内接正六边形,随机往圆盘内投飞镖,则飞镖落在正六边形内的概率是.53.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF= .参考答案则AB=a=AD,AC=∵AB<AC,∴点C在⊙A外,点D在圆上,点故选:D.2.B【详解】解:∵⊙O的半径为4,圆心O到某条直线的距离为3,∴3<4,即圆心到直线的距离小于半径,∴该直线与圆相交,由图知,l2与⊙O相交;故选:B.3.C【分析】本题考查了动点经过的路径;确定点O的路径是关键;点O的路径是两个半径为3且圆心角为60°的弧,而平移的距离是一条线段,其长度是扇形工件的弧长,利用弧长公式可求得圆心O所经过的路线长.【详解】解:∵∠AOB=360°−240°=120°,∴∠ABO=12(180°−120°)=30°,当BO旋转到与地面垂直时,旋转角度为90°−30°=60°,此时点O的路径是半径为3且圆心角为60°的弧;扇形工件继续旋转时,点O的路径是一条线段,直至OA垂直地面,其长度是扇形工件的弧长;扇形工件继续绕A旋转,直到点A落地,此时点O的路径是半径为3且圆心角为60°的弧;∴圆心O所经过的路线长为:2×60π×3180+240π×3180=6π;故选:C.4.C【分析】此题考查了直线与圆的位置关系,根据题意可判断直线l与⊙O相切,熟记直线与圆的位置关系是解题的关键.【详解】解:∵⊙O的半径OP等于5,点P在直线l上,∴直线l与⊙O相切或相交,∴圆心O到直线l的距离最大值为5,故选:C.5.D【分析】连接OC,则OC=12AB=5,OP=3,利用勾股定理即可求得PC,最后由CD=2PC完成解答.【详解】解:连接OC,则OC=12AB=5,OP=3,由勾股定理得:PC=OC2−OP2=52−32=4所以CD=2PC=8故答案为D.【点睛】本题考查的是垂径定理,根据题意作出辅助线、构造出直角三角形、运用勾股定理求得PC是解答本题的关键.6.C【分析】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、相似三角形的判定与性质.作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为R,先根据勾股定理计算出BC=4,则DC=2,由以E为圆心的⊙E分别与AB、BC相切,根据切线的性质得EG=EF=R,则HC=R,AH=3−R,再证明△AEH∽△ADC,利用相似比可得到EH和R的关系式,∵∴而∴∵∴∴∵∴∵∴∴R=6.7故选:C.7.C【分析】本题考查直线与圆的位置关系.根据题意先判断直线与圆的位置关系为相交,即可得到本题答案.【详解】解:∵⊙O的半径是6.5cm,点P是直线l上一点,且OP=6cm,∵6<6.5,∴直线l 与⊙O 位置关系为相交,∴直线l 与⊙O 的公共点的个数是2个,故选:C .8.A【分析】本题考查直线与圆相离的判定,根据相离的判定逐项验证即可得到答案,熟记直线l 与⊙O 相离,得到圆心O 到直线l 的距离大于⊙O 半径是解决问题关键.【详解】解:∵ ⊙O 的半径为5,若直线l 与⊙O 相离,∴由相离定义可知圆心O 到直线l 的距离大于半径5,∴根据四个选项中的距离可知,只有6符合要求,故选:A .9.C【分析】本题考查求不规则图形面积,涉及切线性质、等腰直角三角形的判定与性质、直角三角形面积和扇形面积公式等知识,根据题意,阴影部分面积可间接表示为△AOB 面积与扇形面积的差,求出线段长代入面积公式求解即可得到答案,熟练掌握不规则图形面积求法及切线性质是解决问题关键.【详解】解:连接OC ,如图所示:∵ AB 与⊙O 相切于点C ,∴OC ⊥AB ,∵ ⊙O 的直径为8cm ,AB =8cm ,∴OC =CA =CB =4cm ,∴△AOC 、△BOC 均为等腰直角三角形,∴∠AOB =∠AOC +∠BOC =45°+45°=90°,∴S △AOC =12AB ⋅OC =12×8×82=16,S 扇形=90360×π×OC 2=4π,∴阴影部分的面积为(16−4π)cm 2,故选:C .10.C【分析】首先过点O作直径AF,连接BF,根据同弧所对的圆周角相等可得∠C=∠AFB,进而可得到∠BAE=∠F,再根据直径所对的圆周角是90°,可证出∠AFB+∠BAF=90°,再利用等量代换可得∠BAE+∠BAF=90°,进而得到直线DE与⊙O相切.【详解】解:当∠BAE=∠C时,直线DE与⊙O相切.理由如下:作AF交圆O于F点,连接BF.∵∠F,∠C是同弧AB所对的角,∴∠C=∠F,∵∠BAE=∠C,∴∠BAE=∠F,∵AF为直径,∴∠ABF=90°,∴在三角形ABF中,∠F+∠BAF=90°,∵∠F=∠BAE,∴∠BAE+∠BAF=90°,∴FA⊥DE,∴直线DE与⊙O相切.故选:C.【点睛】此题主要考查了切线的判定,关键是正确作出辅助线,证明∠BAE+∠BAF=90°.11.C【分析】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆的切线的性质是解题的关键.如图:连接OC,由圆周角定理可得∠BOC=60°,再根据切线的性质可得∠OCB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:如图:连接OC,则OA=OC,∴∠BAC=∠ACO=30°,∴∠BOC=2∠BAC=60°,∵⊙O与BC相切,C为切点,∴∠OCB=90°,∴∠B=90°−∠BOC=30°.故选C.12.B【分析】本题主要考查了直线和圆的位置关系,判断直线l与⊙O的位置关系,求出圆心与直线的距离是关键.根据圆心与直线的距离直接判断位置即可.【详解】解:∵⊙O的直径为4,∴半径r=2,∵圆心O到直线l的距离为2,即d=2,∴d=r∴直线l与⊙O的位置关系是相切.故选:B.13.B【分析】过A作AM⊥OB于M,求得∠AOB的度数,根据直角三角形的性质得到AM,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=12OA=12∴S△AOB=12OB⋅AM=12×1×12=14∴正十二边形的面积为12×14=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:B.14.B【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.【详解】解:∵∠D=32°,∴∠B=∠D=32°,∵BC是直径,∴∠BAC=90°,∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC−∠BAO=90°−32°=58°.故选:B.【点睛】本题主要考查了圆周角定理、等腰三角形的性质等知识,熟练掌握相关知识是解题关键.15.A【分析】根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:A.【点睛】本题考查了点与圆的位置关系.注意若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】解:圆的直径是14,故半径为7.圆心与直线上某一点的距离是7,那么圆心到直线的距离可能等于7也可能小于7,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,解题的关键是掌握:圆心与直线上某一点的距离是a时,圆心到直线的距离可能等于a也可能小于a.17.D【分析】三角形的外心是三边垂直平分线的交点,设△ABC的外心为M,由B,C的坐标可知M必在直线x=1上,由图可知线段AC的垂直平分线经过点(1,0),由此可得M(1,0),过点M作MD⊥BC于点D,连接MB,由勾股定理求出MB的长即可.【详解】解:设△ABC的外心为M,∵B(−2,−2)、C(4,−2),=1上,∴M必在直线x=−2+42由图可知,线段AC的垂直平分线经过点(1,0),∴M(1,0),如图,过点M作MD⊥BC于点D,连接MB,Rt△MBD中,MD=2,BD=3,由勾股定理得:MB=MD2+BD2=22+32=13,即△ABC外接圆半径的长为13.故选D.【点睛】本题考查求三角形外接圆的半径,能够根据网格和三角形顶点坐标判断出△ABC外心的位置是解题的关键.18.A【分析】依据切线的判定定理“经过半径的外端且垂直于这条半径的直线”或“圆心到直线的距离等于半径”进行判断即可.【详解】解:A、OP=5,不能判定直线AB与⊙O相切,符合题意;B、由∠APO=∠BPO,得到OP⊥AB,且点P在⊙O上,能判定直线AB与⊙O相切,不符合题意;C、点O到直线AB的距离是5,等于半径,能判定直线AB与⊙O相切,不符合题意;D、OP⊥AB且点P在⊙O上,能判定直线AB与⊙O相切,不符合题意;故选:A.【点睛】本题考查了切线的判定;熟练掌握切线的判定是解题的关键.19∴∵∴∴20点21.A【分析】本题考查了点与圆的位置关系的应用,注意:已知⊙O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.根据以上内容判断即可.【详解】解:∵⊙O的半径为4,PO=3,∵3<4,∴点P与⊙O的位置关系是点P在⊙O内部,故选:A.22.C【分析】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相离,直线到圆心的距离大于半径;直线与圆相交,直线到圆心的距离小于半径;直线与圆相切,直线到圆心的距离等于半径.将该点的横纵坐标绝对值分别与半径对比,若横坐标绝对值大于半径时,则y轴与该圆相离;若横坐标绝对值小于半径时,则y轴与该圆相交;若横坐标绝对值等于半径时,则y与该圆相切;若纵坐标绝对值大于半径时,则x轴与该圆相离;若纵坐标绝对值小于半径时,则x轴与该圆相交;若纵坐标绝对值等于半径时,则x与该圆相切.【详解】解:∵点(4,3)为圆心,4为半径的圆,则有4=4,3<4,∴这个圆与y轴相切,与x轴相交.故选:C.23.C【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD.【详解】解:∵⊙O的直径AB垂直于弦CD,CD∴CE=DE=12∵∠A=30°,AC=2,∴CE=1∴CD=2.故选:C.【点睛】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键.24.C【分析】设正六边形的中心是O,一边是AB,过O作OG⊥AB于G,在直角△OAG中,根据三角函数即可求得边长AB,从而求出周长.【详解】解:如图,在∴25∴∴∵则26【详解】如图,连接AD,BC,交于O点,∵∠BDC=90°,∴BC是直径,∴BC=CD2+BD2=22+(23)2=4,∵四边形ABDC是矩形,∴OC=OD=12BC=2,∵CD=2,∴OC=OD=CD,∴ΔCOD是等边三角形,∴∠COD=60°,∴门洞的圆弧所对的圆心角为360°−60°=300°,∴改建后门洞的圆弧长是300°π×12 BC180°=300°π×12×4180°=103π(m),故选:C【点睛】本题考查了弧长公式,矩形的性质以及勾股定理的应用,从实际问题转化为数学模型是解题的关键.27.C【分析】利用直线与圆的位置关系的判断方法得到直线l与⊙O相交,然后根据相离的定义对各选项进行判断.【详解】∵⊙O的的半径为5,圆心O到直线l的距离为4,∴圆心O到直线l的距离小于半径,∴直线l与⊙O相交,∴直线l与⊙O有2个公共点.故选:C.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则当直线l 与⊙O相交⇔d<r;当直线l与⊙O相切⇔d=r;当直线l与⊙O相离⇔d>r;熟练掌握直线与圆的位置关系是解本题的关键.28.A【分析】圆的半径为r,圆心到直线的距离为d,当d>r时,圆与直线相离,直线与圆没有交点,当d=r 时,圆与直线相切,直线与圆有一个交点,d<r时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.【详解】解:∵⊙O的半径等于r为8,圆心O到直线l的距离为d为6,∴d>r,∴直线l与⊙O相离,∴直线l与⊙O的公共点的个数为0,故选A.【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.29.B【详解】试题分析:设母线长为R,底面半径为r,∴∵∴∴∴30当∴∴031∴MO=22+22=22.∵⊙M的半径为2,且22>2,∴点O在⊙M外.故选:A.32.42【分析】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.连接BC,根据扇形圆心角为90°,得到B,O,C三点共线,BC为⊙O的直径,首先求得扇形的弧长,再求出圆锥的母线长,然后利用勾股定理求出BC即可.【详解】解:如图,连接BC,∵∠BAC=90°,∴B,O,C三点共线,BC为⊙O的直径,∵围成圆锥的底面半径为1,∴BC=1×2π=2π,=2π,∵90×2π⋅AB360∴AB=4,∵AC=AB=4,∴BC=AB2+AC2=42,∴该圆形铁皮⊙O的直径是42,故答案为:42.33.42【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.=4πcm【详解】圆心角为120°,半径为6cm的扇形的弧长为120×6π180∴圆锥的底面半径为4π÷2π=2,故圆锥的高为62−22=42cm故答案为:42【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.34.102°/102度【分析】本题主要考查了切线长定理,解题的关键是熟练掌握切线长定理及其推论.令四边形ABCD 与⊙O分别相切于点E、F、G、H,连接OE,OF,OG,OH,通过证明∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8即可求解.【详解】解:令四边形ABCD与⊙O分别相切于点E、F、G、H,连接OE,OF,OG,OH,∵ABCD是⊙O的外切四边形,∴AE=AF,∵OE=OF,OA=OA,∴△OAE≌△OAF,∴∵∴∴∴352π∴n=144,∴圆锥的侧面展开图的圆心角的度数为144°,故答案为:144°.36.30°/30度【分析】本题考查了圆周角定理,根据在同圆或等圆中,同弧或等弧所对的圆周角相等可得结论.【详解】解:∵AD所对的圆周角是∠C,∠B,∴∠B =∠C =30°故答案为:30°.37.24【分析】根据圆周角定理得BC 为⊙O 的直径,即BC =2,所以AB =2 ,设该圆锥的底面圆的半径为rm ,根据弧长公式得到2πr =90×π×2180,然后解方程即可.【详解】解:∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =2m ,∵AB =AC ,∴AB =2 ,设该圆锥的底面圆的半径为r ,根据题意得2πr =90×π×2180,解得r =24 ,即该圆锥的底面圆的半径为24m .故答案为24.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.解题的关键是弄清扇形弧长和底面圆的周长的关系.38.38°/38度【分析】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.先根据圆周角定理得出∠B =∠C =18°,再由三角形外角和定理可知∠BDP =∠BPC−∠B =70°−18°=52°,再根据直径所对的圆周角是直角,即∠ADB =90°,然后利用∠ADB =∠ADC +∠BDP 进而可求出∠ADC .【详解】解:∵∠C =18°,AD =AD ,∴∠B =∠C =18°,∵∠BPC =70°,∴∠BDP =∠BPC−∠B =70°−18°=52°,又∵AB 为直径,即∠ADB =90°,∴∠ADC =∠ADB−∠BDP =90°−52°=38°,故答案为:38°.39.3±2【分析】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.由于弦AB 与CD 的具体位置不能确定,故应分两种情况进行讨论:①弦AB 与CD 在圆心同侧;②弦AB 与CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB 与CD 在圆心同侧时,如图,∵∴∵∴∵∴∴②EF 40.28/182【分析】本题主要考查了求圆锥底面圆半径,90度的圆周角所对的弦是直径.连接BC ,如图,根据圆周角定理得BC 为⊙O 的直径,即BC =2,所以AB =2,设该圆锥的底面圆的半径为r ,根据弧长公式得到方程即可求得.【详解】解:连接BC ,如图,∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =1m ,∴AB =AC =22BC =22m ,设该圆锥的底面圆的半径为r m ,∴2πr =90π×22180,解得r =28,即该圆锥的底面圆的半径为28m .故答案为:28.41.65°或115°【分析】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质.如图,连接OA ,OB ,利用切线的性质结合四边形的内角和定理求解∠AOB =130°,再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接OA ,OB ,C 1,C 2(即C )分别在优弧与劣弧上,∵ PM ,PN 分别与⊙O 相切于A ,B 两点,∴∠PAO =∠PBO =90°,∵∠P =50°,∴∠AOB =360°−90°−90°−50°=130°,∴∠AC 1B =12∠AOB =65°,∠AC 2B =180°−65°=115°.故答案为:65°或115°.42.45°或135°【分析】根据题意画出图形,先判断出∠AOB=90o ,再分两种情况用同弧所对的圆心角和圆周角的关系确定和圆的内接四边形的性质即可.【详解】∵OA=OB=1,AB=2,∴OA2+OB2=AB2,△AOB是直角三角形,∴∠AOB=90°,当点C在优弧AB上时,∠AOB=45°,∠ACB=12∠∴∴43∴∴∴故答案为:110°.【点睛】本题考查了三角形的内切圆和内心,正确证明∠BAO+∠ABO=1(∠BAC+∠ABC)是关键.244.6π【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.×2π×2×3=6π.【详解】解:该圆锥的侧面积=12故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.45.72°【分析】连接OC,如图,先利用切线的性质得到∠OCE=90°,则根据三角形内角和得到∠E+∠EOC=90°,再根据圆周角定理得到∠EOC=2∠D,加上∠E=3∠D,所以3∠D+2∠D=90°,从而可求出∠D的度数,然后利用三角形外角性质可计算出∠DCF的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.【详解】解:连接OC,如图,∵直线EF与⊙O相切于点C,∴OC⊥EF,∴∠OCE=90°,∴∠E+∠EOC=90°,∵∠EOC=2∠D,∠E=3∠D,∴3∠D+2∠D=90°,解得∠D=18°,∴∠E=54°,∴∠DCF=∠D+∠E=18°+54°=72°.故答案为:72°.π46.53【分析】本题考查了弧长的计算,翻折变换(折叠问题),由折叠的性质推知△ODB是等边三角形是解答此题的关键.如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°−∠DOB=50°,然后由弧长公式弧长的公式l=nπr来求弧AD的长.180【详解】解:如图, 连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB, 即△ODB是等边三角形,∴∵∴∴47∴∵∴48∠BOD=69°,∴∠A=12∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.【点睛】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与圆内接四边形的对角互补定理的应用.49.253/813【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与⊙O 相切于点B ,∴OB ⊥CB ,∴∠CBD =∠BDA =∠ACB =90°,∴四边形ACBD 为矩形,∴AD =CB =8,BD =AC =6,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:OA 2=OD 2+AD 2,即r 2=(r −6)2+82,解得:r =253,即⊙O 的半径为253cm .故答案为:253.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.50.80°/80度【分析】首先连接OB ,OC ,由PB ,PC 是⊙O 的切线,利用切线的性质,即可求得∠PBO =∠PCO =90∘,又由圆周角定理可得:∠BOC =2∠BAC ,继而求得∠BPC 的度数.【详解】解:连接OB ,OC ,∵PB ,PC 是⊙O 的切线,∴OB ⊥PB ,OC ⊥PC ,∴∠PBO =∠PCO =90°,∵∠BOC =2∠BAC =2×50°=100°,∴∠BPC=360°−∠PBO−∠BOC−∠PCO=360°−90°−100°−90°=80°故答案为:80°.51∵∴∵∴∴和定理的应用,求解∠AOB=122°是解本题的关键.52.332π【分析】设圆的半径为r,先分别求出圆的面积和正六边形的面积,再利用概率公式即可得.【详解】解:如图,设圆的圆心为点O,半径为r,过点O作OC⊥AB于点C,连接OA,OB,则圆的面积为πr 2,OA =OB =r ,∵图中的六边形是正六边形,∴∠AOB =360°6=60°,∴△AOB 是等边三角形,∴AB =OA =r,AC =12AB =12r,OC =OA 2−AC 2=32r ,∴正六边形的面积为6S △AOB =6×12AB ⋅OC =6×12r ⋅32r =332r 2,则飞镖落在正六边形内的概率是332r 2πr 2=332π,故答案为:332π.【点睛】本题考查了求概率、圆与正六边形等知识点,熟练掌握概率的求法是解题关键.53.15°【分析】根据平行四边形的性质和圆的半径相等得到△AOB 为等边三角形,根据等腰三角形的三线合一得到∠BOF =∠AOF =30°,根据圆周角定理计算即可.【详解】解答:连接OB ,∵四边形ABCO 是平行四边形,∴OC =AB ,又OA =OB =OC ,∴OA =OB =AB ,∴△AOB 为等边三角形.∵OF ⊥OC ,OC ∥AB ,∴OF ⊥AB ,∴∠BOF =∠AOF =30°.由圆周角定理得∠BAF =12∠BOF =15∘ ,故答案为15°.。
第27章 圆元的基本元素1.如图,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,则圆中弦的条数为( ) A .2 B .3 C .4 D .52.如图所示,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( )A .6.5 c mB .2.5 cmC .13 cmD .不可求3.[2018·无锡]如图,点A 、B 、C 都在⊙O 上,OC ⊥OB ,点A 在劣弧BC ︵上,且OA =AB ,则∠ABC =______.4.一个圆的最大的弦长为10 cm ,则此圆的面积为__________. 5.已知点A 、B 和直线l ,作一个圆,使它过点A 、B ,并且圆心在l 上. (1)当l 与直线AB 不垂直时,可以作几个圆? (2)当l 与直线AB 垂直时,情况又怎样?6.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,CE ⊥AB 于E ,DF ⊥AB 于F ,且AE =BF ,AC 与BD 相等吗?为什么?7.如图,AB、CD是⊙O的两条互相垂直的直径.(1)试判断四边形ACBD是什么特殊的四边形,为什么?(2)若⊙O的半径r=2 cm,求四边形ACBD的面积.8.如图,MN为⊙O直径,四边形ABCD、EFGD是正方形,小正方形的面积为16,求⊙O 的半径.参考答案【分层作业】1. A 2. C 3. 15° 4. 25πcm 25. 解:(1)可以作一个圆,圆心为线段AB 的垂直平分线与直线l 的交点. (2)分两种情况:①当直线l 经过线段AB 的中点时,可以作无数个圆; ②当直线l 不经过线段AB 的中点时,这样的圆不能作出.6.答图解:AC 与BD 相等.理由如下: 如答图,连结OC 、OD . ∵OA =OB ,AE =BF , ∴OE =OF .∵CE ⊥AB ,DF ⊥AB , ∴∠OEC =∠OFD =90°. 在Rt △OEC 和Rt △OFD 中,⎩⎪⎨⎪⎧OE =OF ,OC =OD , ∴Rt △OEC ≌Rt △OFD (HL), ∴∠COE =∠DOF , ∴AC ︵=BD ︵, ∴AC =BD .7. 解:(1)∵OA =OC =OB =OD ,AB =CD ,AB ⊥CD , ∴四边形ACBD 是正方形.(2)S 正方形ACBD =12AB ·CD =12×4×4=8(cm 2).8.答图解:连结OC、OF,如答图.设AD=2x,∵CO2=DO2+CD2.∴x2+(2x)2=r2.∵OF2=OG2+FG2,∴r2=(x+4)2+42=x2+8x+32,∴x2+(2x)2=x2+8x+32,解得x1=4,x2=-2(舍去),∴r2=5×42,∴r=4 5.。
27.1.1圆的基本元素一.选择题(共8小题)1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧1题图3题图4题图5题图3.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°4.如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15 B.15+5C.20 D.15+55.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定6.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C 作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B . C . D .7.车轮要做成圆形,实际上就是根据圆的特征()A.同弧所对的圆周角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形8.如图,以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,则点B的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)6题图8题图9题图10题图二.填空题(共6小题)9.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________.10.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是_________.11.如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC=_________度.11题图12题图13题图12.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD=_________.13.如图①是半径为1的圆,在其中挖去2个半径为的圆得到图②,挖去22个半径为()2的圆得到图③…,则第n(n>1)个图形阴影部分的面积是_________.14.如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.14题图三.解答题(共7小题)15.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.16.如图,CD是⊙O的直径,E是⊙O上一点,∠EOD=48°,A为DC延长线上一点,且AB=OC,求∠A的度数.17.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.18.如图,点O是同心圆的圆心,大圆半径OA,OB分别交小圆于点C,D,求证:AB∥CD.19.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.20.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA延长线于E,交半圆于C,且CE=AO,求∠E的度数.21.如图,点B是线段AC上的一点,分别以AB、BC、CA为直径作半圆,求证:半圆AB的长与半圆BC的长之和等于半圆AC的长.27.1.1圆的基本元素参考答案与试题解析一.选择题(共8小题)1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A. 4 B.5 C.6 D.10考点:圆的认识;多边形内角与外角.专题:压轴题.分析:因为五边形的各边长都和小圆的周长相等,所有小圆在每一边上滚动正好一周,另外五边形的外角和为360°,所有小圆在五个角处共滚动一周,可以求出小圆滚动的圈数.解答:解:因为五边形的各边长都和小圆的周长相等,所有小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.点评:本题考查的是对圆的认识,根据圆的周长与五边形的边长相等,可以知道圆在每边上滚动一周.然后由多边形外角和是360°,可以知道圆在五个角处滚动一周.因此可以求出滚动的总圈数.2.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧考点:圆的认识.分析:利用圆的有关定义进行判断后利用排除法即可得到正确的答案;解答:解:A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选B.点评:本题考查了圆的认识,了解圆中有关的定义及性质是解答本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°考点:圆的认识;平行线的性质.分析:首先由AD∥OC可以得到∠BOC=∠DAO,又由OD=OA得到∠ADO=∠DAO,由此即可求出∠AOD的度数.解答:解:∵AD∥OC,∴∠AOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180﹣70°﹣70°=40°.故选D.点评:此题比较简单,主要考查了平行线的性质、等腰三角形的性质,综合利用它们即可解决问题.4.如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15 B.15+5C.20 D.15+5考点:圆的认识;等边三角形的性质;等腰直角三角形.专题:计算题.分析:连结ADBP,PA,由于弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,可得到△ABD为等腰直角三角形,则AD=BD,由于△ABC 为等边三角形,所以AC=BC=AB=5,BD=BP=5,当点P与点D重合时,AP最大,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=15+5.解答:解:连结AD,BP,PA,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠ABD=90°,∴AD=AB,∵△ABC为等边三角形,∴AC=BC=AB=5,∴BD=BP=5,当点P与点D重合时,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=5+5+5+5=15+5.故选B.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等边三角形的性质和等腰直角三角形的性质.5.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定考点:圆的认识;等边三角形的性质.分析:首先设出圆的直径,然后表示出半圆的弧长和三个正三角形的周长和,比较后即可得到答案.解答:解:设半圆的直径为a,则半圆周长C1为:aπ,4个正三角形的周长和C2为:3a,∵aπ<3a,∴C1<C2故选B.点评:本题考查了圆的认识及等边三角形的性质,解题的关键是设出圆的直径并表示出C1和C2.6.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C 作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B .C .D.考点:圆的认识.专题:压轴题.分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选:D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.7.车轮要做成圆形,实际上就是根据圆的特征()A.同弧所对的圆周角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形考点:圆的认识.分析:根据车轮的特点和功能进行解答.解答:解:车轮做成圆形是为了在行进过程中保持和地面的高度不变,是利用了圆上各点到圆心的距离相等,故选C.点评:本题考查了对圆的基本认识,即墨经所说:圆,一中同长也.8.如图,以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,则点B的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)考点:圆的认识;坐标与图形性质.分析:先根据同圆的半径相等得出OB=OA=1,再由点B在y轴的负半轴上即可求出点B的坐标.解答:解:∵以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,∴点B的坐标是(0,﹣1).故选B.点评:本题考查了对圆的认识及y轴上点的坐标特征,比较简单.二.填空题(共6小题)9.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.10.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是60°.考点:圆的认识;等腰三角形的性质.分析:利用等边对等角即可证得∠C=∠DOC=20°,然后根据三角形的外角等于不相邻的两个内角的和即可求解.解答:解:∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故答案为:60°.点评:本题主要考查了三角形的外角的性质和等腰三角形的性质,正确理解圆的半径都相等是解题的关键.11.如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC=65度.考点:圆的认识;平行线的性质.专题:计算题.分析:根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.解答:解:∵OD=OC,∴∠D=∠A,而∠AOD=50°,∴∠A=(180°﹣50°)=65°,又∵AD∥OC,∴∠BOC=∠A=65°.故答案为:65.点评:本题考查了有关圆的知识:圆的半径都相等.也考查了等腰三角形的性质和平行线的性质.12.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD= 40°.考点:圆的认识;平行线的性质;三角形内角和定理.专题:计算题.分析:根据三角形内角和定理可求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.解答:解:∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°,∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°﹣2∠A=40°.故答案为:40.点评:本题考查平行线性质、圆的认识及三角形内角和定理的运用.13.如图①是半径为1的圆,在其中挖去2个半径为的圆得到图②,挖去22个半径为()2的圆得到图③…,则第n(n>1)个图形阴影部分的面积是(1﹣)π.考点:圆的认识.专题:规律型.分析:先分别求出图②与图③中阴影部分的面积,再从中发现规律,然后根据规律即可得出第n(n>1)个图形阴影部分的面积.解答:解:图②中阴影部分的面积为:π×12﹣π×()2×2=π﹣π=(1﹣)π=π;图③中阴影部分的面积为:π×12﹣π×[()2]2×22=π﹣π=(1﹣)π=π;图④是半径为1的圆,在其中挖去23个半径为()3的圆得到的,则图④中阴影部分的面积为:π×12﹣π×[()3]2×23=π﹣π=(1﹣)π=π;…,则第n(n>1)个图形阴影部分的面积为:π×12﹣π×[()n﹣1]2×2n﹣1=π﹣π=(1﹣)π.故答案为:(1﹣)π.点评:本题考查了对圆的认识及圆的面积公式,从具体的图形中找到规律是解题的关键.14如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=5.考点:圆的认识;等边三角形的判定与性质.分析:由OA=OB,得△OAB为等边三角形进行解答.解答:解:∵OA=OB=5,∠AOB=60°,∴△OAB为等边三角形,故AB=5.故答案为:5.点评:同圆或等圆的半径相等在解题中是一个重要条件.三.解答题(共7小题)15.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.考点:圆的认识;全等三角形的判定.专题:证明题;压轴题.分析:根据等边对等角可以证得∠A=∠B,然后根据SAS即可证得两个三角形全等.解答:证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).点评:本题考查了三角形全等的判定与性质,正确理解三角形的判定定理是关键.16.如图,CD是⊙O的直径,E是⊙O上一点,∠EOD=48°,A为DC延长线上一点,且AB=OC,求∠A的度数.考点:圆的认识;等腰三角形的性质.分析:根据圆的半径,可得等腰三角形,根据等腰三角形的性质,可得∠A 与∠AOB,∠B与∠E的关系,根据三角形的外角的性质,可得关于∠A的方程,根据解方程,可得答案.解答:解:如图,连接OB,由AB=OC,得AB=OC,∠AOB=∠A.由三角的外角等于与它不相邻的两个内角的和,得∠EBO=∠A+∠AOB=2∠A.由OB=OE,得∠E=∠EBO=2∠A.由∠A+∠E=∠EOD,即∠A+2∠A=48°.解得∠A=16°.点评:本题考查了圆的认识,利用了圆的性质,等腰三角形的性质,三角形外角的性质.17.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.考点:圆的认识;等腰三角形的性质.专题:计算题.分析:连接OD,如图,由AB=2DE,AB=2OD得到OD=DE,根据等腰三角形的性质得∠DOE=∠E=20°,再利用三角形外角性质得到∠CDO=40°,加上∠C=∠ODC=40°,然后再利用三角形外角性质即可计算出∠AOC.解答:解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.18.如图,点O是同心圆的圆心,大圆半径OA,OB分别交小圆于点C,D,求证:AB∥CD.考点:圆的认识;平行线的判定.专题:证明题.分析:利用半径相等得到OC=OD,则利用等腰三角形的性质得∠OCD=∠ODC,再根据三角形内角和定理得到∠OCD=(180°﹣∠O),同理可得∠OAB=(180°﹣∠O),则∠OCD=∠OAB,然后根据平行线的判定即可得到结论.解答:证明:∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°﹣∠O),∵OA=OB,∴∠OAB=∠OBA,∴∠OAB=(180°﹣∠O),∴∠OCD=∠OAB,∴AB∥CD.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).19.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.考点:圆的认识;全等三角形的判定与性质.专题:证明题.分析:先根据等腰三角形的性质由OA=OB得到∠A=∠B,再利用“SAS”证明△OAC≌△OBD,然后根据全等三角形的性质得到结论.解答:证明:∵OA=OB,∴∠A=∠B,在△OAC和△OBD中,,∴△OAC≌△OBD(SAS),∴∠AOC=∠DOB.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了全等三角形的判定与性质.20.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA延长线于E,交半圆于C,且CE=AO,求∠E的度数.考点:圆的认识;等腰三角形的性质.专题:计算题.分析:如图,由CE=AO,OA=OC得到OC=EC,则根据等腰三角形的性质得∠E=∠1,再利用三角形外角性质得∠2=∠E+∠1=2∠E,加上∠D=∠2=2∠E,所以∠BOD=∠E+∠D,即∠E+2∠E=75°,然后解方程即可.解答:解:如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.21.如图,点B是线段AC上的一点,分别以AB、BC、CA为直径作半圆,求证:半圆AB的长与半圆BC的长之和等于半圆AC的长.考点:圆的认识.专题:证明题.分析:根据圆的周长公式可计算出半圆AB的长=πAB,半圆BC的长=πBC,半圆AC的长=πAC,则半圆AB的长+半圆BC的长=π•(AB+BC)=π•AC,即半圆AB的长与半圆BC的长之和等于半圆AC的长.解答:证明:∵半圆AB的长=•2π•=πAB,半圆BC的长=•2π•=πBC,半圆AC的长=•2π•=πAC,∴半圆AB的长+半圆BC的长=πAB+πBC=π•(AB+BC),∵AB+BC=AC,∴半圆AB的长+半圆BC的长=π•AC,∴半圆AB的长与半圆BC的长之和等于半圆AC的长.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).。
一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm,30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.AB DCO· EMABCDOEBACACBD例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例8、如图,有一圆弧开桥拱,拱的跨度AB =16cm ,拱高CD =4cm ,那么拱形的半径是__m 。
2.1圆知识点管理归类探究知识点一:圆的定义1、圆的概念描述:①圆心确定圆的位置,半径确定圆的大小;②圆是一条封闭曲线。
2、圆的集合定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合。
3、同圆或等圆,半径相等。
题型一:圆的定义【例题1】(2021·全国九年级课时练习)确定一个圆的要素是________和________.【答案】圆心半径【分析】由圆的定义即可求解.【详解】解:由圆的定义可知,确定一个圆的两个要素为圆心和半径,故答案为:圆心;半径.【点睛】本题考查圆的定义,解题的关键是正确理解确定一个圆的要素是圆心和半径.变式训练【变式1-1】(2021·全国九年级课时练习)以5cm为半径可以画________个圆;以点O为圆心可以画________个圆;以点O为圆心,以5cm为半径可以画________个圆.【答案】无数无数 1【分析】根据圆的概念和性质分析即可.【详解】以5cm为半径,没有确定圆心,所以可以画无数个圆;以点O为圆心,没有确定半径,所以可以画无数个圆;以点O为圆心,以5cm为半径可以画1个圆.故答案为:无数,无数,1【点睛】本题考查了圆的基本概念,掌握圆的基本概念是解题的关键.【变式1-2】(2021·全国九年级课时练习)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做_____.固定的端点O叫做______,线段OA叫做_______以点O为圆心的圆,记作“_________”,读作“ ______”.【答案】圆圆心半径⊙O圆O【变式1-3】(2021·上海市康城学校八年级期末)平面内到点A的距离等于3cm的点的轨迹是__________.【答案】以点A为圆心,3cm长为半径的圆【分析】利用圆的基本概念即可描述出轨迹.【详解】根据题意可知轨迹是:以A点为圆心,3cm长为半径的圆.【点睛】本题考查对圆的基本概念的理解.圆的概念即“在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆.”【变式1-4】(2021·上海长宁·八年级期末)经过定点A且半径为10的圆的圆心轨迹是_____________________.【答案】以点A为圆心,10为半径的圆【分析】要求作经过定点A,且半径为10的圆的圆心,则圆心应满足到点A的距离恒等于10,根据点和圆的位置关系与数量之间的联系进行分析.【详解】根据题意,得圆心应满足到点A的距离恒等于10,即经过定点A,且半径为10的圆的圆心轨迹是以点A为圆心,10为半径的圆故答案为:以点A为圆心,10为半径的圆.【点睛】此题考查圆的认识,掌握圆的形成方式:到定点的距离等于定长的所有点的集合是解题的关键.知识点二:点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内⇔d <r ;点P在圆上⇔d = r ;点P在圆外⇔d >r.注意:点在圆上是指点在圆周上,而不是点在圆面上。
圆的基本元素典型例题
1.确定一个圆的条件是( )
A.圆心B.半径C.圆心和半径D.以上都不对
答案:C
说明:确定一个圆就是要确定它的位置与大小,圆心可以确定圆的位置,半径则确定圆的大小,所以圆心和半径即可确定一个圆,答案为C.
2.判断下列说法是否正确:
(1)直径是弦.( )对
直径是过圆心的弦,是一个圆中最长的弦,因此这个说法正确
(2)弦是直径.( )错
连接圆上任意两点的线段叫做弦,因此,弦不一定过圆心,所以这个说法错误
(3)半圆是弧.( )对
半圆是任一条直径的两个端点分圆成两条弧,每一条弧叫做半圆,所以这个说法正确
(4)弧是半圆.( )错
圆上任意两点间的部分叫做圆弧,而这任意两点不一定是一条直径的两个端点,所以这个说法错误
(5)长度相等的两段弧是等弧.( )错
等弧是指在同圆或等圆中的,而长度相等的两段弧从两个不等圆中也可截出,所以这个说法错误
(6)等弧的长度相等.( )对
等弧是在同圆或等圆中,能够互相重合的弧,因此长度一定相等,这个说法正确
(7)两个劣弧之和等于半圆.( )错
小于半圆的弧是劣弧,两个劣弧之和可以是优弧,也可以是半圆,还可以是劣弧,这个说法错误
(8)半径相等的两个半圆是等弧.( )对
半径相等的两个圆是等圆,两个等圆中的半圆是可以重合的,所以这个说法正确.
3.下列说法:
①顶点在圆周上的角是圆周角;
②圆周角的度数等于圆心角的度数的一半;
③90º的圆周角所对的弦是直径;
④圆周角相等,则它们所对的弧也相等.
其中正确的有( )
A.1个B.2个C.3个D.4个
答案:A
说明:①圆周角不仅顶点要在圆周上,而且两边都要和圆相交,①错误;②一条弧所对的圆周角等于它所对的圆心角的一半,如果不是一条弧上的,则不成立,②错误;③是正确的;④只有在同圆或等圆中才成立,④错误;所以只有③是正确的,答案为A.
4.弦MN将⊙O分成两条弧,它们的度数比为4:5,若T为MN的中点,那么∠MOT为
( )
A.160ºB.80ºC.100ºD.50º
答案:B
说明:弦MN将⊙O分成两条弧,知这两条弧的度数之和为360º,又它们的度数比为4:5,则可求出这两条弧的度数分别为160º和200º,即∠MON = 160º,而T为MN的中点,所以2∠MOT =∠MON,即∠MOT = 80º,答案为B.
5.如图,已知在⊙O中,弦AB的长为 8cm,圆心O到AB的距离为 3cm,求⊙O的半径.
解析:要求⊙O的半径,连接OA,只要求出OA的长即可,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,则AE = EB =AB = 4cm,再解Rt△AOE即可.
解:连接OA,作OE⊥AB于E,则AE = EB.
∵AB = 8cm,∴AE = 4cm.
又∵OE = 3cm,∴在Rt△AOE中,则OA = 5cm.
∴⊙O的半径为 5cm.
习题精选
一、填空题
1.如图1,在⊙Ο中,若AB⊥MN于点C,AB为直径,试填写出一个你认为正确的结
论:
2.如图2,已知∠BOC=100°,则∠BAC的度数为
3.如图3,⊙Ο的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的取值范围
是
4.如图4,P是⊙Ο内一定点,请你在内作出过P点的最长弦和最短弦,标上字母,并指出最长弦是,最短弦是
5.世界上因为有了圆的图案,万物才显得富有生机,如图5是来自现实生活中的图形,图中都有圆:
上述三个图形中是轴对称图形的有,是中心对称图形的
有(用代号填写)
二、选择题
1.如图6,在三个等圆上各有一条劣弧,,,如果+ =,那么AB+CD 与EF的大小关系是( )
A.AB+CD=EF B. AB+CD<EF C. AB+CD>EF D.大小关系不确定
2.已知点P是半径为5的⊙Ο内一定点,且PO=4,则过点P的所有弦中,弦长可能取到的整数值为( )
A. 5,3,4 B. 10,9,8,7,6,5,4,3
C. 10,9,8,7,6 D. 12,11,10,9,8,7,6
3.如图7,⊙Ο的两条弦AE、BC相交于点D,连结AC、BE、AO、OB,若∠ACB=60°,则下列结论中正确的是( )
A.∠AOB=60° B.∠AOB=30° C.∠AEB=60° D.∠AEB=30°
4.如图8,在半径为2厘米的⊙Ο内有长为厘米的弦AB,此弦所对的圆心角∠AOB为( )
A. 60° B. 90° C. 120° D.150°
三、解答题
已知:如图10,AB是⊙Ο内的一条弦,CD为的直径,且CD⊥AB,垂足为点M,过点C作直线交AB所在直线于点E,交于点F。
①判断图中∠CEB与∠FDC的数量关系,并写出结论;
②将直线绕点C旋转(与CD不重合),在旋转过程中,点E、点F的位置也随之变化,请你在下的备用图(1)中画出当点E、F重合时的图形,在备用图(2)中画出当点E在AB的延长线上时的图形,标上相应的字母,此时(1)的结论是否还成立,若成立,请说明理由。