高中数学第二章平面向量2.2.1向量的加法课件苏教版必修4
- 格式:ppt
- 大小:21.53 MB
- 文档页数:21
2.2.1 平面向量基本定理示范教案整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.教科书中,先用实例归纳出基本定理,然后做形式化的证明.教学时要注意,形式化证明可以省略,特别是唯一性证明,可能多数学生难以理解,但一定要对“唯一性”加以说明,以便应用唯一性解题.建议引导学生推导直线的向量表达式和中点公式.特别强调直线的向量表达式和中点公式应让学生记忆.三维目标1.通过探究活动,推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达,并通过例题的探究,掌握直线的向量表达式和中点公式.重点难点教学重点:平面向量基本定理和直线的向量表达式.教学难点:平面向量基本定理的灵活运用.课时安排1课时教学过程导入新课思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,用课件给出图象演示和讲解.通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题(1)给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?(2)如图1(1),设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,你能通过作图探究a与e1、e2之间的关系吗?(1) (2)图1活动:如图1(2),在平面内任取一点O ,作OA →=e 1,OB →=e 2,OC →=a .过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM →=λ1e 1,ON →=λ2e 2.由于OC →=OM →+ON →,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.或先让学生计算特例,从感性猜想入手.如图2,e 1,e 2是两个不平行的向量,容易看出AB →=2e 1+3e 2,CD →=-e 1+4e 2, EF →=4e 1-4e 2,GH →=-2e 1+5e 2.图2由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.由此可得:平面向量基本定理:如果e 1和e 2是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2,使a =a 1e 1+a 2e 2.教师强调:①我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底,记为{e 1,e 2},a 1e 1+a 2e 2叫做向量a 关于基底{e 1,e 2}的分解式;②基底不唯一,关键是不共线;③由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解; ④基底给定时,分解形式唯一.接下来教师可引导学对该定理给出证明.证明:在平面内任取一点O(如图3),作OE 1→=e 1,OE 2→=e 2,OA →=a .图3由于e 1与e 2不平行,可以进行如下作图:过点A 作OE 2的平行(或重合)直线,交直线OE 1于点M ,过点A 作OE 1的平行(或重合)直线,交直线OE 2于点N ,于是依据平面向量基本定理,存在两个唯一的实数a 1,a 2,分别有OM →=a 1e 1,ON →=a 2e 2,所以a =OA →=OM →+ON →=a 1e 1+a 2e 2.证明表示的唯一性:如果存在另一对实数x ,y 使OA →=x e 1+y e 2,则a 1e 1+a 2e 2=x e 1+y e 2,即(x -a 1)e 1+(y -a 2)e 2=0.由于e 1与e 2不平行,如果x -a 1,y -a 2中有一个不等于0,不妨设y -a 2≠0,则e 2=-x -a 1y -a 2e 1,由平面向量基本定理,得e 1与e 2平行.这与假设矛盾,因此x -a 1=0,y -a 2=0,即x =a 1,y =a 2.讨论结果:(1)(2)略. 应用示例思路1例 1如图4,ABCD 中,AB →=a ,AD →=b ,H 、M 分别是AD 、DC 的中点,F 使BF =13BC ,以a ,b 为基底分解向量AM →与HF →.图4解:由H 、M 、F 所在位置,有AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a .HF →=AF →-AH →=AB →+BF →-AH →=AB →+13BC →-12AD →=AB →+13AD →-12AD →=a -16b .点评:以a 、b 为基底分解向量AM →与HF →,实为用a 与b 表示向量AM →与HF →.变式训练已知ABCD 的两条对角线相交于点M ,设AB →=a ,AD →=b .试用基底{a ,b }表示MA →,MB →,MC →和MD →(图5)图5解:因为AC →=AB →+AD →=a +b , DB →=AB →-AD →=a -b ,MA →=-12AC →=-12(a +b )=-12a -12b ,MB →=12DB →=12(a -b )=12a -12b ,MC →=12AC →=12a +12b ,MD →=-12DB →=-12a +12b .例 2 如图6,质量为10 kg 的物体A 沿倾斜角为θ=30°的斜面匀速下滑,求物体受到的滑动摩擦力和支持力.(g =10 m/s 2)图6解:物体受到三个力:重力AG →,斜面支持力AN →,滑动摩擦力AM →.把重力AG →分解为平行于斜面的分力AF →和垂直于斜面的分力AE →.因为物体做匀速运动,所以AN →=-AE →,AM →=-AF →.因为|AG →|=10(kg)×10(m/s 2)=100(N), |AF →|=|AG →|·sin30°=100×12=50(N),|AE →|=|AG →|·cos30°=100×32=503(N),所以|AM →|=|AF →|=50(N),|AN →|=|AE →|=503(N).答:物体所受滑动摩擦力大小为50 N ,方向沿斜面平行向上;所受斜面支持力大小为50 3 N ,方向与斜面垂直向上.例 3下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A .①② B.②③ C .①③ D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解析:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B图7.a>0,b<0 .a<0,b<0 思路2例 1如图8,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →.图8活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a=a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎩⎪⎨⎪⎧a 1=b 1,a 2=b 2.解:∵AM →=AN →+NM →,BM →=BN →+NM →,∴由AM →+2BM →+3CM →=0,得(AN →+NM →)+2(BN →+NM →)+3CM →=0.∴AN →+3NM →+2BN →+3CM →=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线, 设AN →=λBN →,CM →=μNM →,∴λBN →+3NM →+2BN →+3μNM →=0.∴(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴⎩⎪⎨⎪⎧λ=-2,μ=-1.∴CM →=-NM →=MN →. ∴CN →=CM →+MN →=2CM →=2a .点评:这里选取BN →,NM →作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形例 2如图9,△ABC 中,AD 为△ABC 边上的中线且AE =2EC ,求AG GD 及BGGE的值.图9活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化后,结合向量的相等进行求解.解:设AG GD =λ,BGGE =μ.∵BD →=DC →,即AD →-AB →=AC →-AD →, ∴AD →=12(AB →+AC →).又∵AG →=λGD →=λ(AD →-AG →), ∴AG →=λ1+λAD →=λ21+λAB →+λ21+λAC →.①又∵BG →=μGE →,即AG →-AB →=μ(AE →-AG →), ∴(1+μ)AG →=AB →+μAE →,AG →=11+μAB →+μ1+μAE →.又AE →=23AC →,∴AG →=11+μAB →+2μ31+μAC →.②比较①②,∵AB →、AC →不共线,∴⎩⎪⎨⎪⎧λ21+λ=11+μ,λ21+λ=2μ31+μ.解之,得⎩⎪⎨⎪⎧λ=4,μ=32.∴AG GD =4,BG GE =32. 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.3已知A ,B 是直线l 上任意两点,O 是l 外一点(如图10),求证:对直线l 上任意一点P ,存在实数t ,使OP →关于基底{OA →,OB →}的分解式为OP →=(1-t)OA →+tOB →. ① 并且,满足①式的点P 一定在l 上.证明:设点P 在直线l 上,则由平面向量基本定理知,存在实数t ,使AP →=tAB →=t(OB →-OA →).图10所以OP →=OA →+AP →=OA →+tOB →-tOA →.所以点P 满足等式OP →=(1-t)OA →+tOB →,即有AP →=tAB →,即P 在l 上.点评:由本例可知,对直线l 上任意一点P ,一定存在唯一的实数t 满足向量等式①;反之,对每一个实数t ,在直线l 上都有唯一的一个点P 与之对应.向量等式①叫做直线l 的向量参数方程式,其中实数t 叫做参变数,简称参数.在①中,令t =12,点M 是AB 的中点,则OM →=12(OA →+OB →).课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,回忆我们是如何探究发现定理的?并通过思路2例3的证明又探究得到了线段AB 中点的向量表达式.教师点拨学生,在今后的学习中,要继续发扬这种勇于探索、勇于发现的科学精神.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图等,并把本节所学纳入知识体系中.作业课本本节练习B 组 2,3.设计感想1.本节课内容是在上节向量学习的基础上探究到的一个新定理——平面向量基本定理.教科书首先通过特例验证:对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题目.3.应充分借助多媒体进行教学,整节课的教学主线应以学生探究为主,教师给予引导和点拨.充分让学生经历分析、探究问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决问题的方法就越恰当而简捷.备课资料 一、三角形中三条中线共点的证明如图11所示,已知在△ABC 中,D 、E 、L 分别是BC 、CA 、AB 的中点,设中线AD 、BE 相交于点P.图11求证:AD 、BE 、CL 三线共点.分析:欲证三条中线共点,只需证明C 、P 、L 三点共线.证明:设AC →=a ,AB →=b ,则AL →=12b ,CL →=AL →-AC →=-a +12b .设AP →=mAD →,则AC →+CP →=m(AC →+CD →),CP →=(-1+m)AC →+mCD →=(-1+m)a +m[12(b -a )]=(-1+12m)a +12m b .①又设EP →=nEB →,则CP →-CE →=n(EC →+CB →),∴CP →=(1-n)CE →+nCB →=-12(1-n)a +n(b -a )=(-12-12n)a +n b .②由①②,得⎩⎪⎨⎪⎧-1+12m =-12-12n ,12m =n.解之,得⎩⎪⎨⎪⎧m =23,n =13.∴CP →=-23a +13b =23(-a +12b )=23CL →.∴C、P 、L 三点共线.∴AD、BE 、CL 三线共点.二、备用习题1.如图12所示,已知AP →=43AB →,AQ →=13AB →,用OA →、OB →表示OP →,则OP →等于( )图12A.13OA →+43OB → B .-13OA →+43OB →C .-13OA →-43OB → D.13OA →-43OB →2.已知e 1,e 2是两非零向量,且|e 1|=m ,|e 2|=n ,若c =λ1e 1+λ2e 2(λ1,λ2∈R ),则|c |的最大值为( )A .λ1m +λ2nB .λ1n +λ2mC .|λ1|m +|λ2|nD .|λ1|n +|λ2|m3.已知G 1、G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且A 1A 2→=e 1,B 1B 2→=e 2,C 1C 2→=e 3,则G 1G 2→等于( )A.12(e 1+e 2+e 3)B.13(e 1+e 2+e 3) C.23(e 1+e 2+e 3) D .-13(e 1+e 2+e 3) 4.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心5.已知向量a 、b 且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A 、B 、D B .A 、B 、C C .C 、B 、D D .A 、C 、D6.如图13,平面内有三个向量OA →、OB →、OC →,其中与OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.图13参考答案:1.B 2.C 3.B 4.B 5.A 6.611。
向量知识复习题一. 平面向量基本定理和向量共线定理1. 如果12,e e是同一平面内两个不共线的向量,那么对于这一平面内的任一a ,有且只有一对实数12,λλ,使1122a e e λλ=+ .2. 如果有一个实数λ,(0),b a a a b λ=≠使那么与是共线向量;反之,如果b a 与 (0)a ≠ 是共线向量,那么有且只有一个实数λ,使.b a λ=练习1:在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN = _____(用a b 、表示) 2.设OA = a ,OB = b ,OC =c ,当(),λμλμ=+∈R c a b ,且1λμ+=时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去A 点D .直线AB 上,但除去B 点 二.利用数量积求角公式:______________________________练习:1.求(a b ==-的夹角。
2. 已知向量(sin ,1),(1,cos ),.22a b ππθθθ==-<<(I )若,a b ⊥求;θ(II )求a b + 的最大值。
3. 已知a 、b 、c 是同一平面内的三个向量,其中a ()1,2=. (1)若 |c|=25,且c //a ,求c 的坐标;(2)若b ()1,m =()0m <且a +2b 与a —2b 垂直,求a 与b三.向量的几何表示1.已知112233,),(,),(,),ABC A x y B x y C x y 三个顶点为(求证:(1)123123,)33x x x y y y ABC G++++ 的三条中线交于点(.(2)0GA GB BC ++= 2.如图2,OM ∥AB,点P 在由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动,且OP xOA yOB =+,则x 的取值范围是 _;当12x =-时,y 的取值范围是 ___. 必修4第二章《平面向量》一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .-2B .-2C .-D .-3.对于菱形ABCD ,给出下列各式:①=②||||=③||||+=- ④||4||||22=+2其中正确的个数为 ( )A .1个B .2个C .3个D .4个4 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=- 5.已知向量与反向,下列等式中成立的是( )A .||||||-=-B .||||-=+C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( ) A .① B .①③ C .②③ D .①②③ 8.与向量)5,12(=平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±± 9.若32041||-=-,5||,4||==,则与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=围绕原点按逆时针旋转4π得到向量,则的坐标为( )A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(- 11.设k ∈R ,下列向量中,与向量)1,1(-=一定不平行的向量是( )A .),(k k =B .),(k k --=C .)1,1(22++=k kD .)1,1(22--=k k12.已知12||,10||==b a ,且36)51)(3(-=b a ,则b a 与的夹角为( )A .60°B .120°C .135°D .150°二、填空题13.非零向量||||||,+==满足,则,的夹角为 .14.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 15.已知)2,3(=a ,)1,2(-=,若b a b a λλ++与平行,则λ= .16.已知为单位向量,||=4,与的夹角为π32,则在方向上的投影为 .三、解答题17.已知非零向量b a ,满足||||b a b a -=+,求证: ⊥18.已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值.19、设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.20.已知2||= 3||=,与的夹角为60o,35+=,k +=3,当当实数k 为何值时,⑴∥ ⑵d c ⊥21.如图,ABCD 为正方形,P 是对角线DB 上一点,PECF 为矩形, 求证:①PA=EF ;②PA ⊥EF.22.如图,矩形ABCD 内接于半径为r 的圆O ,点P 是圆周上任意一点,求证:PA 2+PB 2+PC 2+PD 2=8r 2.23、如图,已知4AD AB = ,4DE BC = ,试判断AC 与AE是否共线?24、已知向量33(cos ,sin )22x x a = ,(cos ,sin )22x xb =- , [,]32x ππ∈-(1)求证:()a b - ⊥()a b + ; (2)13a b += ,求cos x 的值参考答案二、填空题:13. 120°; 14. 矩形 15、 1± 16. 2- 三、解答题: 17.证:()()22-=+⇒+=+⇒-=+0222222=⇒+-=++⇒b a b b a a b b a a 为非零向量又, ⊥∴18.解:)3,1()3,2(),1(--=-=-=k k0)3,1(),1(0=--⋅⇒=⋅⇒⊥⇒∠∠k k RT C 为21330312±=⇒=-+-⇒k k k 19.()212121432e e e e e e -=+--=-= 若A ,B ,D 三点共线,则共线,λ=∴设即212142e e e k e λλ-=+由于不共线与21e e 可得:221142e e k e e λλ-==故8,2-==k λ20.⑴若c ∥d 得59=k ⑵若d c ⊥得1429-=k 21.解以D 为原点为x 轴正方向建立直角坐标系则A(0,1), C:(1,0) B:(1,1))22,22(,r r P r DP则设=)221,22(r r --=∴ )0,22(:),22,1(r F r E 点为)22,122(r r --=∴22)221()22(||r r -+-=∴22)22()221(||r r -+-=∴故EF PA =⊥⇒=⋅0而 22.证:-=-=, 22222222||2||)(||||2||)(||PB PD PB PD PB PD BD +-=-=+-=-=∴0,,,=⋅=⋅⇒⊥⊥AC BD 故为直径222222||||||||||||+++=+∴即2222222844r PD PC PB PA r r =+++=+。