武汉艺术生文化课三棱锥的几何问题及多种答案解析
- 格式:doc
- 大小:98.00 KB
- 文档页数:3
(名师选题)(精选试题附答案)高中数学第八章立体几何初步经典大题例题单选题1、已知三棱锥P−ABC,其中PA⊥平面ABC,∠BAC=120°,PA=AB=AC=2,则该三棱锥外接球的表面积为()A.12πB.16πC.20πD.24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC的外心为G,O为球心,所以OG⊥平面ABC,因为PA⊥平面ABC,所以OG//PA,设D是PA中点,因为OP=OA,所以DO⊥PA,因为PA⊥平面ABC,AG⊂平面ABC,所以AG⊥PA,因此OD//AG,PA=1,因此四边形ODAG是平行四边形,故OG=AD=12由余弦定理,得BC=√AB2+AC2−2AB⋅AC⋅cos120°=√4+4−2×2×2×(−1)=2√3,2⇒AG=2,由正弦定理,得2AG=√3√32所以该外接球的半径R满足R2=(OG)2+(AG)2=5⇒S=4πR2=20π,故选:C.小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.2、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果.由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.3、若一个正方体的体对角线长为a,则这个正方体的全面积为()A .2a 2B .2√2a 2C .2√3a 2D .3√2a 2答案:A分析:设正方体的棱长为x ,求出正方体的棱长即得解.解:设正方体的棱长为x ,则√3x =a ,即x 2=13a 2,所以正方体的全面积为6x 2=6×13a 2=2a 2. 故选:A4、《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,AC ⊥CD ,AC =BC +CD =2,当△BCD 的面积最大时,鳖臑ABCD 的表面积为( )A .√3+√62B .3+√62C .2+√3+√62D .3+√3+√62答案:D分析:根据题意可证明CD ⊥BC ,从而说明三角形BCD 是直角三角形,求得BD ,进而求得四个直角三角形的面积,可得答案.由题意可知:AB ⊥平面BCD ,CD ⊂平面BCD ,故AB ⊥CD ,又AC ⊥CD ,AC ∩AB =A,AB,AC ⊂平面ABC ,故CD ⊥平面ABC ,BC ⊂平面ABC ,故CD ⊥BC ,所以S △BCD =12BC ⋅CD ≤12×(BC+CD 2)2=12 ,当且仅当BC =CD =1时取得等号, 故BD =√1+1=√2 ,由AB ⊥平面BCD ,可知AB ⊥BD,AB ⊥BC ,故AB=√AC2−BC2=√4−1=√3 ,所以S△ABD=12AB⋅BD=√62,S△ABC=12AB⋅BC=√32,S△BCD=12BC⋅CD=12,S△ACD=12AC⋅CD=1,所以鳖臑ABCD的表面积为√62+√32+12+1=3+√3+√62,故选:D5、锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=7、b=8,m⃑⃑ =(12,cosA),n⃑=(sinA,−√32),且m⃑⃑ ⊥n⃑,则△ABC的面积为()A.√3B.3√3C.5√3D.10√3答案:D分析:先由向量垂直得到A=π3,利用余弦定理求出c=3或c=5,利用锐角三角形排除c=3,从而c=5,利用面积公式求出答案.由题意得:12sinA−√32cosA=0,故tanA=√3,因为A∈(0,π2),所以A=π3,由余弦定理得:cosA=64+c 2−492×8c =12,解得:c=3或c=5,当c=3时,最大值为B,其中cosB=49+9−642×7×3<0,故B为钝角,不合题意,舍去;当c=5时,最大值为B,其中cosB=49+25−642×7×5>0,故B为锐角,符合题意,此时S△ABC=12bcsinA=12×8×5×√32=10√3.故选:D6、过半径为4的球O表面上一点M作球O的截面,若OM与该截面所成的角是30°,则O到该截面的距离是()A.4B.2√3C.2D.1答案:C分析:作出球的截面图,根据几何性质计算,可得答案.作出球的截面图如图:设A为截面圆的圆心,O为球心,则OA⊥截面,AM在截面内,即有OA⊥AM,=2 ,故∠OMA=30∘,所以OA=4×12即O到该截面的距离是2,故选:C7、如图,点N为正方形ABCD的中心,ΔECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案:B解析:利用垂直关系,再结合勾股定理进而解决问题.如图所示, 作EO ⊥CD 于O ,连接ON ,过M 作MF ⊥OD 于F .连BF ,∵平面CDE ⊥平面ABCD .EO ⊥CD,EO ⊂平面CDE ,∴EO ⊥平面ABCD ,MF ⊥平面ABCD ,∴ΔMFB 与ΔEON 均为直角三角形.设正方形边长为2,易知EO =√3, ON =1 EN =2,MF =√32,BF =52,∴BM =√7.∴BM ≠EN ,故选B .小提示:本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角形.8、在正方体ABCD −A 1B 1C 1D 1中,E 为线段A 1B 1的中点,则异面直线D 1E 与BC 1所成角的余弦值为( )A .√55B .√105C .√155D .2√55答案:B分析:连接AD 1,AE ,得到AD 1//BC 1,把异面直线D 1E 与BC 1所成角转化为直线D 1E 与AD 1所成角,取AD 1的中点F ,在直角△D 1EF 中,即可求解.在正方体ABCD −A 1B 1C 1D 1中,连接AD 1,AE ,可得AD 1//BC 1,所以异面直线D 1E 与BC 1所成角即为直线D 1E 与AD 1所成角,即∠AD 1E 为异面直线D 1E 与BC 1所成角,不妨设AA 1=2,则AD 1=2√2,D 1E =AE =√5,取AD 1的中点F ,因为D 1E =AE ,所以EF ⊥AD 1,在直角△D 1EF 中,可得cos∠AD 1E =D 1F D 1E =√2√5=√105. 故选:B.9、若直线a //平面α,A ∉α,且直线a 与点A 位于α的两侧,B ,C ∈a ,AB ,AC 分别交平面α于点E ,F ,若BC =4,CF =5,AF =3,则EF 的长为( )A .3B .32C .34D .23答案:B分析:根据线面平行可得线线平行,从而可求EF =32. ∵BC //α,BC ⊂平面ABC ,平面ABC ∩α=EF ,∴EF //BC ,∴AF AC =EF BC ,即35+3=EF 4,∴EF =32. 故选:B.10、如图在正三棱锥S −ABC 中,M,N 分别是棱SC,BC 的中点,Q 为棱AC 上的一点,且AQ =12QC ,MN ⊥MQ ,若AB =2√2,则此正三棱锥S −ABC 的外接球的体积为( )A .12πB .4√33πC .8√3πD .4√3π 答案:D分析:根据题意证明SA,SB,SC 两两垂直,将三棱锥放入棱长为2的正方体,两者外接球体积相同,求得正方体外接球体积即可得出答案.因为在△SBC 中,M,N 分别是棱SC,BC 的中点,所以MN //SB ,因为MN ⊥MQ ,所以SB ⊥MQ ,因为三棱锥S −ABC 为正三棱锥,所以SB ⊥AC (对棱垂直),又因为MQ,AC ⊂面SAC ,MQ ∩AC =Q ,所以SB ⊥面SAC ,因为SA,SC ⊂面SAC ,所以SB ⊥SA,SB ⊥SC ,在Rt △SAB 中,SA 2+SB 2=AB 2,因为三棱锥S −ABC 为正三棱锥,所以△SBC 是等腰三角形,△ABC 是等边三角形,所以SB =SC ,AB =AC ,所以SA 2+SC 2=AC 2,即SA ⊥SC ,所以SA,SB,SC 两两垂直,将此三棱锥放入正方体中,此正方体的面对角线长等于AB 长,为2√2,则该正方体棱长为2,外接球半径R =√(22)2+(2√22)2=√3,正方体外接球体积V =43πR 3=43π×(√3)3=4√3π,此正三棱锥S −ABC 的外接球体积和正方体外接球体积相同,为4√3π.故选:D填空题11、如图所示,过三棱台上底面的一边A1C1,作一个平行于棱BB1的截面,与下底面的交线为DE.若D、E分别是AB、BC的中点,则V A1B1C1−DBEV A1B1C1−ABC=______.答案:37分析:证得S△A1B1C1=14S△ABC,然后结合棱台与棱柱的体积公式即可求出结果.因为BB1//平面DEC1A1,且平面BB1C1C∩平面DEC1A1=C1E,所以BB1//C1E,又因为B1C1//BE,所以四边形BB1C1E为平行四边形,所以B1C1=BE,且E分别是BC的中点,所以B1C1=1 2BC,同理A1B1=12AB,因此S△A1B1C1=14S△ABC,设上底面的面积为S,高为ℎ,则下底面的面积为4S,所以V A1B1C1−DBEV A1B1C1−ABC =13(S+√S⋅4S+4S)ℎ=37,所以答案是:37.12、两个平面最多可以将空间分为___________部分.答案:4分析:根据两个平面的位置关系分别计算出它们将空间分成的部分数即可得解. 两个平面的位置关系有平行和相交两种,当两个平面平行时,它们可将空间分成3部分,当两个平面相交时,它们可将空间分成4部分,所以两个平面最多可以将空间分为4部分.所以答案是:413、在四棱锥P-ABCD中,PA⊥平面ABCD,底面四边形ABCD为矩形.请在下面给出的5个条件中选出2个作为一组,使得它们能成为“在BC边上存在点Q,使得△PQD为钝角三角形”的充分条件___________.(写出符合题意的一组即可)①PA=2;②BC=3;③BC=√5;④AB=√2;⑤AB=1.答案:②④或②⑤或③⑤分析:设PA=a,AB=b,AD=c,BQ=x(0≤x≤c),则CQ=c−x,计算出PQ2,DQ2,PD2,若在BC边上存在点Q,使得△PQD为钝角三角形,则PQ2+DQ2<PD2,解不等式再根据已知条件可得答案.设PA=a,AB=b,AD=c,BQ=x(0≤x≤c),则CQ=c−x,因为PA⊥平面ABCD,底面四边形ABCD为矩形,所以PA⊥AQ,则PQ2=PA2+AQ2=PA2+AB2+BQ2=a2+b2+x2,DQ2=CD2+CQ2=b2+(c−x)2,PD2=PA2+AD2=a2+c2,若在BC边上存在点Q,使得△PQD为钝角三角形,则PQ2+DQ2<PD2,即a2+b2+x2+b2+(c−x)2<a2+c2,整理得x2−cx+b2<0(0<x<c),要使不等式有解,只需c2−4b2>0,即只需BC>2AB即可,因为①PA=2;②BC=3;③BC=√5;④AB=√2;⑤AB=1,所以②④或②⑤或③⑤.所以答案是:②④或②⑤或③⑤.14、所有棱长均为2的正三棱锥的体积为______.答案:23√2##2√23分析:棱长均为2的正三棱锥,分别求出棱锥的底面面积和高,代入棱锥体积公式,即可得到答案. 当三棱锥棱长均为2时,正三棱锥即为正四面体,如图,正四面体的底面积S=√34×22=√3,正四面体的高ℎ=PO=√PA2−AO2=√22−(23×√32×2)2=2√63,故正四面体的体积V=13⋅S⋅ℎ=2√23.所以答案是:2√2315、已知球O的半径为43,点A,B,C,D均在球面上,若△ABC为等边三角形,且其面积为√3,则三棱锥D−ABC的最大体积是___________.答案:2√33分析:根据三角形面积求出边长,即可求出三角形外接圆半径,继而可求出高的最大值,求出体积.设△ABC外接圆的圆心为O1,由△ABC是面积为√3的等边三角形,得12⋅|AB|2⋅sin60∘=√3,解得AB=2,则|O1B|=12×|AB|sin60∘=2√33.当三棱棱锥D−ABC体积最大时,球心O在DO1上,因此有|OO1|=√|OB|2−|O1B|2=23,所以|DO1|的最大值为43+23=2,三棱锥D−ABC的最大体积为V=13⋅S△ABC⋅|DO1|=13×√3×2=2√33.所以答案是:2√33.小提示:本题考查三棱锥的外接球问题,解题的关键是建立好勾股关系求出高.解答题16、如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点.(Ⅰ)求证:BC1//平面AD1E;(Ⅱ)求直线AA1与平面AD1E所成角的正弦值.答案:(Ⅰ)证明见解析;(Ⅱ)23.分析:(Ⅰ)证明出四边形ABC1D1为平行四边形,可得出BC1//AD1,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解 . (Ⅰ)[方法一]:几何法 如下图所示:在正方体ABCD −A 1B 1C 1D 1中,AB //A 1B 1且AB =A 1B 1,A 1B 1//C 1D 1且A 1B 1=C 1D 1, ∴AB //C 1D 1且AB =C 1D 1,所以,四边形ABC 1D 1为平行四边形,则BC 1//AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E ,∴BC 1//平面AD 1E ; [方法二]:空间向量坐标法以点A 为坐标原点,AD 、AB 、AA 1所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A −xyz ,设正方体ABCD −A 1B 1C 1D 1的棱长为2,则A (0,0,0)、A 1(0,0,2)、D 1(2,0,2)、E (0,2,1),AD 1⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AE ⃑⃑⃑⃑⃑ =(0,2,1),设平面AD 1E 的法向量为n ⃑ =(x,y,z ),由{n →⋅AD 1→=0n →⋅AE →=0,得{2x +2z =02y +z =0, 令z =−2,则x =2,y =1,则n →=(2,1,−2).又∵向量BC 1⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),BC 1⃑⃑⃑⃑⃑⃑⃑ ·n ⃑ =2×2+0×1+2×(−2)=0, 又∵BC 1⊄平面AD 1E ,∴BC 1//平面AD 1E ; (Ⅱ)[方法一]:几何法延长CC 1到F ,使得C 1F =BE ,连接EF ,交B 1C 1于G , 又∵C 1F//BE ,∴四边形BEFC 1为平行四边形,∴BC 1//EF , 又∵BC 1//AD 1,∴AD 1//EF ,所以平面AD 1E 即平面AD 1FE , 连接D 1G ,作C 1H ⊥D 1G ,垂足为H ,连接FH ,∵FC 1⊥平面A 1B 1C 1D 1,D 1G ⊂平面A 1B 1C 1D 1,∴FC 1⊥D 1G , 又∵FC 1∩C 1H =C 1,∴直线D 1G ⊥平面C 1FH , 又∵直线D 1G ⊂平面D 1GF ,∴平面D 1GF ⊥平面C 1FH ,∴C 1在平面D 1GF 中的射影在直线FH 上,∴直线FH 为直线FC 1在平面D 1GF 中的射影,∠C 1FH 为直线FC 1与平面D 1GF 所成的角,根据直线FC 1//直线AA 1,可知∠C 1FH 为直线AA 1与平面AD 1G 所成的角. 设正方体的棱长为2,则C 1G =C 1F =1,D 1G =√5,∴C 1H =√5=√5,∴FH =√1+(√5)2=√5,∴sin∠C 1FH =C 1H FH=23,即直线AA 1与平面AD 1E 所成角的正弦值为23.[方法二]:向量法接续(I)的向量方法,求得平面平面AD 1E 的法向量n ⃑ =(2,1,−2),又∵AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),∴cos <n ⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ >=n ⃑ ⋅AA 1⃑⃑⃑⃑⃑⃑⃑⃑ |n ⃑ |⋅|AA 1⃑⃑⃑⃑⃑⃑⃑⃑ |=−43×2=−23, ∴直线AA 1与平面AD 1E 所成角的正弦值为23.[方法三]:几何法+体积法如图,设B 1C 1的中点为F ,延长A 1B 1,AE,D 1F ,易证三线交于一点P . 因为BB 1∥AA 1,EF ∥AD 1,所以直线AA 1与平面AD 1E 所成的角,即直线B 1E 与平面PEF 所成的角. 设正方体的棱长为2,在△PEF 中,易得PE =PF =√5,EF =√2, 可得S △PEF =32.由V 三棱锥B 1−PEF =V 三棱锥P−B 1EF ,得13×32⋅B 1H =13×12×1×1×2, 整理得B 1H =23. 所以sin∠B 1EH =B 1H B 1E =23.所以直线AA 1与平面AD 1E 所成角的正弦值为23.[方法四]:纯体积法设正方体的棱长为2,点A 1到平面AED 1的距离为h , 在△AED 1中,AE =√5,AD 1=2√2,D 1E =3, cos∠AED 1=D 1E 2+AE 2−AD 122D 1E⋅AE=2×3×√5=√55, 所以sin∠AED 1=2√55,易得S △AED 1=3.由V E−AA 1D 1=V A 1−AED 1,得13S △AD 1A 1⋅A 1B 1=13S △AED 1⋅ℎ,解得ℎ=43, 设直线AA 1与平面AED 1所成的角为θ,所以sinθ=ℎAA 1=23.【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐标运算进行证明; (II )第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁;方法四不作任何辅助线,仅利用正余弦定理和体积公式进行计算,省却了辅助线和几何的论证,不失为一种优美的方法. 17、已知正方体ABCD −A ′B ′C ′D ′.(1)G 是△BA ′C ′的重心,求证:直线DG ⊥平面BA ′C ′;(2)若AB =1,动点E 、F 在线段AD 、D ′C ′上,且DE =D ′F =a ,M 为AB 的中点,异面直线EF 与DM 所成的角为arccos√210,求a 的值.答案:(1)证明见解析(2)√24分析:(1)根据空间向量,以B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑ =i ,B ′B ⃑⃑⃑⃑⃑⃑⃑ =j ,B ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =k ⃑ 为基底,用基底向量表示其他向量,根据向量的数量积为0判断线线垂直,进而证明线面垂直.(2)以空间直角坐标系,写成点的坐标,根据向量的夹角与异面直线夹角间的关系,列出方程即可求解.(1)证明:设B ′A ′⃑⃑⃑⃑⃑⃑⃑⃑ =i ,B ′B ⃑⃑⃑⃑⃑⃑⃑ =j ,B′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =k ⃑ , 显然i ⋅j =0,j ⋅k ⃑ =0,k ⃑ ⋅i =0,因为G 是△BA ′C ′的重心,所以B ′G ⃑⃑⃑⃑⃑⃑⃑ =13(i +j +k ⃑ ),故DG ⃑⃑⃑⃑⃑ =B ′G ⃑⃑⃑⃑⃑⃑⃑ −B ′D ⃑⃑⃑⃑⃑⃑⃑ =B ′G ⃑⃑⃑⃑⃑⃑⃑ −(B ′B ⃑⃑⃑⃑⃑⃑⃑ +BA ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ )=13(i +j +k ⃑ )−(j +i +k )=−23(i +j +k ⃑ ) A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =k ⃑ −i ;DG ⃑⃑⃑⃑⃑ ⋅A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ =−23(k ⃑ 2−i 2)=0,得DG ⃑⃑⃑⃑⃑ ⊥A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ , 同理DG ⃑⃑⃑⃑⃑ ⋅A ′B ⃑⃑⃑⃑⃑⃑⃑ =0,得DG ⃑⃑⃑⃑⃑ ⊥A ′B⃑⃑⃑⃑⃑⃑⃑ . 因为A ′C ′⃑⃑⃑⃑⃑⃑⃑⃑ 不平行于A ′B⃑⃑⃑⃑⃑⃑⃑ ,所以直线DG ⊥平面BA ′C ′. (2)以D 为坐标原点,射线DA 、DC 、DD ′分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,于是E(a,0,0),F(0,a,1),M (1,12,0),则EF⃑⃑⃑⃑⃑ =(−a,a,1),DM ⃑⃑⃑⃑⃑⃑ =(1,12,0).于是cos⟨EF⃑⃑⃑⃑⃑ ,DM ⃑⃑⃑⃑⃑⃑ ⟩=|EF⃑⃑⃑⃑⃑ ⋅DM ⃑⃑⃑⃑⃑⃑⃑ ||EF⃑⃑⃑⃑⃑ |⋅|DM ⃑⃑⃑⃑⃑⃑⃑ |=12a √52⋅√2a 2+1=√210,解得a =√24,所以a 的值为√24.18、如图所示,在四棱锥P −ABCD 中,底面ABCD 为正方形,E 为侧棱PC 的中点.(1)求证:经过A 、B 、E 三点的截面平分侧棱PD ;(2)若PA ⊥底面ABCD ,且PA =AD =2,求四面体ABEP 的体积. 答案:(1)证明见解析;(2)23.分析:(1)设截面ABE 与侧棱PD 交于点F ,连结EF,AF ,证明CD//EF.即得F 为PD 的中点,即截面ABE 平分侧棱PD ;(2)取PB 中点H ,连EH ,证明EH ⊥平面PAB ,即得解. (1)证明:设截面ABE与侧棱PD交于点F,连结EF,AF.因为底面ABCD为矩形,所以AB//CD.又AB⊄平面PCD,且CD⊂平面PCD,所以AB//平面PCD.又AB⊂平面ABE,且平面ABE∩平面PCD=EF,所以AB//EF.又因为AB//CD,所以CD//EF.因为E为PC的中点,所以F为PD的中点,即截面ABE平分侧棱PD. (2)∵PA⊥平面ABCD,BC⊆平面ABCD,∴BC⊥PA,又BC⊥AB,∴BC⊥平面PAB.取PB 中点H ,连EH , ∵E 是PC 中点,∴EH//BC ,即EH =1且EH ⊥平面PAB , 又Rt △PAB 的面积S =12PA ⋅AB =2.∴四面体ABEP 的体积V =V E−PAB =13⋅S ⋅EH =23.小提示:方法点睛:求几何体的体积常用的方法有:(1)规则的公式法;(2)不规则的割补法;(3)等体积法. 要根据已知条件灵活选择方法求解.19、如图,在正三棱柱ABC −A 1B 1C 1中,D 为棱AA 1的中点.若截面△BC 1D 是面积为6的直角三角形,求此三棱柱的表面积.答案:24√2+4√3分析:设AD =b,AB =a ,根据△BC 1D 是面积为6的直角三角形,由{BD 2+C 1D 2=BC 1212⋅BD ⋅C 1D =6求解.解:设AD =b,AB =a ,则BD =C 1D =√a 2+b 2,BC 1=√a 2+4b 2.由题意得{BD 2+C 1D 2=BC 12,12⋅BD ⋅C 1D =6, 即{a 2+b 2+a 2+b 2=a 2+4b 2,a 2+b 2=12,解得{a =2√2,b =2, 从而S 表=4×3×2√2+2×2√2×2√2×√34=24√2+4√3.。
立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
高考中“立体几何”中的计数问题求解方法在近几年的高考试题中频繁出现以“立几”中的点、线、面的位置关系为背景的计数问题,这类问题题型新颖、解法灵活、多个知识点交织在一起,综合性强,能力要求高,有一定的难度,它不仅考查相关的基础知识,而且注重对数学思想方法和数学能力的考查。
现结合具体例子谈谈这种问题的求解策略。
1、直接求解例1:从平面上取6个点,从平面上取4个点,这10个点最多可以确定多少个三棱锥?解: 利用三棱锥的形成将问题分成平面上有1个点、2个点、3个点三类直接求解共有+ + 个三棱锥例2: 在四棱锥P-ABCD中,顶点为P,从其它的顶点和各棱的中点中取3个,使它们和点P在同一平面上,不同的取法有A.40B. 48C. 56D. 62种解: 满足题设的取法可以分成三类(1)在四棱锥的每一个侧面上除P点外取三点有种不同取法;(2)在两个对角面上除点P外任取3点,共有种不同取法;(3)过点P的每一条棱上的3点和与这条棱异面的棱的中点也共面,共有种不同取法,故共有40+8+8=56种评注:这类问题应根据立体图形的几何特点,选取恰当的分类标准,做到分类不重复、不遗漏。
2、结合“立几”概念求解例3: 空间10个点无三点共线,其中有6个点共面,此外没有任何四个点共面,则这些点可以组成多少个四棱锥?解析:3、结合“立几”图形求解例4.用正五棱柱的10个顶点中的5个顶点作四棱锥的5个顶点,共可得多少个四棱锥?解:分类:以棱柱的底面为棱锥的底面;以棱柱的侧面为棱锥的底面以棱柱的对角面为棱锥的底面以图中(梯形)为棱锥的底面共+ + + =170个4、构造几何模型求解例5.(05年湖北)以平面六面体的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率为A. B. C.D. 选A在知识的网络交汇点初设计命题是近几年高考命题改革强调的重要观念之一,在复习备考中,要把握好知识间的纵横联系和综合,使所学知识真正融会贯通,运用自如,形成有序的网络化知识体系。
高三数学立体几何试题答案及解析1.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.2.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.3.已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.B.C.D.【答案】C【解析】设正四棱锥的高为,则,则,,所以四棱锥的体积,,由得,所以体积函数在区间上单调递增,在区间上单调递减,所以当时,体积有最大值,故选C.【考点】1.多面体体积;2.导数与函数最值.【方法点睛】本题主要考查本题主要考查立体几何中的最值问题,多面体体积公式、导数与函数等知识,属中档题.解决此类问题的两大核心思路:一是将立体问题转化为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,利用导数、基本不等式或配方法求其最值.4.设三棱锥的三条侧棱两两互相垂直,且长度分别为,则其外接球的表面积为()A.B.C.D.【答案】B【解析】由题意可知其外接球的直径,所以外接球的表面积为.【考点】球的表面积公式.5.某几何体的三视图如图所示,则该几何体的体积为.【答案】【解析】该几何体为一个四棱锥,高为,底面为矩形,长宽分别为,因此体积为【考点】三视图6.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.若B.若C.若D.若【答案】C【解析】垂直于同一平面的两个平面可能平行,也可能相交,所以A选项不正确;两个平面内存在两条平行的直线时,两平面可能相交,也可能平行,所以B选项不正确;,又,,所以C选项正确;若,则或,所以D不正确.故D正确.【考点】1线面位置关系;2面面位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要抓住题目中的重要字眼“真命题”,否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.已知直线平面,直线平面,给出下列命题,其中正确的是()①;②;③;④A.②④B.②③④C.①③D.①②③【答案】C【解析】对①,因为直线平面,∥,则,又直线,所以,①对;对②,与的关系是:平行、相交或异面,②错;对③,因为直线平面,∥,所以,又由面面垂直的判定定理得,③对;对④,与可以平行或相交,④错,所以选C.本题可借助于长方体去判定.【考点】1.空间直线、平面的位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于中档题.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形或长方体作为载体进行检验,也可作必要的合情推理.8.利用一个球体毛坯切削后得到一个四棱锥P—ABCD,其中底面四边形ABCD是边长为1的正方形,,且,则球体毛坯体积的最小值应为()A.B.C.D.【答案】D【解析】若使得球体毛坯体积最小,则四棱锥各顶点应都在球上,由题意,将四棱锥补成一个长方体,则转化为求长方体外接球体积,长方体体对角线为外接球直径,体对角线长为,所以球的半径为,体积为.【考点】多面体的外接球.9.(2007•山东)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【答案】D【解析】利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D【考点】简单空间图形的三视图.10.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为的等腰直角三角形,则该几何体的体积为_________________;表面积为________________.【答案】体积为;表面积为【解析】由题意可知三视图复原的几何体如图为四棱锥,是正方体的一部分,正方体的棱长为2;所以几何体的体积是正方体体积的一半减去,所求几何体的体积为;表面积为【考点】三视图,几何体的体积,表面积11.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为()A.B.C.D.【答案】A【解析】根据该几何体的三视图可知几何体的形状是一个长为,宽为,高为的长方体挖去一个直径为高为的圆柱,该几何体的体积为,选A.【考点】1、三视图;2、组合体的体积.12.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆千克,则共需油漆的总量为()A.千克B.千克C.千克D.千克【答案】B【解析】由三视图可知可间房由底部长宽高分别为的长方体与底面半径.母线长分别为圆锥体组合而成,所以其可刷漆的表面积为,则需要漆的总量为千克,故正确选项为B.【考点】空间几何体的表面积.13.若=(2,﹣1,0),=(3,﹣4,7),且(λ+)⊥,则λ的值是()A.0B.1C.﹣2D.2【答案】C【解析】利用(λ+)⊥⇔即可得出.解:∵=λ(2,﹣1,0)+(3,﹣4,7)=(3+2λ,﹣4﹣λ,7),(λ+)⊥,∴,∴2(3+2λ)﹣(﹣4﹣λ)+0=0,解得λ=﹣2.故选C.【考点】向量的数量积判断向量的共线与垂直.14.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.【答案】(Ⅰ)证明见解析(Ⅱ)【解析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A ﹣PC﹣D的平面角的余弦值.解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y,z),,由,,得到,令x0=1,可得y=z=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.15.已知正三棱锥的底面边长为,侧棱长为,则正三棱锥的体积为.【答案】【解析】∵正三棱锥的底面边长为,∴底面正三角形的高为,可得底面中心到三角形顶点的距离为,∵正三棱锥侧棱长为,∴正三棱锥的高,所以三棱锥的体积.所以答案应填:.【考点】棱柱、棱锥、棱台的体积.16.在等腰梯形中,,,,是的中点,将梯形绕旋转,得到(如图).(I)求证:;(II)求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(I)由题意容易证明四边形是平行四边形,.又为等腰梯形,,四边形是菱形,可证得,根据面面垂直的性质定理可证得平面,从而证得;(II)易证平面,以为坐标原点,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,根据向量的夹角公式求得二面角的余弦值.试题解析:(I)证明:,是的中点,.又,四边形是平行四边形,.又为等腰梯形,,,四边形是菱形,,,即.平面平面,平面平面,平面.又平面,.(II)解:平面,同理平面.如图建立空间直角坐标系,设,则,,,,则,.设平面的法向量为,.设平面的法向量为,,设二面角的平面角为,,二面角的余弦值为.【考点】空间中垂直关系的证明及空间向量的应用.17.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比为.【答案】【解析】因为三棱锥的主视图与左视图都是三角形, 正视图和侧视图三角形的底边长都是正方体的棱长,高都是到底面的距离(都是正方体的棱长),所以,三棱锥的主视图与左视图的面积相等,即比值为,故答案为.【考点】1、几何体的三视图;2、三角形面积公式.18.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.B.C.D.【答案】B【解析】如图所示,该几何体是一个底面为平行四边形,高为的棱柱,体积为,故选B.【考点】几何体的体积.19.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.【答案】【解析】因为矩形是水平放置的一个平面图形的直观图,所以根据画直观图的基本原理知原图形是底边长为的平行四边形,其高是,因此面积是,故答案为.【考点】1、画直观图的基本原理;2、平行四边形的面积公式.20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图知几何体是由正方体截取两个角得到,如图所示,故体积为.【考点】三视图.21.如图所示,四棱锥的底面是梯形,且,平面,是中点,.(Ⅰ)求证:平面;(Ⅱ)若,,求直线与平面所成角的大小.【答案】(I)证明见解析;(II).【解析】(I)取的中点,连结,证得,从而证得平面,根据平行四边形的性质,得,即可证明平面;(II)分别以的方向为轴的正方向,建立空间直角坐标系,求解出平面和向量,即可利用向量所成的角,得到直线与平面所成角的大小.试题解析:(Ⅰ)证明:取的中点,连结,如图所示.因为,所以.因为平面,平面,所以.又因为,所以平面.因为点是中点,所以,且.又因为,且,所以,且,所以四边形为平行四边形,所以,所以平面.(Ⅱ)解:设点O,G分别为AD,BC的中点,连结,则,因为平面,平面,所以,所以.因为,由(Ⅰ)知,又因为,所以,所以所以为正三角形,所以,因为平面,平面,所以.又因为,所以平面.故两两垂直,可以点O为原点,分别以的方向为轴的正方向,建立空间直角坐标系,如图所示.,,,所以,,,设平面的法向量,则所以取,则,设与平面所成的角为,则,因为,所以,所以与平面所成角的大小为.【考点】直线与平面垂直的判定与证明;直线与平面所成角的求解.22.如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B-AD-F的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)先证,再证,进而可证平面;(Ⅱ)方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.试题解析:(Ⅰ)延长,,相交于一点,如图所示.因为平面平面,且,所以平面,因此.又因为,,,所以为等边三角形,且为的中点,则.所以平面.(Ⅱ)方法一:过点作于Q,连结.因为平面,所以,则平面,所以.所以是二面角的平面角.在中,,,得.在中,,,得.所以二面角的平面角的余弦值为.方法二:如图,延长,,相交于一点,则为等边三角形.取的中点,则,又平面平面,所以,平面.以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系.由题意得,,,,,.因此,,,.设平面的法向量为,平面的法向量为.由,得,取;由,得,取.于是,.所以,二面角的平面角的余弦值为.【考点】线面垂直,二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.23.直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,则下列说法正确的是()A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交C.c与a、b都相交D.c与a、b都不相交【答案】A【解析】利用空间中线线、线面、面面间的位置关系判断求解.解:由直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,知:对于B,c可以与a、b都相交,交点为不同点即可,故B不正确;对于C,a∥c,b∩c=A,满足题意,故C不正确;对于D,c与a、b都不相交,则c与a、b都平行,所以a,b平行,与异面矛盾,故D不正确;对于A,由B,C、D的分析,可知A正确故选:A.24.已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.160C.D.【答案】A【解析】由三视图知该几何体是由一个直三棱柱和一个四棱锥组合的组合体,其中直三棱柱的底面为左视图,高为,故体积.四棱锥的底面为边长为的正方形,高为,所以体积,所以该几何体的体积为.故选A.【考点】1、几何体的三视图;2、几何体的体积.【方法点睛】本题主要考查三视图及空间几何体的体积,属于中档题.空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体椎体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解. (3)求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.25.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2B.1.6C.1.8D.2.4【答案】B【解析】由题意得,即,解得,故选B.【考点】几何体的三视图及体积.26.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A.4+B.4+C.6+D.6+【答案】D【解析】由三视图还原原几何体如图,是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为,高为;直三棱柱底面是等腰直角三角形(直角边为),高为.∴.故本题选D.【考点】空间几何体的三视图.27.在正方体中,是的中点,则异面直线与所成角的余弦值等于_______,若正方体边长为1,则四面体的体积为_________.【答案】;【解析】异面直线与所成角为,,.【考点】立体几何中异面直线所成角的余弦值的求法以及三棱锥的体积的求法.28.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)若为棱上一点,满足,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)以点为原点建立空间直角坐标系(如图),求得,,可得,即可证结论;(2)先根据确定的位置,在求出平面的一个法向量,可证平面一个的法向量为,利用空间向量夹角余弦公式即可得结论.试题解析:(1)证明:依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.向量,,故.所以.(2)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则,即.不妨令,可得为平面的一个法向量.取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.【考点】1、空间直线垂直的判定;2、空间向量夹角余弦公式.29.如图,在三棱锥中,底面,且,点是的中点, 交于点.(1)求证:平面;(2)当时, 求三棱锥的体积.【答案】(1)详见解析(2)【解析】(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的证明与寻找,往往从两个方面,一是利用线面垂直性质定理转化为线线垂直,另一是结合平几条件,如本题利用等腰三角形底边中线性质得(2)求三棱锥体积,关键在于确定高,即线面垂直.由(1)得平面,因此,这样只需在对应三角形中求出对应边即可.试题解析:(1)底面,面,又因为是的中点, 面由已知平面.(2)平面,平面,而,又又平面而.【考点】线面垂直判定与性质定理,三棱锥体积【思想点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.30.过球表面上一点引三条长度相等的弦,且两两夹角都为60°,若球半径为,求弦的长度___________.【答案】【解析】依题意可知,这是一个正四面体的外接球. 若一个正四面体边长为,其外接球半径公式为:,即.【考点】球的内接几何体.【思路点晴】对棱相等的三棱锥,设三对棱长分别为,如下图所示三棱锥,请同学们推导其外接球半径公式,特别地,若一个正四面体边长为,其外接球半径公式为:.设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.2.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.31.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意得,根据给定的三视图可知,原几何体表示,左侧是一个底面半径为,高为半个圆锥,几何体的右侧是一个底面为底边为,高为的等腰三角形三棱锥,其中三棱锥的高为,所以几何体的体积为,故选D.【考点】几何体的三视图及体积的计算.32.已知直线与平面平行,是直线上的一定点,平面内的动点满足:与直线成.那么点轨迹是()A.两直线B.椭圆C.双曲线D.抛物线【答案】C【解析】题意画图如下,是直线上的定点,有一平面与直线平行,平面内的动点满足的连线与成角,因为空间中过与成角的直线组成两个相对顶点的圆锥,即为平行于圆锥轴的平面,点可理解为是截面与圆锥侧面的交点,所以点的轨迹为双曲线,故选C.【考点】1、空间点、线、面的位置关系;2、圆锥曲线的定义.33.三棱锥内接于球,,当三棱锥的三个侧面积和最大时,球的体积为.【答案】【解析】由于三角形的面积公式,当时取得最大值,所以当两两垂直时,侧面积和取得最大值.此时,由于三棱锥三条侧棱两两垂直,所以可以补形为正方体,三棱锥的外接球即正方体的外接球,其直径等于正方体的体对角线即,故求的体积为.【考点】几何体的外接球.【思路点晴】设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .34.如图,在直三棱柱中,,过的中点作平面的垂线,交平面于,则与平面所成角的正切值为()A.B.C.D.【答案】C【解析】连接,则,由直三棱柱得,因此,因此为的中点,过作于,则为与平面所成角, ,选C.【考点】线面角35.如图,在四棱锥中,底面,底面是直角梯形,(1)在上确定一点,使得平面,并求的值;(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.【答案】(1)(2)【解析】(1)由线面平行的性质定理,可得线线平行,再根据平行得相似,即得比例关系:取。
立体几何高考题及解析
以下是一道关于立体几何的高考题及解析:
题目:一个圆锥的底面半径是3cm,母线长为4cm。
若其高为h,求出圆锥的体积与表面积的比。
解析:
首先我们需要知道圆锥的体积和表面积的公式:
圆锥体积公式:V = 1/3 * π * r^2 * h
圆锥表面积公式:S = π * r * l + π * r^2
其中,r为底面半径,h为高,l为母线长。
给定的条件是底面半径为3cm,母线长为4cm。
我们需要求出圆锥的体积与表面积的比,即V/S。
首先计算出底面圆周长:
C = 2 * π * r = 2 * π * 3 = 6π
然后计算出母线的长度l:
l = 根号下(r^2 + h^2) = 根号下(3^2 + h^2)
代入母线长为4cm的条件,得到方程:
根号下(3^2 + h^2) = 4
解方程,得到h = 根号下(7)
将求得的h代入到圆锥体积公式和表面积公式中,求出圆锥的体积和表面积:
V = 1/3 * π * r^2 * h = 1/3 * π * 3^2 * 根号下(7) = 3π * 根号下(7) S = π * r * l + π * r^2 = π * 3 * 4π + π * 3^2 = 12π^2 + 9π
最后计算出圆锥的体积与表面积的比:
V/S = (3π * 根号下(7)) / (12π^2 + 9π) = (根号下(7)) / (4π + 3)
因此,圆锥的体积与表面积的比为(根号下(7)) / (4π + 3)。
2022年近三年高考数学(文科)立体几何简答题汇编一.解答题(共28小题)(1)求三棱锥体积V P-ABC;(2)若M为BC中点,求PM与面PAC所成角大小.(1)证明:EF∥平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).3.如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F-ABC的体积.4.已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF ⊥A1B1.(1)求三棱锥F-EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.5.如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P-ABCD的体积.6.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.7.如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.8.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO=AB=6,AO ∥平面EB 1C 1F ,且∠MPN=π3,求四棱锥B-EB 1C 1F 的体积. 9.已知四棱锥P-ABCD ,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD .(1)若PC=5,求四棱锥P-ABCD 的体积;(2)若直线AD 与BP 的夹角为60°,求PD 的长.10.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.11.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.12.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.14.如图,在正三棱锥P-ABC中,PA=PB=PC=2,AB=BC=AC=√3.(1)若PB的中点为M,BC的中点为N,求AC与MN的夹角;(2)求P-ABC的体积.15.如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.16.在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.17.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB 所成的角的大小.18.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.19.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F 分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.20.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP=DQ=23DA ,求三棱锥Q-ABP 的体积. 21.如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=12AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为2√7,求四棱锥P-ABCD 的体积.22.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .23.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E 为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.24.如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8,求该四棱锥的侧面积.325.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.(1)求四棱锥A1-ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.28.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.。
高一数学空间几何体试题答案及解析1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.B.C.D.【答案】A【解析】由三视图知,几何体是一个三棱锥,底面是直角边长为的直角三角形,面积是,三棱锥的一条侧棱与底面垂直,且长度是,这是三棱锥的高,三棱锥的体积是.故选A.【考点】本题考查由三视图求面积、体积.2.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。
故选C。
【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。
3.已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①③④⑤D.①②③④【答案】D【解析】俯视图为⑤的几何体的侧视图如下,这与题目不相符,而①②③④符合题意。
故选D。
【考点】三视图点评:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.4.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若是的中点,求证:∥平面;(3)求证:平面⊥平面.【答案】(1)4 (2)主要证明∥ (3)主要证明平面【解析】解:(1)由题意可知,四棱锥中,平面平面,,所以,平面,又,,则四棱锥的体积为.(2)连接,则∥,∥,又,所以四边形为平行四边形,∴∥,∵平面,平面,所以,∥平面.(3)∵,是的中点,∴⊥,又在直三棱柱中可知,平面平面,∴平面,由(2)知,∥,∴平面,又平面,所以,平面平面.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,平面与平面垂直的判定,其中(1)的关键是由面面垂直的性质定理可得AB⊥平面ACDE,(2)的关键是分析出四边形ANME为平行四边形,即AN∥EM,(3)的关键是熟练掌握空间线线垂直,线面垂直与面面垂直之间的相互转化.5.如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【答案】B【解析】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH 平行且相等,故四边形的形状为平行四边形,选B。
高二数学立体几何试题答案及解析1.已知三棱锥的底面是以为斜边的等腰直角三角形,,则三棱锥的外接球的球心到平面的距离是()A.B.1C.D.【答案】A【解析】三棱锥的底面是以为斜边的等腰直角三角形,,在面内的射影为中点,平面,上任意一点到的距离相等。
,在面内作的垂直平分线,则为的外接球球心。
,,即为到平面的距离。
故选A。
【考点】点、线、面间的距离计算。
2.已知、、两两所成的角为60,则平面与平面所成二面角的余弦值为。
【答案】【解析】在、、上分别截取,连接,则是正三角形;取的中点,连接,四棱锥是正四面体,每个面的三角形都是正三角形,则,所以是平面与平面所成二面角的平面角;设棱长为1,则,在三角形中,根据余弦定理.【考点】二面角的相关知识3.长方体的底面是边长为的正方形,若在侧棱上至少存在一点,使得,则侧棱的长的最小值为()A.B.C.D.【答案】B【解析】以D为原点,分别为轴建立坐标系,设侧棱长为b,则,所以侧棱长的最小值为【考点】1.向量法求解立体几何问题;2.二次方程根的判定4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.棱长为1的正方体中,分别为棱的中点.(1)若平面与平面的交线为,与底面的交点为点,试求的长;(2)求二面角的余弦值.【答案】(1)(2)【解析】根据两面相交,有一条交线,且满足过平面的平行线的平面与该平面相交,交线与面的平行线是平行的,所以所对应的直接与直线是平行的,从而根据平面几何的有关结论,求得交线的位置,从而求得点的位置,放在相应的三角形中,求得的长,第二问建立相应的空间坐标系,求得两个半平面的法向量,从而求得二面角的余弦值.试题解析:(1)如图,可求得,(2)分别以DA、DC、DD所在直线为x,y,z轴建立空间直角坐标系,1(1,1,1,)E(,1,0)A(1,0,0),F(0,0,),B1设平面的法向量为,平面,所以利用空间向量,易得【考点】面面相交,二面角的余弦值.6.在正方体底面,任一点,则直线所成角为()A.B.C.D.不能确定【答案】C【解析】设AD、BC的中点分别为E、F,连接A1E、EF、FB1,则四边形A1EFB1矩形.可以证明A1E AM,EF AM,所以AM平面A1EFB1.而直线OP在平面A1EFB1,所以AM OP.故选C.【考点】异面直线垂直的判定.7.正四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是()A.EF与BB1垂直B.EF与BD垂直C.EF与CD异面D.EF与A1C1异面【答案】D【解析】可以证明答案A、B、C是正确的.同时,设AB、BC的中点分别为G、H,连接GH.显然EF∥GH,GH∥AC,AC∥A1C1,所以EF∥A1C1即答案D是错误的.【考点】以正方体为载体的异面直线的判断.8.如果把一个球的表面积扩大到原来的2倍,变为一个新球,那么新球的体积扩大到原来的倍,则()A.B.C.D.【答案】C【解析】球体扩大前表面积,体积,扩大后表面积,则,那么扩大后体积,所以.【考点】等差数列前项和公式.9.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离10.(本小题满分12分)如图所示,在多面体,四边形,均为正方形,为的中点,过的平面交于(1)证明:;(2)(理科做)求二面角余弦值.(3)(文科做)若正方形边长为2,求多面体的体积.【答案】(1)详见解析;(2);(3).【解析】(1)因为,平面,平面,所以平面,又平面,平面平面=,所以//.(2)将几何体补成正方体知,⊥平面,所以⊥, ⊥平面,所以⊥,所以交线⊥平面.二面角的平面角与∠相等,即可求出结果.(3)根据空间几何体的特征,可知四棱锥的高为2,然后根据体积公式即可求出结果.试题解析:(1)因为,平面,平面,所以平面,又平面,平面平面=,所以//.(2)将几何体补成正方体知,⊥平面,所以⊥⊥平面,所以⊥,所以交线⊥平面.二面角的平面角与∠相等,余弦值为(3)由题意可知,四棱锥.【考点】1.线面平行的性质定理;2.二面角;3.几何体的体积.11.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.【答案】12【解析】:∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,棱锥的斜高为,该六棱锥的侧面积为【考点】棱柱、棱锥、棱台的体积12.已知球的半径为,求其内接正方体的棱长__________.【答案】【解析】球的内接正方体的对角线就是球的直径,所以正方体的棱长为【考点】球的内接多面体13.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为A.B.C.D.【答案】C【解析】设底面圆半径为,母线长为,所以扇形圆心角为,圆心角【考点】圆锥表面积与扇形弧长公式14.如图,在棱长为1的正方体中,M、N分别是的中点,则图中阴影部分在平面上的投影的面积为.【答案】【解析】N点投影到AD中点,M点投影到中点,因此投影面积为正方形面积的,面积为【考点】侧视图15.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.(1)求证:平面EFG∥平面PMA;(2)求证:平面EFG⊥平面PDC;(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.【答案】(1)、(2)证明过程详见解析;(3)1:4.【解析】(1)证明EG、FG都平行于平面PMA,然后由平面与平面平行的判定方法即可证明;(2)证明GF⊥平面PDC,然后由平面与平面垂直的判定定理即可证明;(3)设MA为1,从而其他边的长度都可表示,问题可求解.试题解析:(1)证明∵E、G、F分别为MB、PB、PC的中点,∴EG∥PM,GF∥BC.又∵四边形ABCD是正方形,∴BC∥AD,∴GF∥AD.∵EG、GF在平面PMA外,PM、AD在平面PMA内,∴EG∥平面PMA,GF∥平面PMA.又∵EG、GF都在平面EFG内且相交,∴平面EFG∥平面PMA.(2)证明由已知MA⊥平面ABCD,PD∥MA,∴PD⊥平面ABCD.又BC⊂平面ABCD,∴PD⊥BC.∵四边形ABCD为正方形,∴BC⊥DC.又PD∩DC=D,∴BC⊥平面PDC.在△PBC中,∵G、F分别为PB、PC的中点,∴GF∥BC,∴GF⊥平面PDC.又GF⊂平面EFG,∴平面EFG⊥平面PDC.(3)解∵PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,则PD=AD=2.∵DA⊥平面MAB,且PD∥MA,∴DA即为点P到平面MAB的距离,∴VP -MAB∶VP-ABCD=S△MAB·DA∶S正方形ABCD·PD=S△MAB ∶S正方形ABCD=∶(2×2)=1∶4.【考点】①证明平面与平面平行、垂直;②求体积.16.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90B.129C.132D.138【答案】D.【解析】分析题意可知,该几何体为三棱柱与长方体的组合,其表面积,故选D.【考点】1.三视图;2.空间几何体的表面积.17.某几何体的三视图如图所示,则它的体积为____________.【答案】【解析】由三视图可知该几何体下面部分是圆柱,上半部分是圆锥,其中圆柱的底面圆半径为3,高位5,所以体积为,圆锥的底面圆半径为3,高为4,所以体积为,所以该几何体体积为【考点】三视图与几何体体积18.把球的表面积扩大到原来的2倍,那么球的体积扩大到原来的()A.2倍B.倍C.倍D.倍【答案】C【解析】设原来球的半径为,扩大后球的半径为,依题意可知,.所以.即球的体积扩大到原来的倍.故C正确.【考点】球的表面积公式,体积公式.19.如图,在正三棱柱中,分别为中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析;(2)详见解析.【解析】(1)连交于点,由三角形中位线可得且,则可证得为平行四边形,从而可得,由线面平行的判定定理可证得平面.(2)由正棱柱可得底面,从而可得,又为正三角形可得.由线面垂直的判定定理可得面,又,所以面,由面面垂直的判定定理可得面面.试题解析:证明:(1)连交于点,为中点,,为中点,,,四边形是平行四边形,,又平面,平面,平面;(2)由(1)知,,为中点,所以,所以,又因为底面,而底面,所以,则由,得,而平面,且,所以面,又平面,所以平面平面.【考点】1线面平行;2线面垂直,面面垂直.【方法点睛】本题主要考查的是线面平行,线面垂直,面面垂直,属于中档题.证明线面平行的关键是证明线线平行,常用方法有:中位线,平行四边形,平行线分线段成比例逆定理等;证明线面垂直常用其判定定理证明,关键是证明线线垂直,证明线线垂直常用的方法有:由线面垂直得线线垂直、勾股定理证直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.20.(2015秋•宁城县期末)如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.(Ⅰ)求证:MN∥平面ABB1A1;(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)线段CC1上存在点Q,使得A1B⊥平面MNQ.【解析】(Ⅰ)取AB中点D,连接DM,DB1,然后由三角形的中位线定理得到MN∥DB1,再由线面平行的判定定理得答案;(Ⅱ)连接BC1,可证QN⊥BC1,A1C1⊥QN,从而可证:A1B⊥QN,同理可得 A1B⊥MQ,即可得证A1B⊥平面MNQ.解:(Ⅰ)证明:取AB中点D,连接DM,DB1.在△ABC中,因为 M为AC中点,所以DM∥BC,.在矩形B1BCC1中,因为 N为B1C1中点,所以B1N∥BC,.所以 DM∥B1N,DM=BN.所以四边形MDB1N为平行四边形,所以 MN∥DB1.因为 MN⊄平面ABB1A1,DB1⊂平面ABB1A1,所以 MN∥平面ABB1A1.(Ⅱ)解:线段CC1上存在点Q,且Q为CC1中点时,有A1B⊥平面MNQ.证明如下:连接BC1.在正方形BB1C1C中易证 QN⊥BC1.又A1C1⊥平面BB1C1C,所以 A1C1⊥QN,从而NQ⊥平面A1BC1.所以 A1B⊥QN.同理可得 A1B⊥MQ,所以A1B⊥平面MNQ.故线段CC1上存在点Q,使得A1B⊥平面MNQ.【考点】直线与平面垂直的判定;直线与平面平行的判定.21.已知圆锥底面半径为4,高为3,则该圆锥的表面积为()A.B.C.D.【答案】D【解析】依题意,圆锥的母线长为,则圆锥的表面积为,故选D.【考点】圆锥的表面积公式.22.已知两个不同的平面和两条不重合的直线,则下列四个命题正确的是()A.若,,则B.若,,,,则C.若,,,则D.若,,,,则【答案】D【解析】若,,则或,故A错误;若,,,,则或相交,故B错误;若,,,则或或斜交,故C错误;若,,,,则正确;故选D.【考点】空间中线面位置关系的判定.23.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则与的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】,夹角为【考点】向量夹角24.(2012•贵州校级模拟)棱长为2的正方体的内切球的表面积为()A.2πB.4πC.8πD.16π【答案】B【解析】棱长为2的正方体的内切球的半径r=1,由此能求出其表面积.解:棱长为2的正方体的内切球的半径r==1,表面积=4πr2=4π.故选B.【考点】棱柱、棱锥、棱台的侧面积和表面积.25.如图,正方形和四边形所在平面互相垂直,,,,.(1)求证:平面;(2)求证:平面;(3)求二面角的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)设与交于点,则在平面中,可先证明四边形为平行四边形,得,就可证明平面;(2)先为原点,建立空间直角坐标系,把对应各点坐标出来,可以推出和,求出平面的法向量,就可得证平面;(3)先利用(2)找到是平面的一个法向量,求出平面的法向量,就可利用法向量求解二面角的大小.试题解析:(1)证明:设与交于点.因为,且,,所以四边形为平行四边形,所以.因为平面,平面,所以平面.(2)证明:因为正方形和四边形所在的平面互相垂直,且,所以平面.如图,以为原点,建立空间直角坐标系.则,,,,,.,,.,,所以,,又,所以平面.(3)由(2)知,是平面的一个法向量.设平面的法向量,则,,即,得,且.令,则,.从而.故二面角为锐角,故二面角的大小为.【考点】空间中直线与平面的位置关系的判定与证明;二面角的求解.【方法点晴】本题主要考查了直线和平面垂直的判定和性质,直线与平面平行的判定定理及空间角的求解,在证明线面平行时,常用方法是在平面内找已知直线的平行线,也可利用面面平行的推理证明线面平行,注意方法的选择,本题第2,3问题的解答中,把空间的位置关系和空间角的求解转化为空间向量的运算,是解答立体几何问题的一种重要方法,平时注意总结和领会.26.(2014•云南模拟)如图,在四棱锥P﹣ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()A.B.C.D.【答案】A【解析】先找符合条件的特殊位置,然后根据符号条件的轨迹为线段PC的垂直平分面与平面AC 的交线得到结论.解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”设AB的中点为N,根据题目条件可知△PAN≌△CBN∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”故动点M的轨迹肯定过点D和点N而到点P与到点N的距离相等的点为线段PC的垂直平分面线段PC的垂直平分面与平面AC的交线是一直线故选A【考点】直线与平面垂直的性质;平面与平面之间的位置关系.27.已知,若则实数=_______.【答案】4【解析】【考点】向量的坐标运算28.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.29.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.【答案】(Ⅰ)证明见解析;(Ⅱ)(Ⅲ)【解析】方法一:(1)取OB中点E,连接ME,NE,证明平面MNE∥平面OCD,方法是两个平面内相交直线互相平行得到,从而的到MN∥平面OCD;(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP菱形的对角相等得到∠ABC=∠ADC=,利用菱形边长等于1得到DP=,而MD利用勾股定理求得等于,在直角三角形中,利用三角函数定义求出即可.(3)AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD,又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,求出距离可得.方法二:(1)分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,分别表示出A,B,O,M,N的坐标,求出,,的坐标表示.设平面OCD的法向量为=(x,y,z),则,解得,∴MN∥平面OCD(2)设AB与MD所成的角为θ,表示出和,利用a×b=|a||b|cosα求出叫即可.(3)设点B到平面OCD的距离为d,则d为在向量上的投影的绝对值,由得.所以点B到平面OCD的距离为.解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则×=0,×=0即取,解得∵×=(,,﹣1)×(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【考点】用空间向量求直线间的夹角、距离;用向量证明平行.30.将边长为正方形沿对角线折成直二面角,有如下三个结论:(1);(2)是等边三角形;(3)四面体的表面积为.则正确结论的序号为.【答案】(1)(2)(3)【解析】根据题意,画出图形,如图所示:二面角A-BD-C为90°,E是BD的中点,可以得出∠AEC=90°,为直二面角的平面角;对于(1),由于BD⊥面AEC,得出AC⊥BD,命题(1)正确;对于(2),在等腰直角三角形AEC中,可以求出AC=2AE=AD=CD,所以△ACD是等边三角形,命题(2)正确;对于(3),四面体ABCD的表面积为命题(3)正确;综上,正确的命题是(1)(2)(3).【考点】平面与平面垂直的性质31.一个几何体的三视图如图,其中主视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B.C.D.【答案】D【解析】由三视图可知该几何体为半个圆锥,其中圆锥底面半径为1,母线长为2,所以棱锥的高为,所以体积为【考点】三视图32.如图,在正方体中,与所成角的大小为()A.B.C.D.【答案】D【解析】在正方体中,连接,则,又平面,所以,根据线面垂直的判定定理可得,平面,所以,所以与所成角的大小为,故选D.【考点】直线与平面垂直;异面直线所成的角.【方法点晴】本题主要考查了直线与平面垂直的判定与证明及异面直线所成角的求解,其中熟记直线与平面垂直的判定定理和异面直线所成角的概念是解答问题的挂件,属于基础题,同时着重考查了转化与化归思想和空间几何体的结构特征,本题的解答中,利用直线与平面垂直的判定定理,得到平面,即可得到异面所成角的大小.33.一空间几何体的三视图如图所示,则该几何体的表面积为.【答案】【解析】由三视图可知该几何体为一个半圆锥,其底面半径为,高为,母线长为.所以其表面积为【考点】三视图与几何体的表面积.34.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( )A.B.C.D.【答案】A【解析】由三视图知,该四面体中,,尺寸见三视图,,(由俯视图知),,,,,,所以.故选A.【考点】三视图,几何体的表面积.【名师】(1)画几何体的三视图可以想象自己站在几何体的正前方、正左方和正上方观察,它的轮廓线是什么,然后再去画图.(2)对于简单几何体的组合体的三视图,①要确定正视、侧视、俯视的方向;②要注意组合体是由哪些几何体组成,弄清楚它们的生成方式;③注意它们的交线的位置.(3)对简单几何体的三视图要熟悉.由三视图还原直观图时,还要注意三视图中反应的线面位置关系.35.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【答案】B【解析】观察三视图可以得到该几何体是一个四棱锥,高为,底面是边长为的正方体,故体积为,故选B.【考点】三视图及几何体的体积.36.如图所示,在三棱柱中,底面,,是上一动点,则的最小值是.【答案】【解析】连接,沿将展开到所在的平面,再连接交于,此时有最小值,在中.【考点】空间中线段最短值的计算.【方法点晴】本题主要考查的是在空间几何体中,线段最短问题,属于难题,对于空间的线段最值问题,我们需要将空间的线段转化成平面线段问题,将不在一个平面的的两条相交线段转化到同一平面上,根据两点间直线距离最短求出,线段的最小值.在空间中这种转化思想是需要注意的.37.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图可知,该几何体是一个半圆柱合一个四棱锥的组合体,其中四棱锥的底面与半圆柱的轴截面重合,半圆柱的底面半径为,高为,棱柱的高是,所以该几何体的体积是.【考点】1三视图;2、棱锥,圆柱.38.如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,AD DC,AB=AD=1,DC=2,PD=,M为棱PB的中点.(1)证明:DM平面PBC;(2)求二面角A—DM—C的余弦值.【答案】(1)见解析;(2)【解析】(1)证线与面垂直,基本思路为利用线与面垂直的判定,即转化为证线与线垂直。
武汉艺术生文化课三棱锥的几何问题及多种答案解析
1.【答案】 3
【解析】 由已知,S △ABC =12×22sin π3=3, ∴ V P -ABC =13S △ABC ·P A =13×3×3=3,即三棱锥P -ABC 的体积等于 3.
3.C 【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°,且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62,从而面积最大为10,故应选C.
图1-4
4. B 【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3.
5.D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如下图,故侧视图选D.
6.A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的
圆柱,所以也正确.
7.A 【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2
的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13
π×12×2=8-23
π. 8. 6+π 【解析】 根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V
=3×2×1+13
π×1×3=6+π. 9.4 【解析】 根据三视图还原成直观图,可以看出,其是由两个形状一样的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.
10.B 【解析】 由正视图可排除A ,C ;由侧视图可判断该该几何体的直观图是B.
11.B 【解析】 对于A ,直线l 1与l 3可能异面;对于C ,直线l 1、l 2、l 3可能构成三棱柱三条侧棱所在直线时而不共面;对于D ,直线l 1、l 2、l 3相交于同一个点时不一定共面. 所
以选B.
14. D 【解析】 若面α⊥面β,在面α内与面β的交线不相交的直线平行于平面β,故A 正确;B 中若α内存在直线垂直平面β,则α⊥β,与题设矛盾,所以B 正确;由面面垂直的性质知选项C 正确.由A 正确可推出D 错误.
15. D 【解析】 圆M 的半径为2,由球面的几何性质得OM =42-22=23,且∠OMN =30°,则ON =3,故圆N 的半径为42-3=13,圆N 的面积为13π,故选D.
16.83 【解析】 如图,由题意知,截面圆的直径为62+(23)2=48=43, 所以四棱锥的高||OO 1=OA 2-O 1A 2=16-12=2,
所以其体积V =13S 矩形ABCD ·||OO 1=13
×6×23×2=8 3.
12.【解答】 解法1:过E 作EN ⊥AC 于N ,连结EF .
(1)如图①,连结NF 、AC 1,由直棱柱的性质知,底面ABC ⊥侧面A 1C ,
又底面ABC ∩侧面A 1C =AC ,且EN ⊂底面ABC ,所以EN ⊥侧面A 1C ,NF 为EF 在侧面A 1C 内的射影,
在Rt △CNE 中,CN =CE cos60°=1,
则由CF CC 1=CN CA =14
,得NF ∥AC 1. 又AC 1⊥A 1C ,故NF ⊥A 1C ,
由三垂线定理知EF ⊥A 1C .
(2)如图②,连结AF ,过N 作NM ⊥AF 于M ,连结ME ,
由(1)知EN ⊥侧面A 1C ,根据三垂线定理得EM ⊥AF ,
所以∠EMN 是二面角C -AF -E 的平面角,即∠EMN =θ,
设∠F AC =α,则0°<α≤45°.
在Rt △CNE 中,NE =EC ·sin60°=3,
在Rt △AMN 中,MN =AN ·sin α=3sin α,
故tan θ=NE MN =33sin α
. 又0°<α≤45°,∴0<sin α≤22
, 故当sin α=22
,即当α=45°时,tan θ达到最小值, tan θ=33×2=63
,此时F 与C 1重合.
解法2:(1)建立如图③所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),
E (3,3,0),
F (0,4,1),
于是CA 1→=(0,-4,4),EF →=(-3,1,1),
则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0,故EF ⊥A 1C .
(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ), AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得
⎩⎪⎨⎪⎧ m ·AE →=0,m ·AF →=0,即⎩⎨⎧
3x +3y =0,4y +λz =0,取m =(3λ,-λ,4), 又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),
于是由θ为锐角可得cos θ=|m·n||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=
λ2+163λ=1
3+16
3λ2,
由0<λ≤4,得1λ≥14,即tan θ≥13+13=6
3,
故当λ=4,即点F 与点C 1重合时,tan θ取得最小值6
3.
图1-2。