2013江苏省镇江市高考数学适应性测试卷1苏教版
- 格式:doc
- 大小:1.67 MB
- 文档页数:11
2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ(必做题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符. 4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.下图是一个算法的流程图,则输出的n 的值是 .6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为 . 11.已知)(x f 是定义在R 上的奇函数。
YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 2013年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025ni i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包1A1B1C含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ . 解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析: 由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e = 13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析:由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a = 14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ .解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n nn n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。
江苏省镇江市2013届高三高考适应性测试数学卷5一.填空题(每题5分,共70分) 1. 复数(2)i i +的虚部是2.如{}23,2a a a ∈-,则实数a 的值等于3. 若函数1(),10()44,01xx x f x x ⎧-≤<⎪=⎨⎪≤≤⎩,则4(log 3)f =4.等比数列}{n a 中,n S 表示前n 顶和,324321,21a S a S =+=+,则公比q 为 5.在集合{}1,2,3中先后随机地取两个数,若把这两个数按照取的先后顺序组成一个二位数,则“个位数与十位数不相同”的概率是 .6.设,αβ为互不重合的平面,m ,n 为互不重合的直线,给出下列四个命题: ①若,,m n m n αα⊥⊂⊥则;②若,,m n m αα⊂⊂∥,n β∥β,则α∥β; ③若,,,,m n n m n αβαβαβ⊥=⊂⊥⊥ 则;④若,,//,//m m n n ααββ⊥⊥则, 其中所有正确命题的序号是 . 7.已知0>xy ,则|21||21|xy y x +++的最小值为 8.. 已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则给出如下四个判断:正确的有①()()76f f > ②()()96f f > ③()()97f f > ④()()107f f >9.已知角A 、B 、C 是ABC 的内角,,,a b c 分别是其对边长,向量2(23sin ,cos),22A A m = ,(cos ,2)2A n =- ,m n ⊥ ,且2,a =3cos 3B =则b =10.直线1x y a b +=通过点(cos ,sin )M αα,则2211a b+的取值范围为 11.已知()sin()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.12. 在区间[],1t t +上满足不等式3311x x -+≥的解有且只有一个,则实数t ∈13. 在△ABC 中,1tan ,0,()022C AH BC AB CA CB =⋅=⋅+=,H 在BC 边上,则过点B 以A 、H 为两焦点的双曲线的离心率为N MP QBA8kma km14. 已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若47a =,则m 所有可能的取值为二.解答题(请给出完整的推理和运算过程,否则不得分)15.(14分)设函数2()2(03)f x x x a x =-++≤≤的最大值为m ,最小值为n , 其中0,a a R ≠∈.(1)求m 、n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xoy 中的原点o 重合,始边与x 轴的正半轴重合,终边经过点(1,3)A m n -+.求tan()3πβ+的值.16. (14分)在直角梯形PBCD 中,,2,42D C BC CD PD π∠=∠====,A 为PD 的中点,如下左图。
江苏省镇江市2013届高三高考适应性测试数学卷10一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分 不必要条件,则实数a 的取值范围是 ▲ . 答案: 5a <2.复数1z i =-(i 是虚数单位),则22z z -= ▲ . 答案:12i -+3.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体 进行教学次数在[]15,30内的人数为 ▲ . 答案:100解析:所抽取的20人中在[]15,30内的人数10人,故可得200名教师中使用多媒体进行教学次数在[]15,30内的人数为1020020⨯=100人。
4.如图是一个算法的流程图,则最后输出的W 的值为 ▲ . 答案:14解析:本题考查算法流程图。
0,11,23,36,4s t s t s t s t ==→==→==→==10s →= 所以输出14w s t =+=。
5.已知n s 是等差数列{n a }的前n 项和,若2s ≥4,4s ≤16,则5a 的最大值是 ▲ . 答案:96.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 ▲ .(第3题图)(第4题)答案:331000cm π7.若在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率为 ▲ .答案:2解析:本题考查线性规划和几何概型。
由题意知15,24,m n m n ≤≤⎧⎪≤≤⎨⎪>⎩画可行域如图阴影部分。
2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x +)的最小正周期为.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为.3.(5分)双曲线的两条渐近线方程为.4.(5分)集合{﹣1,0,1}共有个子集.5.(5分)如图是一个算法的流程图,则输出的n的值是.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.14.(5分)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n 的最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.20.(16分)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.<P style="MARGIN: 0cm 0cm 0pt" class=MsoNormal><?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><v:shapetype id=_x0000_t75 stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></v:path><?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:lock aspectratio="t" v:ext="edit"></o:lock></v:shapetype><v:shape style="Z-INDEX: 251660288; POSITION: absolute; TEXT-ALIGN: left; MARGIN-TOP: 31.05pt; WIDTH: 75.35pt;HEIGHT: 94.6pt; MARGIN-LEFT: 381.6pt; LEFT: 0px" id=_x0000_s1026 type="#_x0000_t75"><v:imagedata o:title="" src="file:///C:\Users\adminb\AppData\Local\Temp\msohtmlclip1\01\clip_image0 01.png"></v:imagedata><?xml:namespace prefix = w ns = "urn:schemas-microsoft-com:office:word" /><w:wrap type="square"></w:wrap></v:shape><SPAN><FONT face="Times New Roman">[</FONT>选做题<FONT face="Times New Roman">]</FONT>本题包括<FONT face="Times New Roman">A</FONT>、<FONT face="Times New Roman">B</FONT>、<FONT face="Times New Roman">C</FONT>、<FONT face="Times New Roman">D</FONT>四小题,<SPAN style="font-emphasize: dot">请选定其中两题,并在相应的答题区域内作答</SPAN>.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.<SPAN style="mso-font-width: 95%; font-emphasize: dot" lang=EN-US><o:p></o:p></SPAN></SPAN></P>A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=,B=,求矩阵A﹣1B.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.D.[选修4-5:不等式选讲](本小题满分0分)24.已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.26.(10分)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为π.【分析】将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.【解答】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.【分析】把给出的复数展开化为a+bi(a,b∈R)的形式,然后直接利用模的公式计算.【解答】解:z=(2﹣i)2=4﹣4i+i2=3﹣4i.所以,|z|==5.故答案为5.3.(5分)(2013•江苏)双曲线的两条渐近线方程为.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:4.(5分)(2013•江苏)集合{﹣1,0,1}共有8个子集.【分析】集合P={1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:因为集合{﹣1,0,1},所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},∅,共8个.故答案为:8.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是3.【分析】由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a≥20的最小n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=2时,满足进行循环的条件,执行循环后,a=8,n=2;当n=2,a=8时,满足进行循环的条件,执行循环后,a=26,n=3;当n=3,a=26时,不满足进行循环的条件,退出循环故输出n值为3故答案为:36.(5分)(2013•江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三第四次第五次次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.【分析】直接由图表得出两组数据,求出它们的平均数,求出方差,则答案可求.【解答】解:由图表得到甲乙两位射击运动员的数据分别为:甲:87,91,90,89,93;乙:89,90,91,88,92;,.方差=4.=2.所以乙运动员的成绩较稳定,方差为2.故答案为2.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n ≤9)可以任意选取,则m,n都取到奇数的概率为.【分析】求出m取小于等于7的正整数,n取小于等于9的正整数,m取到奇数,n取到奇数的方法种数,直接由古典概型的概率计算公式求解.【解答】解:m取小于等于7的正整数,n取小于等于9的正整数,共有7×9=63种取法.m取到奇数的有1,3,5,7共4种情况;n取到奇数的有1,3,5,7,9共5种情况,则m,n都取到奇数的方法种数为4×5=20种.所以m,n都取到奇数的概率为.故答案为.8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=1:24.【分析】由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的高的2倍,然后直接由体积公式可得比值.【解答】解:因为D,E,分别是AB,AC的中点,所以S△ADE :S△ABC=1:4,又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍.即三棱柱A1B1C1﹣ABC的高是三棱锥F﹣ADE高的2倍.所以V1:V2==1:24.故答案为1:24.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y 的取值范围是[﹣2,] .【分析】利用导数求出抛物线在x=1处的切线方程,画出可行域,找出最优解,则x+2y的取值范围可求.【解答】解:由y=x2得,y′=2x,所以y′|x=1=2,则抛物线y=x2在x=1处的切线方程为y=2x﹣1.令z=x+2y,则.画出可行域如图,所以当直线过点(0,﹣1)时,z min=﹣2.过点()时,.故答案为.10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.【分析】由题意和向量的运算可得=,结合=λ1+λ2,可得λ1,λ2的值,求和即可.【解答】解:由题意结合向量的运算可得=====,又由题意可知若=λ1+λ2,故可得λ1=,λ2=,所以λ1+λ2=故答案为:11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【分析】作出x大于0时,f(x)的图象,根据f(x)为定义在R上的奇函数,利用奇函数的图象关于原点对称作出x小于0的图象,所求不等式即为函数y=f (x)图象在y=x上方,利用图形即可求出解集.【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF 的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为.【分析】根据“d 2=”结合椭圆的半焦距,短半轴,长半轴构成直角三角形,再由等面积法可得d1=,从而得到a与b的关系,可求得,从而求出离心率.【解答】解:如图,准线l:x=,d2=,由面积法得:d1=,若d 2=,则,整理得a2﹣ab﹣=0,两边同除以a2,得+()﹣=0,解得.∴e==.故答案为:.13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或.【分析】设点P,利用两点间的距离公式可得|PA|,利用基本不等式和二次函数的单调性即可得出a的值.【解答】解:设点P,则|PA|===,令,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2=,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2=,解得a=.综上可知:a=﹣1或.故答案为﹣1或.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n >a1a2…a n的最大正整数n的值为12.【分析】设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.【分析】(1)由给出的向量的坐标,求出的坐标,由模等于列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出+,由+=(0,1)列式整理得到,结合给出的角的范围即可求得α,β的值.【解答】解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣co sβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0.所以.即;(2)由得,①2+②2得:.因为0<β<α<π,所以0<α﹣β<π.所以,,代入②得:.因为.所以.所以,.16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB ⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【分析】(1)根据等腰三角形的“三线合一”,证出F为SB的中点.从而得到△SAB和△SAC中,EF∥AB且EG∥AC,利用线面平行的判定定理,证出EF∥平面ABC且EG∥平面ABC.因为EF、EG是平面EFG内的相交直线,所以平面EFG∥平面ABC;(2)由面面垂直的性质定理证出AF⊥平面SBC,从而得到AF⊥BC.结合AF、AB是平面SAB内的相交直线且AB⊥BC,可得BC⊥平面SAB,从而证出BC⊥SA.【解答】解:(1)∵△ASB中,SA=AB且AF⊥SB,∴F为SB的中点.∵E、G分别为SA、SC的中点,∴EF、EG分别是△SAB、△SAC的中位线,可得EF∥AB且EG∥AC.∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC,同理可得EG∥平面ABC又∵EF、EG是平面EFG内的相交直线,∴平面EFG∥平面ABC;(2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF⊂平面ASB,AF⊥SB.∴AF⊥平面SBC.又∵BC⊂平面SBC,∴AF⊥BC.∵AB⊥BC,AF∩AB=A,∴BC⊥平面SAB.又∵SA⊂平面SAB,∴BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.【分析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.【解答】解:(1)联立得:,解得:,∴圆心C(3,2).若k不存在,不合题意;若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即=1,解得:k=0或k=﹣,则所求切线为y=3或y=﹣x+3;(2)设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,C(a,2a﹣4),∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,解得:0≤a≤.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【分析】(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理可得;(3)设乙步行的速度为v m/min,从而求出v的取值范围.【解答】解:(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=,从而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC==由正弦定理,得AB===1040m.所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200[37(t﹣)2+],因0≤t≤,即0≤t≤8,故当t=min时,甲、乙两游客距离最短.(3)由正弦定理,得BC===500m,乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.设乙步行的速度为v m/min,由题意得﹣3≤≤3,解得,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[]范围内.19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n 是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.【分析】(1)写出等差数列的通项公式,前n项和公式,由b1,b2,b4成等比数列得到首项和公差的关系,代入前n项和公式得到S n,在前n项和公式中取n=nk 可证结论;(2)把S n代入中整理得到b n=,由等差数列的通项公式是a n=An+B的形式,说明,由此可得到c=0.【解答】证明:(1)若c=0,则a n=a1+(n﹣1)d,,.当b1,b2,b4成等比数列时,则,即:,得:d2=2ad,又d≠0,故d=2a.因此:,,.故:(k,n∈N*).(2)==.①若{b n}是等差数列,则{b n}的通项公式是b n=A n+B型.观察①式后一项,分子幂低于分母幂,故有:,即,而,故c=0.经检验,当c=0时{b n}是等差数列.20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.【分析】(1)求导数,利用f(x)在(1,+∞)上是单调减函数,转化为﹣a≤0在(1,+∞)上恒成立,利用g(x)在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a的范围,再分类讨论,确定f(x)的单调性,从而可得f(x)的零点个数.【解答】解:(1)求导数可得f′(x)=﹣a∵f(x)在(1,+∞)上是单调减函数,∴﹣a≤0在(1,+∞)上恒成立,∴a≥,x∈(1,+∞).∴a≥1.令g′(x)=e x﹣a=0,得x=lna.当x<lna时,g′(x)<0;当x>lna时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.故a的取值范围为:a>e.(2)当a≤0时,g(x)必为单调函数;当a>0时,令g′(x)=e x﹣a>0,解得a<e x,即x>lna,因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0<.结合上述两种情况,有.①当a=0时,由f(1)=0以及f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a﹣ae a=a(1﹣e a)<0,f(1)=﹣a>0,且函数f (x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时,f′(x)=﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤时,令f′(x)=﹣a=0,解得x=.当0<x<时,f′(x)>0,当x>时,f′(x)<0,所以,x=是f(x)的最大值点,且最大值为f()=﹣lna﹣1.(i)当﹣lna﹣1=0,即a=时,f(x)有一个零点x=e;(ii)当﹣lna﹣1>0,即0<a<时,f(x)有两个零点;实际上,对于0<a<,由于f()=﹣1﹣<0,f()>0,且函数f(x)在[]上的图象不间断,所以f(x)在()上存在零点.另外,当0<x<时,f′(x)=﹣a>0,故f(x)在(0,)上时单调增函数,所以f(x)在(0,)上只有一个零点.下面考虑f(x)在(,+∞)上的情况,先证明f()=a()<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x﹣x2,则h′(x)=e x﹣2x,再设l(x)=h′(x)=e x﹣2x,则l′(x)=e x﹣2.当x>1时,l′(x)=e x﹣2>e﹣2>0,所以l(x)=h′(x)在(1,+∞)上时单调增函数;故当x>2时,h′(x)=e x﹣2x>h′(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0,即当x>e 时,e x>x2当0<a<,即>e时,f()==a()<0,又f()>0,且函数f(x)在[,]上的图象不间断,所以f(x)在(,)上存在零点.又当x>时,f′(x)=﹣a<0,故f(x)在(,+∞)上是单调减函数,所以f(x)在(,+∞)上只有一个零点.综合(i)(ii)(iii),当a≤0或a=时,f(x)的零点个数为1,当0<a<时,f(x)的零点个数为2.<P style="MARGIN: 0cm 0cm 0pt" class=MsoNormal><?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><v:shapetype id=_x0000_t75 stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t"o:spt="75" coordsize="21600,21600"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></v:path><?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:lock aspectratio="t" v:ext="edit"></o:lock></v:shapetype><v:shape style="Z-INDEX: 251660288; POSITION: absolute; TEXT-ALIGN: left; MARGIN-TOP: 31.05pt; WIDTH: 75.35pt; HEIGHT: 94.6pt; MARGIN-LEFT: 381.6pt; LEFT: 0px" id=_x0000_s1026 type="#_x0000_t75"><v:imagedata o:title="" src="file:///C:\Users\adminb\AppData\Local\Temp\msohtmlclip1\01\clip_image0 01.png"></v:imagedata><?xml:namespace prefix = w ns = "urn:schemas-microsoft-com:office:word" /><w:wrap type="square"></w:wrap></v:shape><SPAN><FONT face="Times New Roman">[</FONT>选做题<FONT face="Times New Roman">]</FONT>本题包括<FONT face="Times New Roman">A</FONT>、<FONT face="Times New Roman">B</FONT>、<FONT face="Times New Roman">C</FONT>、<FONT face="Times New Roman">D</FONT>四小题,<SPAN style="font-emphasize: dot">请选定其中两题,并在相应的答题区域内作答</SPAN>.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.<SPAN style="mso-font-width: 95%; font-emphasize: dot" lang=EN-US><o:p></o:p></SPAN></SPAN></P>A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)(2013•江苏)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.【分析】证明Rt△ADO∽Rt△ACB,可得,结合BC=2OC=2OD,即可证明结论.【解答】证明:连接OD.因为AB和BC分别与圆O相切于点D,C,所以ADO=∠ACB=90°又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,所以,因为BC=2OC=2OD.所以AC=2AD.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)(2013•江苏)已知矩阵A=,B=,求矩阵A﹣1B.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.【解答】解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.D.[选修4-5:不等式选讲](本小题满分0分)24.(2013•江苏)已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.【分析】直接利用作差法,然后分析证明即可.【解答】证明:2a3﹣b3﹣2ab2+a2b=2a(a2﹣b2)+b(a2﹣b2)=(a﹣b)(a+b)(2a+b),∵a≥b>0,∴a﹣b≥0,a+b>0,2a+b>0,从而:(a﹣b)(a+b)(2a+b)≥0,∴2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013•江苏)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.【分析】(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.【解答】解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==.∴平面ADC1与ABA1所成二面角的正弦值为.26.(10分)(2013•江苏)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k ∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.【分析】(1)由数列{a n}的定义,可得前11项,进而得到前11项和,再由定义集合P l,即可得到元素个数;(2)运用数学归纳法证明S i=﹣i(2i+1)(i∈N*).再结合定义,运用等差(2i+1)数列的求和公式,即可得到所求.【解答】解:(1)由数列{a n}的定义得a1=1,a2=﹣2,a3=﹣2,a4=3,a5=3,a6=3,a7=﹣4,a8=﹣4,a9=﹣4,a10=﹣4,a11=5,所以S1=1,S2=﹣1,S3=﹣3,S4=0,S5=3,S6=6,S7=2,S8=﹣2,S9=﹣6,S10=﹣10,S11=﹣5,从而S1=a1,S4=0•a4,S5=a5,S6=2a6,S11=﹣a11,所以集合P11中元素的个数为5;(2)先证:S i(2i+1)=﹣i(2i+1)(i∈N*).事实上,①当i=1时,S i(2i+1)=S3=﹣3,﹣i(2i+1)=﹣3,故原等式成立;②假设i=m时成立,即S m(2m+1)=﹣m(2m+1),则i=m+1时,S(m+1)(2m+3)=S m(2m+1)+(2m+1)2﹣(2m+2)2=﹣m(2m+1)﹣4m﹣3=﹣(2m2+5m+3)=﹣(m+1)(2m+3).综合①②可得S i(2i+1)=﹣i(2i+1).于是S(i+1)(2i+1)=S i(2i+1)+(2i+1)2=﹣i(2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i(2i+1)是2i+1的倍数,而a i(2i+1)+j=2i+1(j=1,2,…,2i+1),所以S i(2i+1)+j=S i(2i+1)+j(2i+1)是a i(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数,而a(i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)﹣j(2i+2)=(2i+1)(i+1)﹣j(2i+2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合P l中元素的个数为1+3+…+(2i﹣1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合P l中元素的个数为i2+j.又2000=31×(2×31+1)+47,故集合P2 000中元素的个数为312+47=1008.。
江苏省镇江市2013届高三高考适应性测试数学卷7一、填空题(每题5分,共70分)1、若关于x 的不等式2230x x a -+<的解集为(,1)m ,则实数m =2、若将复数()()i i -+2112表示为(,,p qi p q R i +∈是虚数单位)的形式,则p q += .3、已知命题P :“R x ∈∀,0322≥-+x x ”,请写出命题P 的否定: 4、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 。
5、设向量(cos ,sin )a αα=,(cos ,sin )b ββ=,其中πβα<<<0,若|2||2|a b a b +=-,则βα-= .6、圆2244100x y x y +---=上的点到直线140x y +-=的最大距离与最小距离之差是_____________.7、已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221l o g l o g l o g n a a a -+++=______8、已知F 1、F 2是椭圆2222)10(a y a x -+=1(5<a <10)的两个焦点,B 是短轴的一个端点,则 △F 1BF 2的面积的最大值是9、α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: _____. 10、将正偶数集合,6,4,2{…}从小到大按第n 组有n2个偶数进行分组如下: 第一组 第二组 第三组 …………}4,2{ }12,10,8,6{ }28,26,24,22,20,18,16,14{ …………则2010位于第_______组。
江苏省2013届高三二模适应性考试试题一、填空题(本题共14小题,每小题5分,共计70分)1.已知复数2012201320132012iz i+=-的虚部为 .2.已知集合211{|},{|340,}3A xB x x x x Z x =≤=--≤∈,则A B = .3.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为 .4.根据图中的伪代码,输出的结果I 为 .5.若12320122013,,,,,x x x x x 的方差为3,则12201220133(2),3(2),,3(2),3(2)x x x x ---- 的方差为 .6.一个底面边长为2cm ,高为3cm 的正三棱锥,其顶点位于球心,底面三个顶点位于球面上,则该球的体积 为 3cm . 7.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集是 .8.已知两点(3,2)A 和(1,4)B -到直线:30l mx y ++=的距离相等,则实数m 的值为 . 9.已知动圆M 的圆心在抛物线2:2012x y Γ=上,且与直线503y =-相切,则动圆M 过定点 . 10.已知,αβ为锐角,且满足sin sin sin cos cos sin cos cos αβαβαβαβ=++,则cos()αβ+= . 11.在闭区间[1,1]-上任取两个实数,则它们的和不大于1的概率是 . 12.已知,(0,1]x y ∈,的最大值为 .13.任取三个互不相等的正整数,,a b c ,若100a b c ++<,则由这三个数构成的不同的等差数列共有 个. 14.如果对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有(),(),()f a f b f c 也是某个三角形的三边长,则称()f x 为“保三角形函数”,若函数()ln ()h x x x M =≥是保三角形函数,则M 的最小值为 .二、解答题(本题共6小题,共计90分)15.在ABC ∆中,角,,A B C 所对的边长分别为,,a b c ,1sin 5ac B AB AC bc +⋅= .(1)求tan 2A的值;(2)若a =求ABC ∆面积的最大值.16.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB CD ,AD DC ⊥,,E F 分别为,BC PA 的中点. (1)求证:AD PC ⊥;(2)求证://EF 平面PCD .17.某个公园有个池塘,其形状为直角ABC ∆,90C ∠= ,200AB =米,100BC =米.(1)现在准备养一批供游客观赏的鱼,分别在,,AB BC CA 上取点,,D E F ,如图(1),使得//,EF AB EF ED ⊥, 游客在DEF ∆内喂食,求DEF ∆面积S 的最大值;(2)现在准备新建造一个荷塘,分别在,,AB BC CA 上取点,,D E F ,如图(2),建造DEF ∆连廊(不考虑宽度)供游客休憩,且使DEF ∆为正三角形,求DEF ∆边长的最小值.18.椭圆22122:1(0)x y a b a b Γ+=>>的左右焦点分别为12,F F ,左右顶点分别为,A B ,离心率为23,且 225AF F B ⋅=.(1)求椭圆Γ的方程;(2)点00(,)M x y (002,0x y ≠>)是圆2222:x y a Γ+=上的任意一点,连结AM ,交椭圆1Γ于P ,记直线2,MF PB 的斜率分别为12,k k ,求12k k 的取值范围.19.已知函数32()23(1)6()f x x a x ax a R =-++∈(1)若函数()f x 在(,)-∞+∞上单调递增,求实数a 的取值集合; (2)当[1,3]x ∈时,()f x 的最小值为4,求实数a 的值.20.已知各项均为正数的数列{}n a 的前n 项和为n S ,若11a =,且221(1)(1)()n m n m S S S a a +=++--,其中m ,n 为任意正整数.(1)求23,a a 的值;(2)求数列{}n a 的通项公式;(3)数列{}n b 满足3(1)nnnb a -=,且,,(110,,,*)x y z b b b x y z x y z N ≤<<≤∈能构成等差数列,求x y z ++的取值集合.江苏省2013届高三二模适应性考试试题(理科附加)21. (选做题)本题包括A 、B 、C 、D 四小题,请选定其中两题,并在..........答题卡...相应的答题区域内作答............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A. 选修4-1:几何证明选讲如图,AB 是⊙O 的直径,C 是⊙O 外一点,且AC AB =,BC 交⊙O 于点D .已知BC =4,AD =6,AC 交⊙O 于点E ,求四边形ABDE 的周长.变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M ;变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦。
江苏省镇江市2013届高三高考适应性测试数学卷9一、填空题:本大题共14小题,每小题5分,共计70分.1.i 是虚数单位,复数2332iz i +=-+的虚部是 ;2.抛物线24y x =的焦点到准线的距离是 ;3. 已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则87109a a a a ++= ;4.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命 题“x B ∈”的充分不必要条件,则实数a 的取值范围是 ;5.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,若从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为相关人员数 抽取人数 公务员 32 x 教师 48 y 自由职业者6446.已知函数221(0)()2(0)x x f x x x ⎧+≤=⎨->⎩,则不等式()2f x x -≤的解集是 ;7.若某程序框图如所示,则该程序运作后输出的y等于 ;8.函数()2s i n (f x x ωϕ=+(其中0ω>,22ππϕ-<<)的图象如图所示,若点A 是函数()f x 的图象与x 轴的交点,点B 、D 分别是函数()f x 的图象的最高点和最低点,点C (,0)12π是点B 在x 轴上的射影,则AB BD ⋅= ;开始结 束输出y1x =1y =21y y =+ 1x x =+5?x ≤否是9.如图,在棱长为5的正方体ABCD —A1B1C1D1中,EF 是棱AB上的一条线段,且EF=2,Q 是A1D1的中点,点P 是棱C1D1上的动点,则四面体PQEF 的体积为_________;10.如图,是二次函数a bx x x f +-=2)(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区间是(1,)2k k -,则k =____________;11.设1250,,,a a a 是从-1,0,1这三个整数中取值的数列,若222212501509,(1)(1)(1)107a a a a a a +++=++++++= 且,则1250,,,a a a 中数字0的个数为 .12.设a 是实数.若函数()|||1|f x x a x =+--是定义在R 上的奇函数,但不是偶函数,则函数()f x 的递增区间为 .13.已知椭圆)0(12222>>=+b a b y a x 的左焦点1F ,O 为坐标原点,点P 在椭圆上,点Q 在椭圆的右准线上,若1111112,()(0)||||F P F OPQ F O F Q F P F O λλ==+>则椭圆的离心率为 . 14.函数()f x 满足1()ln 1()f x x f x +=-,且12,x x 均大于e ,12()()1f x f x +=, 则12()f x x 的最小值为 .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.如图,在三棱柱ABC -A1B1C1中,AB =AC =2AA1, ∠BAA1=∠CAA1=60︒,D ,E 分别为AB ,A1C 中点. (1)求证:DE ∥平面BB1C1C ; (2)求证:BB1⊥平面A1BC .16. (本小题满分14分)已知a =(1+cos α,sin α),b =(1-cos ,sin ββ),(1,0)c = ,(0,),(,2)απβππ∈∈,向量a 与c夹角为1θ,向量b 与c夹角为2θ,且1θ-2θ=6π,若ABC ∆中角A 、B 、C 的对边分别为a 、b 、c ,且角A=βα-.求(Ⅰ)求角A 的大小; (Ⅱ)若ABC ∆的外接圆半径为43,试求b+c 取值范围.17.如图,海岸线θ2,=∠A MAN ,现用长为l 的栏网围成一养殖场,其中NA C MA B ∈∈,. (1)若l BC =,求养殖场面积最大值;(2)若B 、C 为定点,l BC <,在折线MBCN 内选点D ,使l DC BD =+,求四边形养殖场DBAC 的最大面积;(3)若(2)中B 、C 可选择,求四边形养殖场ACDB 面积的最大值.EA BCC1B1A1D18.(本题满分16分)给定椭圆2222:1(0)y x C a b a b +=>>,称圆心在坐标原点O ,半径为22a b +的圆是椭圆C 的“伴随圆”. 若椭圆C 的一个焦点为2(2,0)F ,其短轴上的一个端点到2F 距离为3. (Ⅰ)求椭圆C 及其“伴随圆”的方程;(Ⅱ)若过点(0,)(0)P m m <的直线l 与椭圆C 只有一个公共点,且l 截椭圆C 的“伴随圆”所得的弦长为22,求m 的值;(Ⅲ)过椭圆C“伴椭圆”上一动点Q 作直线12,l l ,使得12,l l 与椭圆C 都只有一个公共点,试判断直线12,l l 的斜率之积是否为定值,并说明理由. 19. 设首项为1a 的正项数列{}n a 的前n 项和为n S ,q 为非零常数,已知对任意正整数,n m ,mn m m n S S q S +=+总成立.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ)若不等的正整数,,m k h 成等差数列,试比较mhm h a a ⋅与2kk a 的大小;(Ⅲ)若不等的正整数,,m k h 成等比数列,试比较11m h mha a ⋅与2k ka 的大小.20. 已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. 求函数()f x 的表达式; 求函数()g x 的单调区间;(3)研究函数()g x 在区间()0,1上的零点个数。
2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+⎪⎝⎭的最小正周期为__________. 2.(2013江苏,2)设z =(2-i)2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________. 4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________.9.(2013江苏,9)抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________.10.(2013江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,1=2AD AB ,2=3BE BC .若12DE AB AC λλ=+(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy 中,椭圆C 的标准方程为2222=1x y a b+(a >0,b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若21d =,则椭圆C 的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P ,A 之间的最短距离为a 的所有值为__________.14.(2013江苏,14)在正项等比数列{a n }中,512a =,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2013江苏,15)(本小题满分14分)已知a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若|a-b|a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2n n nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.20.(2013江苏,20)(本小题满分16分)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. (1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; (2)若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.(2013江苏,21)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .[选修4-5:不等式选讲](本小题满分10分)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.23.(2013江苏,23)(本小题满分10分)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),,(1)k k k k k ----个,…,即当1122k k k k n (-)(+)<≤(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.。
江苏省镇江市2013届高三高考适应性测试数学卷8一、填空题:本大题共14小题,每小题5分,共70分. 1. 复数2+i i在复平面上对应的点在第 象限.2. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 3. 已知集合{|5}A x x =>,集合{|}B x x a =>,若命题 “x A ∈”是命题“x B ∈”的充分不必要条件,则实 数a 的取值范围是 .4. 如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为 .(第4题).5. 集合2{3,log },{,},A a B a b ==若{2},AB =则AB = .6. 阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 . 7. 向量(cos10,sin10),(cos70,sin70)==a b ,2-a b = . 8. 方程lg(2)1x x +=有 个不同的实数根.9. 设等差数列{}n a 的前n 项和为n S ,若1≤5a ≤4,2≤6a ≤3,则6S 的取值范围是 .10.过双曲线22221(0,0)x y a b a b-=>>的左焦点(,0)(0)F c c ->,作圆:2224a x y +=的切线,切点为E ,直线FE 交双曲线右支于点P ,若1()2OE OF OP =+,则双曲线的离心率为 .11.若函数()2ln 2f x mx x x =+-在定义域内是增函数,则实数m 的取值范围是 . 12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 . 13.已知实数,x y满足x y ,则x y +的最大值为 .A CB 14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅, 设(1)(2)(3)(4)...(21)(2)n n n S N N N N N N =+++++-+,则n S = . 二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (1)求sin C ;(2)当2c a =,且b =a . 16.(本题满分14分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(1)求证:AC ⊥平面BDE ;(2)设点M 是线段BD 上一个动点,试确定点M 的 位置,使得//AM 平面BEF ,并证明你的结论.17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =. ⑴ 求椭圆的标准方程;⑵ 设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.18.(本题满分16分)如图,直角三角形ABC 中,∠B =90,AB =1,BC M ,N 分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落 在边BC 上(A '点和B 点不重合).设∠AMN =θ.(1) 用θ表示线段AM 的长度,并写出θ的取值范围; (2) 求线段A N '长度的最小值.19.(本题满分16分)已知k R ∈,函数()(01,01)x x f x m k n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的kA B CD FE值,如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性; (3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心. 20.(本题满分16分)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=c ,2S n =a n a n +1+r .(1)若r =-6,数列{a n }能否成为等差数列?若能,求c 满足的条件;若不能,请说明理由.(2)设32111234212n n n n a a a P a a a a a a --=+++---,2242345221n n n n a a a Q a a a a a a +=+++---, 若r >c >4,求证:对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.附加题部分21. (选做题)本大题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.B .选修4—2 矩阵与变换 已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中R a ∈,若点(1,2)P -在矩阵M 的变换下得到点(4,0)P '-, (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量.C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=(q ÎR )的 圆心为00(,)P x y ,求002x y -的取值范围.22. 必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M . (1)若点F 到直线l l 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分)23.必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知n n x x f )1()(+=, (1)若20112011012011()f x a a x a x =+++,求2011200931a a a a ++++ 的值;(3分) (2)若)(3)(2)()(876x f x f x f x g ++=,求)(x g 中含6x 项的系数;(3分) (3)证明:1121(1)1232m m mm m m m m m n m n m n n m C C C C C ++++-+++⎡⎤++++=⎢⎥+⎣⎦.(4分)参考答案必做题部分1. 四2. 63.5a <8. 2 9.[]12,42-10.212m ≥12.(⋃ 13. 4 14. 423n +一、填空题:本大题共14小题,每小题5分,共70分. 1. 复数2+i 在复平面上对应的点在第 象限.2. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 3. 已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是 . 4. 如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3, M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积 为 .(第4题).5. 集合2{3,log },{,},A a B a b ==若{2},A B =则A B = . 6. 阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 .7. 向量(cos10,sin10),(cos70,sin70)==a b ,2-a b = . 8. 方程lg(2)1x x +=有 个不同的实数根.9. 设等差数列{}n a 的前n 项和为n S ,若1≤5a ≤4,2≤6a ≤3,则6S 的取值范围是 .10.过双曲线22221(0,0)x y a b a b-=>>的左焦点(,0)(0)F c c ->,作圆:2224a x y +=的切线,切点为E ,直线FE 交双曲线右支于点P ,若1()2OE OF OP =+,则双曲线的离心率为 . 11.若函数()2l n 2f x m x x x =+-在定义域内是增函数,则实数m 的取值范围是 .12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 .13.已知实数,x y满足x y ,则x y +的最大值为 . 14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅,设(1)(2)(3)(4)...(21)(2)n n n S N N N N N N =+++++-+,则n S = .二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (1)求sin C ;(2)当2c a =,且b =a . 解:(1)由已知可得2312sin 4C -=-.所以27sin 8C =. ……………… 2分因为在ABC ∆中,sin 0C >,所以sin 4C =. ………………………………4分(2)因为2c a =,所以1sin sin 2A C ==. ………………………………6分 因为ABC ∆是锐角三角形,所以cos C =,cos A =. ………………8分所以s B A=+sA=+8=8=分 由正弦定理可得:sin aA=,所以a =. …………………………………………14分说明:用余弦定理也同样给分. 16.(本题满分14分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=.(1)求证:AC ⊥平面BDE ;A BCDFE(2)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.16.(1)证明:因为DE ⊥平面ABCD ,所以AC DE ⊥. ……………………2分 因为ABCD 是正方形,所以BD AC ⊥,因为D E BD D ⋂=………………4分 从而AC ⊥平面BDE . ……………………6分(2)当M 是BD 的一个三等分点,即3BM =BD 时,AM ∥平面BEF . …………7分 取BE 上的三等分点N ,使3BN =BE ,连结MN ,NF ,则DE ∥MN ,且DE =3MN , 因为AF ∥DE ,且DE =3AF ,所以AF ∥MN ,且AF =MN ,故四边形AMNF 是平行四边形. ……………………………………10分 所以AM ∥FN ,因为AM ⊄平面BEF ,FN ⊂平面BEF , …………………………………………12分 所以AM ∥平面BEF . …………………………………………14分 17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =. ⑴ 求椭圆的标准方程;⑵ 设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.解:⑴∵椭圆C 的短轴长为2,椭圆C 的一条准线为l :2x =,∴不妨设椭圆C 的方程为2221x y a+=.(2分)∴2212a c c c +==,( 4分)即1c =.(5分)∴椭圆C 的方程为2212x y +=.(6分) ⑵ F (1,0),右准线为l :2x =, 设00(,)N x y ,则直线FN 的斜率为001FN y k x =-,直线ON 的斜率为00ON yk x =,(8分)∵FN ⊥OM ,∴直线OM 的斜率为001OM x k y -=-,(9分)∴直线OM 的方程为:001x y x y -=-,点M 的坐标为002(1)(2,)x M y --.(11分) ∴直线MN 的斜率为00002(1)2MN x y y k x -+=-.(12分)∵MN ⊥ON ,∴1MN ON k k ⋅=-, ∴0000002(1)12x y y yx x -+⋅=--, ∴200002(1)(2)0y x x x +-+-=,即22002x y +=.(13分)∴ON =(14分)说明:若学生用平面几何知识(圆幂定理或相似形均可)也得分,设垂足为P ,准线l 与x 轴交于Q ,则有2ON OP OM =g ,又2OP OM OF OQ ==g g,所以ON = 18.(本题满分16分)如图,直角三角形ABC 中,∠B =90,AB =1,BCM ,N 分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落在边BCC上(A '点和B 点不重合).设∠AMN =θ.(1)用θ表示线段AM 的长度,并写出θ的取值范围;(2) 求线段A N '长度的最小值. 解:(1)设MA MA x '==,则1MB x =-.(2分)在Rt △MB A '中,1cos(1802)xx--θ=, (4分) ∴2111cos22sin MA x ===-θθ. (5分) ∵点M 在线段AB 上,M 点和B 点不重合,A '点和B 点不重合,∴4590<θ<.(7分)(2)在△AMN 中,∠ANM =120θ︒-,(8分) sin sin(120)AN MA=θ-θ,(9分) 21sin 2sin sin(120)AN θ⋅θ=-θ=12sin sin(120)θ-θ.(10分) 令12sin sin(120)2sin (sin )2t =θ-θ=θθ+θ=2sin cos θθθ =1112cos 2sin(230)222θ-θ=+θ-.(13分)∵4590<θ<, ∴60230150<θ-<. (14分)当且仅当23090θ-=,60θ=时,t 有最大值32,(15分) ∴60θ=时,A N '有最小值23.(16分) 19.(本题满分16分)已知k R ∈,函数()(01,01)x x f x m k n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的k 值;如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性;(3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心.解:(1)如果()f x 为偶函数,则()(),f x f x -=x x x x m k n m k n --+⋅=+⋅恒成立,(1分)即:,x x x x n k m m k n +⋅=+⋅()()0,x x x x n m k m n -+-= ()(1)0x x n m k --=(2分) 由0x x n m -=不恒成立,得 1.k =(3分)如果()f x 为奇函数,则()(),f x f x -=-x x x x m k n m k n --+⋅=--⋅恒成立,(4分) 即:,x x x x n k m m k n +⋅=--⋅()()0,x x x x n m k m n +++=(5分)()(1)0,x x n m k ++=由0x x n m +≠恒成立,得 1.k =-(6分)(2)10,m n >>>1mn>, ∴ 当0k ≤时,显然()x x f x m k n =+⋅在R 上为增函数;(8分)当0k >时,()ln ln [()ln ln )]0x x x x mf x m m kn n m k n n n'=+=+=,由0,x n >得()ln ln 0,x m m k n n +=得ln (log ,ln x m m nk k n n m =-=-得log (log )m m nx k n =-.(9分)∴当(,log (log )]m m nx k n ∈-∞-时, ()0f x '<,()f x 为减函数; (10分)当[log (log ),)m m nx k n ∈-+∞时, ()0f x '>,()f x 为增函数. (11分)(3) 当12,2m n ==时,()22,x x f x k -=+⋅ 如果0,k <22log ()log ()()222()222222k k x x x x x x x x f x k k ------=+⋅=--⋅=-⋅=-,(13分)则2(log ())(),f k x f x --=-∴函数()y f x =有对称中心21(log (),0).2k -(14分)如果0,k >22log log ()2222222,k k x x x x x x f x k ---=+⋅=+⋅=+(15分)则2(log )(),f k x f x -= ∴函数()y f x =有对称轴21log 2x k =.(16分)20.(本题满分16分)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=c ,2S n =a n a n +1+r .(1)若r =-6,数列{a n }能否成为等差数列?若能,求c 满足的条件;若不能,请说明理由.(2)设32111234212n n n n a a a P a a a a a a --=+++---,2242345221n n n n a a a Q a a a a a a +=+++---, 若r >c >4,求证:对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.解:(1)n =1时,2a 1=a 1a 2+r ,∵a 1=c ≠0,∴2c =ca 2+r ,22ra c=-. (1分)n ≥2时,2S n =a n a n +1+r ,① 2S n -1=a n -1a n +r ,②①-②,得2a n =a n (a n +1-a n -1).∵a n ≠0,∴a n +1-a n -1=2. ( 3分) 则a 1,a 3,a 5,…,a 2n -1,… 成公差为2的等差数列,a 2n -1=a 1+2(n -1).a 2,a 4,a 6,…,a 2n ,… 成公差为2的等差数列, a 2n =a 2+2(n -1).要使{a n }为等差数列,当且仅当a 2-a 1=1.即21r c c--=.r =c -c 2. ( 4分)∵r =-6,∴c 2-c -6=0,c =-2或3. ∵当c =-2,30a =,不合题意,舍去.∴当且仅当3c =时,数列{}n a 为等差数列 (5分)(2)212n n a a --=[a 1+2(n -1)]-[a 2+2(n -1)]=a 1-a 2=rc c +-2.221n n a a +-=[a 2+2(n -1)]-(a 1+2n )=a 2-a 1-2=-(rc c+). (8分)∴n P 11(1)1[2](1)222n n na n n c r r c c c c -=+⨯=+-+-+- (9分) 21(1)1[2](1)2n n n rQ na n n r r c c c c c -=-+⨯=-+-++. (10分)11(1)(1)2n n rP Q n n c n n r r c c c c c-=+-++-+-+=2111122r c c n n r r r r c c c c c c c c ⎛⎫⎛⎫- ⎪ ⎪-+++ ⎪ ⎪ ⎪⎪+-++-+ ⎪ ⎪⎝⎭⎝⎭.(11分)∵r >c >4,∴r c c +≥4,∴2rc c +->2.∴0<111132442r r c c c c+<+=+-+<1. (13分)且1111122rc c c c r r r r c c c c c c c c---++=+-+-++-+>-1. (14分) 又∵r >c >4,∴1r c>,则0<12r c c c -<+-.01rc c c <+<+.∴12c rc c-+-<1.11c r c c +<+.∴1112c c r r c c c c -++-+-+<1.(15分) ∴对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.(16分) 附加题部分21. (选做题)本大题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.B .选修4—2 矩阵与变换已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中R a ∈,若点(1,2)P -在矩阵M 的变换下得到点(4,0)P '-, (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量.解:(1)由221a ⎡⎤⎢⎥⎣⎦12⎡⎤⎢⎥-⎣⎦=40-⎡⎤⎢⎥⎣⎦,(2分) ∴2243a a -=-⇒=. (3分) (2)由(1)知M 2321⎡⎤=⎢⎥⎣⎦,则矩阵M 的特征多项式为 223()(2)(1)63421f λλλλλλλ--==---=---- (5分)令0)(=λf ,得矩阵M 的特征值为1-与4. (6分)当1-=λ时, (2)3002(1)0x y x y x y λλ--=⎧⇒+=⎨-+-=⎩∴矩阵M 的属于特征值1-的一个特征向量为11⎡⎤⎢⎥-⎣⎦; (8分)当4λ=时, (2)302302(1)0x y x y x y λλ--=⎧⇒-=⎨-+-=⎩∴矩阵M 的属于特征值4的一个特征向量为32⎡⎤⎢⎥⎣⎦. (10分)C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=(q ÎR )的 圆心为00(,)P x y ,求002x y -的取值范围.【解】由题设得004cos , 3sin x y ì=ïïíï=ïîq q (q 为参数,Îq R ).…………………………5分于是0028cos 3sin )x y θθθϕ-=-+, 所以002x y -. ………………………10分 22. 必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M .(1)若点F 到直线ll 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分) 解:(1)由已知,4x =不合题意.设直线l 的方程为(4)y k x =-,由已知,抛物线C 的焦点坐标为(1,0), …………………1分因为点F 到直线l=, (2)分解得2k =±,所以直线l的斜率为2±…………………4分(2)设线段AB 中点的坐标为00(,)N x y ,),(),,(2211y x B y x A ,因为AB 不垂直于x 轴,则直线MN 的斜率为004y x -,直线AB 的斜率为04x y -, 直线AB 的方程为00004()x y y x x y --=-,…………………5分联立方程000024(),4,x y y x x y y x -⎧-=-⎪⎨⎪=⎩消去x 得2200000(1)(4)04x y y y y x x --++-=, …………………7分所以012044y y y x +=-, …………………8分因为N 为AB 中点,所以1202y y y +=,即00024y y x =-, …………………9分所以02x =.即线段AB 中点的横坐标为定值2. …………………10分 23.必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知n n x x f )1()(+=, (1)若20112011012011()f x a a x a x =+++,求2011200931a a a a ++++ 的值;(3分) (2)若)(3)(2)()(876x f x f x f x g ++=,求)(x g 中含6x 项的系数;(3分) (3)证明:1121(1)1232mmmm m m m m m n m n m n n m C C C C C ++++-+++⎡⎤++++=⎢⎥+⎣⎦.(4分) 解:(1)因为n n x x f )1()(+=,所以20112011()(1)f x x =+,又20112011012011()f x a a x a x =+++,所以20112011012011(1)2f a a a =+++= (1)20110120102011(1)0f a a a a -=-++-= (2)(1)-(2)得:201113200920112()2a a a a ++++=所以:201013200920112011(1)2a a a a f ++++== …………………3分 (2)因为)(3)(2)()(876x f x f x f x g ++=,所以678()(1)2(1)3(1)g x x x x =+++++ )(x g 中含6x 项的系数为667812399C C +⨯+= …………………6分(Ⅲ)设11()(1)2(1)(1)m m m n h x x x n x ++-=++++++ (1) 则函数()h x 中含m x 项的系数为112m m m m m m n C C nC ++-+⨯++ …………………7分 12(1)()(1)2(1)(1)m m m n x h x x x n x ++++=++++++ (2) (1)-(2)得121()(1)(1)(1)(1)(1)m m m m n m n xh x x x x x n x +++-+-=++++++++-+(1)[1(1)]()(1)1(1)m n m n x x xh x n x x ++-+-=-+-+ 2()(1)(1)(1)m m n m n x h x x x nx x ++=+-+++()h x 中含m x 项的系数,即是等式左边含2m x +项的系数,等式右边含2m x +项的系数为21()!()!(2)!(2)!(1)!(1)!m m m n m n m n n m n C nC m n m n ++++++-+=-++-+- 1(1)(2)()!(1)12(1)!(1)12m m n n n m m n m n C m m n m ++--+++++=⨯=++-+ 所以112m m m m m m n C C nC ++-+⨯++1(2m m n m n C m ++++=+ …………………10分。
江苏省镇江市2013届高三高考适应性测试数学卷1
数学(І)(正题)
一、填空题.本大题共10小题,每小题5分,共50分.把正确答案填在相应位置.
1.
现用分层抽样的方法在全校抽取120名学生,则应在高三年级抽取的学生人数为 .
2.若命题“R x ∈∀,02≥+-a ax x ”为真命题,则实数a 的取值范围是 .
3.某程序框图如图所示,若输出的10=S ,则自然数=a .
4.若直线1+=kx y 与直线042=-+y x 垂直,则=k .
5.已知集合{}m P ,1-=,⎭
⎬⎫
⎩⎨⎧<
<-=431x x Q ,若∅≠Q P ,则整数=m .
6.一根绳子长为6米,绳上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为 .
5.若复数z 满足1=-i z (其中为虚数单位),则z 的最大值为 .
6.已知向量a 的模为2,向量e 为单位向量,)(e a e -⊥,则向量a 与e 的夹角大小为 .
9.在等比数列{}n a 中,已知1235a a a =,78940a a a =,则567a a a = . 10.函数65cos
2cos 6
sin 2sin )(ππ
x x x f -=在⎥⎦
⎤
⎢⎣⎡-2,2ππ上的单调递增区间为 .
11.过圆92
2
=+y x 内一点)2,1(P 作两条相互垂直的弦AC ,BD ,当BD AC =时,四边形
ABCD 的面积为 .
12.若)(x f y =是定义在R 上周期为2的周期函数,且)(x f 是偶函数,当[]1,0∈x 时,
12)(-=x x f ,则函数x x f x g 3log )()(-=的零点个数为 .
13.设)(x f 是定义在R 上的可导函数,且满足0)()('
>+x xf x f .则不等式
)1(1)1(2-->+x f x x f 的解集为
14.在等差数列{}n a 中,52=a ,216=a ,记数列⎭
⎬⎫⎩⎨
⎧n a 1的前n 项和为n S ,若1512m
S S n
n ≤-+
对+∈N n 恒成立,则正整数m 的最小值为 .
二、解答题.本大题共2小题,共30分.解答时要求写出必要的文字说明、证明过程或推理步骤.
15.(本小题满分14分)
在四棱锥ABCD P -中,⊥PA 底面ABCD ,
CD AB //,BC AB ⊥,1==BC AB ,2=DC ,点E 在PB 上.
(1)求证:平面⊥AEC 平面PAD ;
(2)当//PD 平面AEC 时,求PE :EB 的值.
16.(本小题满分14分)
设ABC ∆的内角A ,B ,C 的对边长分别为a ,b ,c ,且.2
12ac b = (1)求证:4
3cos ≥
B ; (2)若1cos )cos(=+-B
C A ,求角B 的大小.
17(本小题满分14分)
因客流量临时增大,某鞋店拟用一个高为50cm(即EF =50cm)的平面镜自制一个竖直摆放的简易鞋镜.根据经验,一般顾客AB 的眼睛B 到地面的距离x (cm)在区间[140,180]内.设支架FG 高为h (0<h <90)cm ,AG =100cm,顾客可视的镜像范围为CD (如图所示),记CD 的长度为y (GC GD y -=).
(1)当h =40cm 时,试求y 关于x 的函数关系式和y 的最大值;
(2)当顾客的鞋A 在镜中的像1A 满足不等关系1GC GA GD <≤(不计鞋长)时,称顾客可在镜中看到自己的鞋,若一般顾客都能在镜中看到自己的鞋,试求h 的取值范围.
18.(本小题满分16分)
已知椭圆)0(12222>>=+b a b y a x 的离心率为22,且过点)2
1
,22(P ,记椭圆的左顶点为.A
(1)求椭圆的方程;
(2)设垂直于y 轴的直线交椭圆于B ,C 两点,试求ABC ∆面积的最大值;
(3)过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E 两点,且221=k k ,求证:直线DE 恒过一个定点.
19(本小题满分16分)
在数列{}n a 中,11a =,且对任意的*k N ∈,21221,,k k k a a a -+成等比数列,其公比为k q .
(1)若k q =2(*k N ∈),求13521...k a a a a -++++;
(2)若对任意的*k N ∈,k a 2,12+k a ,22+k a 成等差数列,其公差为k d ,设1
1
k k b q =-. ① 求证:{}k b 成等差数列,并指出其公差; ②若1d =2,试求数列{}k d 的前k 项的和k D .
20.已知函数|21|1(),x a f x e -+=||12(),x a f x e x R -+=∈.
(1)若a =2,求12()()()f x f x f x =+在[2,3]x ∈上的最小值; (2)若[,)x a ∈+∞时,21()()f x f x ≥,求a 的取值范围; (3)求函数1212()()|()()|
()22
f x f x f x f x
g x +-=
-
在[1,6]x ∈上的最小值;
数学(Ⅱ)(附加题)
21.选做题
A .选修14-:几何证明选讲
如图,等边三角形ABC 内接于圆O ,D 为劣弧BC 上一点,
连结BD ,CD 并延长分别交AC ,AB 的延长线于点E ,F . 求证:.2BC BF CE =⋅
B .选修24-:矩阵与变换
已知二阶矩阵A 将点)0,1(变换为)3,2(,且属于特征值3的一个特征向量是⎥⎦
⎤⎢⎣⎡11,求矩阵.A
C .选修44-:坐标系与参数方程
已知点),(y x P 在椭圆112
162
2=+y x 上,试求y x z 32-=的最大值.
D .选修54-:不等式选讲
设1a ,2a ,3a 均为正数,且m a a a =++321.求证:.29
111133221m
a a a a a a ≥+++++
22.(本小题满分10分)
甲,乙,丙三人投篮,甲的命中率为p ,乙,丙的命中率均为q ()1,0(,∈q p ).现每人独立投篮一次,记命中的总次数为随机变量ξ. ● 当2
1
=
=q p 时,求数学期望)(ξE ; ● 当1=+q p 时,试用p 表示ξ的数学期望)(ξE .
23.某班级共派出1+n 个男生和n 个女生参加学校运动会的入场仪式,其中男生甲为领队.入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有n E 种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台服务,共有n F 种选法.
(1)试求n E 和n F ;
(2)判断n E ln 和n F 的大小(+∈N n ),并用数学归纳法证明. 参考答案。