人教版九年级上册第25章概率初步25.3 用频率估计概率学案-最新教育文档
- 格式:docx
- 大小:18.82 KB
- 文档页数:4
25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2。
进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力.方法与过程目标:1。
选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系。
2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。
情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1。
体会用频率估计概率的必要性和合理性.2.学会依据问题特点,用频率来估计事件发生的概率.难点:1.理解频率与概率的关系,2。
用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
25.3 利用频率估计概率教学目标:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率mn(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(2) 请估计,当很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( )A.90个B.24个C.70个D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.153.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是().A.110、110B.110、12C.12、110D.12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有().A.10粒B.160粒C.450粒D.500粒二、填一填6.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.分)答案:1.D 2.B 3.B 4.A 5.C 6.3113,,102020;111,,424。
《25.3 用频率估计概率》教学设计一、内容和内容解析:1、内容用频率估计概率2、内容解析“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究.教材这样编排其主要意图有三:1、遵从概率的产生及发展规律,历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义. 2、符合学生的认知规律概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻. 3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.它突破了对随机事件发生结果的等可能性与有限性的限制,揭示了偶然性中蕴含的必然规律. “频率稳定性”是概率统计定义的核心,相比古典定义“用频率估计概率”更具普遍性,它是求概率最基本的方法.二、目标和目标解析1. 目标(1)通过试验等活动,让学生理解当试验的次数较大时,试验的频率稳定于理论概率. 并可据此估计某一事件发生的概率.(2)经历试验、统计等活动过程,积累学生参与数学活动的经验,加强学生动手、动脑的意识. 在收集、整理、分析数据中培养学生探究数学规律的兴趣,使学生乐于学习,主动学习,同时培养学生的合作意识和积极思考的习惯,体验数学的应用价值.(3)了解科学家们的试验数据,以及所付出的艰苦劳动,培养学生科学严谨的学习态度.2. 目标解析达成目标(1)的标志是:学生能够从频率表中,估计某一事件的概率,知道估计概率时选择次数较多的频率来估计,会辨别频率与概率的区别与联系,会解决课上练习题。
达成目标(2)的标志是:学生积极认真地投入到抛硬币试验和抛图钉试验中,能够分析整理所得数据,并根据数据得出结论。
达成目标(3)的标志是:了解数学知识的发展史,对试验中的每一个数据的收集能注意要求,严谨认真。
第二十五章 25.3用频率估计概率知识点1:利用频率估计概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A发生的概率,记作P(A)=p.频率估计概率的适用对象:当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,可通过统计频率来估计概率.根据大量重复试验,某一事件发生的频率越来越稳定于某个常数,可将这个常数看作该事件发生的概率.关键提醒:概率是事件在大量重复试验中频率逐渐稳定的值,即用大量重复试验中事件发生的频率去估计得到事件发生的概率,但大量试验反映的规律并非在每一次试验中一定存在,如抛硬币10次,并不一定是正面、反面各5次.知识点2:设计模拟试验通过试验预测某事件的概率时,当试验的所有可能不是有限个,或各种可能结果发生的可能性不相等时,要通过频率来估计概率,也就是说,要借助试验法得到相应的概率,如试验遇到找不到相应的实物或用实物进行试验困难较大的情况下,其有效方法是:(1)寻找满足条件的替代物做模拟试验;(2)用计算器产生随机整数的方法进行模拟试验.知识点3:用统计频(概)率解决实际问题实际问题中的试验一般不属于各种结果发生的可能性相等的类型,所以先用频率去估计概率,然后根据估计的概率解决相关问题.归纳整理:(1)在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果不尽相同(具有偶然性),但大量重复试验所得结果却能反映规律.(2)在做大量重复试验时,可以根据概率要达到的精度来确定数据表中频率保留的数位.一般用频率估计出来的概率要比数据表中的频率保留的数位要少.芽种子粒数05苗苗记录了她做这个游戏的情况,并绘制了如下的表格:你能设计一个模拟试验吗?从而估计出任意抽取这些球除颜色外没有其他区点拨:本题涉及用频率估计概率及模拟试验的设计.(1)解答时表格中的频率可以直接求得,估计概率要注意随着试验次数的增多,频率稳定在哪个常数附近;(2)模拟试验的方法很多,关键是注意试验的条件要相同.考点3:利用频率求概率解决实际问题【例2】某工厂封装圆珠笔的箱子,每箱只装2000枝,在一次封装时,误把一些已作标记的不合格的圆珠笔也装入箱里,若随机拿出100枝圆珠笔,共做10次试验,100枝中不合格的圆珠笔的平均数是5,你能估计箱子里混入多少不合格的圆珠笔吗?若每枝合格圆珠笔的利润为0.05元,而发现不合格品要退货并每枝赔偿商店1.00元,你能根据你的估计推算出这箱圆珠笔是亏损还是盈利?亏损,损失多少元?盈利,利润是多少?解:因为每100枝平均有5枝不合格,所以有2000÷100×5=100,故可估计整箱平均有100枝不合格,1900枝合格.赔偿100×1=100(元),利润1900×0.5=950(元),总的盈利950-100=850(元),所以这箱圆珠笔盈利,共盈利850元.点拨:利用平均概率可估计出共有多少枝不合格的商品,即可推算出亏损还是盈利.。
课题:用频率估计概率【学习目标】1、 当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、 通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
【学习重点】当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
【学习难点】通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
【学习过程】预学一 知识链接:1、假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是() A. B. C. D. 2、中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是() A. B. C. D. 思考:当事件要经过多个步骤(即三步或三步以上)时,我们常通过____的方法列举所有可能的结果,找出事件A 可能发生的结果,再利用公式____求概率.二、探究新知:1、自主探究:阅读课本P142—P146,完成表25-3、25-4、25-5、25-6中的数据。
2、探究:上表中,随着投篮次数的增加,投中频率的变化趋势有何规律?导学1、事件发生的概率随着 的增加,逐渐 在某个数值附近,我们可以用平稳时6183853231613291来估计这一事件的概率。
2、当试验的所有可能结果不明有限个,或各种可能结果发生的可能性不相等时,求(估计)概率是用()A、通过统计频率估计概率B、用列举法求概率C、用列表法求概率D、用树形图求概率3、关于频率与概率的关系,下列说法正确的是()A、频率等于概率;B、当实验次数很大时,频率稳定在概率附近;C、当实验次数很大时,概率稳定在频率附近;D、实验得到的频率与概率不可能相等。
4、从一个不透明的口袋里,摸出红球的概率为0.2,而袋中红球有3个,则袋中共有球个.5、从全市5000份试卷中随机抽取400份试卷,其中有360份成绩合格,估计全市成绩合格的人约人。
25.3 用频率估计概率教师备课素材示例●归纳导入(1)我们知道,任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的试验,其中部分结果如下(2)两个同学一组多次抛硬币,计算出“正面向上”的频率;(3)归纳:试验次数越多,频率越接近概率.【教学与建议】教学:通过抛硬币试验的引入,体会频率与概率的关系.建议:让学生两个人合作抛硬币,记录并计算出频率.●复习导入通过前面知识的学习,请同学们回答下列问题:(1)用列举法求概率的条件和方法是什么?(2)列表法、画树状图法是不是列举法,它们在什么时候应用?(3)当列举法不能求出某事件的概率时,还有没有其他的方法?【教学与建议】教学:通过复习,使学生加深对列举法求概率的理解,同时产生探索其他方法求概率的兴趣.建议:问题3,教师可以直接点题.在做大量重复试验时,某事件发生的频率会稳定在概率值附近.【例1】(1)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算硬币正面朝上的概率,其试验次数分别为10,20,50,100次,其中试验相对科学的是(D)A.甲组B.乙组C.丙组D.丁组(2)做重复试验:抛掷一枚啤酒瓶盖1000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为(B)A.0.22B.0.42C.0.50D.0.58理解和巩固利用频率估计概率的方法,灵活解决问题.【例2】(1)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量为(A) A.1250条B.1750条C.2500条D.5000条(2)含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有__9__张.(3)为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积约是__4__m2.让学生用数学知识和数学的思维方法去看待、分析、解决实际生活问题,加强应用统计与概率的意识.【例3】某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种,为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分(1)(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1∶3,估计参与度在0.4以下的共有多少人?解:(1)“直播”教学方式学生的参与度更高.理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40×100%=30%.答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生人数为800×11+3=200(人),“直播”总学生人数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).高效课堂 教学设计1.学会根据问题的特点,用统计频率来估计事件发生的概率.2.理解用频率估计概率的方法,渗透转化和估算的数学方法.▲重点对利用频率估计概率的理解和应用.▲难点比较用列举法求概率与用频率求概率的条件与方法.◆活动1 新课导入1.举例说明什么是确定事件,什么是不确定事件.答:确定事件:太阳从东方升起.不确定事件:打开电视正在直播足球比赛.2.什么是概率?答:在一定条件下,重复做n 次试验,m 为n 次试验中事件A 发生的次数,如果随着n 逐渐增大,频率m n逐渐稳定在某一数值p 附近,那么数值p 称为事件A 在该条件下发生的概率,记作P(A)=p.3.抛掷一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的?答:概率是0.5.4.当试验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,该如何求事件发生的概率呢?答:在相同的条件下,通过大量的重复试验,可以用这个事件发生的稳定的频率值作为这个事件发生的概率的估计值.◆活动2 探究新知1.教材P 142~145.提出问题:(1)试验:把全班同学分成8组,每名同学掷一枚硬币10次,每组统__0.5__左右摆动;(3)随着抛掷次数的增加,一般地,频率呈现出一定的稳定性,在0.5左右摆动的幅度会越来越__小__.这时,我们称“正面向上”的频率稳定于__0.5__.学生完成并交流展示.◆活动3 知识归纳一般地,在大量重复试验中,如果事件A 发生的__频率m n__稳定于某个常数p ,那么事件A 发生的概率P(A)=__p__.(注意:用频率估计概率的条件是大量重复试验)◆活动4 例题与练习例1 一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下__0.6__(2)假如你去摸一次,你摸到白球的概率是__0.6__,摸到黑球的概率是__0.4__;(3)试估算口袋中黑、白两种颜色的球各有多少个?解:白球:20×0.6=12(个),黑球:20×0.4=8(个).练习1.教材P147习题25.3第1,2题.2.小华练习射击,共射击600次,其中380次击中靶子,由此估计小华射击一次击中靶子的概率是( C )A.38%B.60%C.63%D.无法确定3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则布袋中红色球可能有( B )A.4个B.6个C.34个D.36个◆活动5 课堂小结频率与概率的关系:区别:①频率反映事件发生的频繁程度;概率反映事件发生的可能性大小;②频率是不能脱离具体的n次试验的结果,具有随机性;概率是具有确定性的不依赖于试验次数的理论值.联系:频率是概率的近似值,概率是频率的稳定值.1.作业布置(1)教材P147~148习题25.3第3,4,5题;(2)对应课时练习.2.教学反思[第(1)题图][第(2)题图]。
25.3用频率估计概率一、新课导入1.导入课题:在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0. 5?下面我们带着小明提出的问题进入本节课的学习一一用频率估计概率.2.学习目标:(1)知道大量重复试验时,频率趋于一个稳定值,知道这个稳定值与概率的关系.(2)会用频率估计概率.3.学习重、难点:重点:理解当试验次数较大时,试验频率趋于理论概率.难点:用频率估计概率的思想方法解决相关实际问题.二、分层学习第一层次学习4.自学指导:(1)自学内容:教材第142页到第143页“思考”之前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,按课本要求,同学之间加强合作,进行试验,并做好数据的统计,再对数据进行分析,观察频率的变化趋势,从中摸索有何规律.(4)自学参考提纲:①通过试验,完成教材第142页的表25-3以及图25. 3-1.②通过分析试验所得数据,你发现出现“正而向上”的频率有什么变化规律?“正而向上”的频率在0. 5附近摆动.③阅读并分析表25-4中抛掷硬币实验的数据,你有什么发现?随着试验次数的增加,“正而向上”的频率稳定于0.5.5.自学:学生可参考自学指导进行自学,小组交流,合作学习.6.助学:(1)师助生:①明了学情:深入课堂了解学生的试验情况,并对存在的问题进行收集.②差异指导:对在学习中存在的突出问题进行点拨引导.(2)生助生:小组间相互协作交流,解决学习中的问题.7.强化:随着抛掷硬币次数的增加,硬币“正面朝上”的频率会在0. 5左右摆动,并且摆动幅度越来越小.第二层次学习8.自学指导:(1)自学内容:教材第143页“思考”到第144页“练习”之前的内容.(2)自学时间:4分钟.(3)自学方法:阅读、思考,并相互交流探讨各自的结论.(4)自学参考提纲:①当实验次数足够大时,一个随机事件出现的频率与它的概率有什么关系?频率非常接近于概率.②举例说明你对“概率是针对大量重复试验而言的,大量试验反映的规律并非在每一次试验中都发生.”这句话的理解.③练习:a.下表记录了一名球员在罚球线上投篮的结果.i.计算投中频率(结果保留小数点后两位).ii.这名球员投篮1次,投中的概率约是多少(结果保留小数点后一位)?解:投中的概率约是0.5.b.用前面抛掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.解:估计P (点数是1)二1.62.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:深入了解学生参与活动、完成任务的情况.②差异指导:引导学生合作试验.(2)生助生:分组合作完成试验.4.强化:(1)在大量重复试验中,事件A发生的频率会稳定在某个常数附近.只要试验的次数足够大,我们就可以用事件A发生的频率去估计概率.(2)概率是针对大量试验而言的,大量试验反映的规律并非在每一次试验中都发生.第三层次学习1.自学指导:(1)自学内容:教材第144页到第145页的问题1.(2)自学时间:4分钟.(3)自学要求:总结用频率估计概率的思想来解决实际问题的一般思路和频率的确定方法.(4)自学参考提纲:①幼树的移植成活率采用频率去估计.②完成表25-5及表后的填空.③怎样估计幼树移植的成活率?随着移植数的增加,幼树移植成活的频率越来越稳定,用移植总数最多时成活的频率估计幼树移植的成活率.④练习:某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:一般地,1000千克种子中大约有多少是不能发芽的?将表中数据补全,可以看出发芽种子的频率在0. 9左右摆动,所以估计种子发芽的概率为 0. 9.1000-1000X0. 9=100 (千克).,.1000千克种子中大约有100千克是不能发芽的.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:对完成提纲中的问题有困难的学生适时指导.(2)生助生:交流讨论、改正错误.4.强化:解决此类问题的基本步骤:计算频率:估计概率;作出结论.第四层次学习1.自学指导:(1)自学内容:教材第145页到第146页的问题2.(2)自学时间:5分钟.(3)自学方法:先弄清损坏率的算法,再填表.(4)自学参考提纲:①完成教材第146页表25-6.②可得柑橘损坏的概率为0. 1 ,所以柑橘完好的概率为取.③怎样计算柑橘的实际成本?用以2元/千克的价格购进10000千克的成本除以10000千克中完好柑橘的质量9000 千克,即为实际成本.④整个问题的问答过程与问题1的解答过程有何异同?相同点:都是用频率估计概率.不同点:问题2是通过损坏率求完好率,而问题1是直接求发芽率.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:教师对重、难点之处适时点拨引导.(2)生助生:小组间交流互助.(1)解题思路:①求频率:②估计概率;③求出问题结果:④作出结论.(2)练习:为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么鱼塘中鱼的条数可估计为—.你认为这种估计方法有道理吗?为什么?b解:有道理.不妨设鱼塘中鱼的总条数为禺则,所以* =竺.x a b三、评价1.学生的自我评价(围绕三维目标):相互交流各自的学习态度、学习方法和收获,反省学习中的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在课堂学习中的态度和行为上的表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的.这节课教师应把握教学难度,注意关注学生的接受情况.<----------- 湃价作业------------- >(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D)A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.(10分)下列说法正确的是(D)A.连续抛掷骰子20次,掷出5点的次数是0,则第21次一定抛出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50治所以明天将有一半时间在下雨D,抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等3.(10分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是(D)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的而点数是44.(10分)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是(C)摸球的次数〃10() 150 20() 50() 80() 100() 摸到白球的次数也58 96 116 295 484 601摸到白球的概率0.58 0.64 ().58 0. 59 0. 605 0. 601A. 0. 4B. 0. 5C. 0. 6D. 0. 75.(10分)盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数, 某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为(B)A. 90 个B. 24 个C. 70 个D. 32 个6.(10分)一个口袋中放有20个球,其中红球6个,白球和黑球若干个,每个球除了颜色外没有任何区别,小王通过大量重复试验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在0. 25左右,请你估计袋中黑球的个数为1.移植总数n 400 750 1500 350() 700() 90()0 14000成活数加369 662 1335 3203 6335 8073 12628 成活的频率生0. 923 0. 883 0. 890 0.915 0.905 0. 897 0.902二、综合应用(20分)8.(10分)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01):(2)这些频率具有什么样的稳定性?解:这些频率稳定在0. 8附近.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1).这名运动员射击一次时“射中9环以上”的概率约为0.8.9.(10分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0. 8,活到25岁的概率为0. 5,活到30岁的概率为0. 3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率是多少?解:(1)设这种动物共有10n只,则根据题意可知能活到20岁的有8n只,能活到25岁的有5n只,能活到30岁的有3n只,所以现年20岁的这种动物活到25岁的概率为5« 5耳=——=一;18〃 8(2)由(1)知,现年25岁的这种动物能活到30岁的概率是巴=三=—.5« 5三、拓展延伸(10分)10.(10分)鸟类学家要估计某森林公园内鸟的数量,你能用学过的知识,为鸟类学家提出一种估计鸟的数量的方法吗?(在一定的时期内,森林公园可以近似地看做与外部环境是相对封闭的)解:在一年中该森林公园内的鸟相对较多的时期,选择一天(晴天)捕捉1000只鸟,并在这些鸟的身体上做上记号,然后全部放飞,两三天后的一天(晴天)再捕捉1000只鸟,检查其中带有记号的鸟的数量,记为a,则这段时期该森林公园内的数量是此只.a。
25.3 用频率估计概率
知识构建
1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.
2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.
知识运用
3.红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.
从中任选一头猪,质量在65 kg以上的概率是__0.1 .
4.某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:
(1) 计算并完成表格:
(2)请估计,当次数很大时,频率将会接近多少?
(3)转动该转盘一次,获得铅笔的概率约是多少?
(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)
【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.
5.频数、频率与试验总次数之间的关系是( D )
A.频数越大,频率越大
B.总次数一定时,频数越大,频率可无限大
C.频数与总次数成正比
D.频数一定时,频率与总次数成反比
6.某人在一次抛掷硬币的试验中,结果为“正面朝上”的频数为52,频率为40%,此人共抛掷了___130_____次.
7.一个袋中装有除颜色不同外其他均相同的若干个白球和黑球,从中随机摸出一球,然后放回.随着摸球次数的增加,摸到白球的频率在0.7左右,由此可以估计摸一次球时,摸到白球的机会约是__70%______.
8.某种绿豆在相同条件下发芽的试验结果如下表,根据表中数据估计这种绿豆发芽的机会大约是__4.92%______.
9.一枚硬币抛起后,落地时正面朝上的机会有多大?
(1)做出你的猜测;
(2)一名同学在做这个试验时说:“我只做了10次试验就得到了正面朝上的机会约为30%.”你同意此说法吗?请说明理由.
10.某种彩票的中奖机会是1%,下列说法正确的是( D )
A.买1张这种彩票一定不会中奖
B.买1张这种彩票一定会中奖
C.买100张这种彩票一定会中奖
D.当购买彩票的数量很大时,中奖的频率稳定在1%
11.某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说:“该运动员这场比赛中一定投中了5个3分球.”你认为小亮的说法正确吗?请说明理由.
【答案】 (1)设该运动员共投中x个3分球,根据题意,得=12,解得x=160.
答:该运动员去年的比赛中共投中160个3分球.
(2)小亮的说法不正确.理由:
3分球的命中率为0.25,是相对于40场比赛来说的,而在其中的一场比赛中,命中率并不一定是0.25,所以该运动员这场比赛中不一定投中了5个3分球.
能力拓展
12.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色不同外其余都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球试验中得到下表中部分数据:
(1)将上表补充完整;
(2)根据上表中的数据绘制频率折线统计图;
(3)观察该表可以发现:随着试验次数的增加,摸出黄色小球的频率有何特点?
(4)请你估计从该盒中摸出1个黄球的机会是多少.
解:(1)0.30 0.33
(2)根据(1)中的数据,绘制频率折线统计图如图所示:
(3)随着试验次数的增加,摸出黄色小球的频率逐渐平稳.
(4)出现黄色小球的频率逐渐稳定在0.33附近,故从该盒中摸出1个黄球的机会约为33%.。