大孔强酸性离子交换树脂填充EVA_省略_维膜吸附剂对牛血红蛋白的吸附性能_张凤莉
- 格式:pdf
- 大小:414.69 KB
- 文档页数:4
大孔吸附树脂介绍及原理大孔吸附树脂技术以大孔吸附树脂为吸附剂,利用其对不同成分的选择性吸附和筛选作用,通过选用适宜的吸附和解吸条件借以分离、提纯某一或某一类有机化合物的技术。
该技术多用于工业废水的处理、维生素和抗生素的提纯、化学制品的脱色、医院临床化验和中草药化学成分的研究。
它具有吸附快,解吸率高、吸附容量大、洗脱率高、树脂再生简便等优点。
大孔吸附树脂它是一种具有大孔结构的有机高分子共聚体,是一类人工合成的有机高聚物吸附剂。
因其具多孔性结构而具筛选性,又通过表面吸附、表面电性或形成氢键而具吸附性。
一般为球形颗粒状,粒度多为20-60目。
大孔树脂有非极性(D101,LX-60,LX-20)、弱极性(AB-8,LX-21,XDA-6)、极性(LX-38,LX-17)之分。
大孔吸附树脂理化性质稳定,一般不溶于酸碱及有机溶媒,在水和有机溶剂中可以吸收溶剂而膨胀。
大孔吸附树脂技术的基本装置恒流泵吸附原理根据类似物吸附类似物的原则,一般非极性树脂宜于从极性溶剂中吸附非极性有机物质,相反强极性树脂宜于从非极性溶剂中吸附极性溶质,而中等极性吸附树脂,不但能从非水介质中吸附极性物质,也能从极性溶液中吸附非极性物质。
操作步骤1)树脂的预处理预处理的目的:为了保证制剂最后用药安全。
树脂中含有残留的未聚合单体,致孔剂,分散剂和防腐剂对人体有害。
预处理的方法:乙醇浸泡24h→用乙醇洗至流出液与水1:5不浑浊→用水洗至无醇味→5%HCl通过树脂柱,浸泡2-4h→水洗至中性→2%NaOH通过树脂柱,浸泡2-4h→水洗至中性,备用。
2)上样将样品溶于少量水中,以一定的流速加到柱的上端进行吸附。
上样液以澄清为好,上样前要配合一定的处理工作,如上样液的预先沉淀、滤过处理,pH调节,使部分杂质在处理过程中除去,以免堵塞树脂床或在洗脱中混入成品。
上样方法主要有湿法和干法两种。
3)洗脱先用水清洗以除去树脂表面或内部还残留的许多非极性或水溶性大的强极性杂(多糖或无机盐),然后用所选洗脱剂在一定的温度下以一定的流速进行洗脱。
大孔吸附,离子交换树脂的使用说明大孔吸附树脂的使用说明一、树脂保存方法吸附树脂通常以湿态保存,存放处的温度通常0—40℃。
当存放温度低于0℃时,应向包装袋中加入澄清的饱和食盐水,浸泡树脂。
如果暴露在空气中,树脂可能部分干燥失水,由于吸附树脂大多数是疏水性的,为使树脂再度水合,应把部分失水的吸附树脂放在甲醇或其他水溶性的溶剂(如乙醇、丙酮)中充分浸泡,待浸泡完全后,用水冲洗置换出甲醇或其它溶剂。
二、树脂预处理在吸附树脂的生产过程中,一般均采用工业级原料,产品没有经过进一步纯化处理,因此树脂内部往往残留少量单体,致孔剂和其他有机杂质,所以在使用之前必须进行预处理。
吸附树脂预处理方法如下:1、将准备装柱使用的新树脂,用2倍左右体积的甲醇或其他水溶性溶剂(如乙醇、丙酮)浸泡2小时,并不时搅动,使树脂充分溶胀。
2、将已充分溶胀的吸附树脂装柱,以每小时3至4倍床体积的流速,将5至8倍的甲醇或其他水溶性的溶剂(如乙醇、丙酮)通过树脂层,至流出液加水稀释不变混。
3、甲醇处理后,以每小时6至8倍床体积的流速将去离子水通过树脂层,置换出甲醇即可投入使用。
三、树脂复活处理1、用丙醇搅拌浸泡24小时,其用量为树脂体积的2倍,污染较重的再按前述方法重复一遍。
2、对严重污染树脂,可用强氧化剂复活,方法本公司可视具体情况提供。
离子交换树脂的使用说明一、贮存与运输离子交换树脂一般是在充分膨胀、湿润的球粒状态下供应,在贮存、运输过程中要保持包装完好无损,避免树脂脱水、冻裂及污染。
不能露天存放,存放处的温度为0—40℃,当存放处温度稍低于0℃时,应向包装内加入澄清的饱和食盐水,浸泡树脂。
此外,当存放处温度过高时,不但使树脂易于脱水,还会加速阴树脂的降解。
一旦树脂失水,使用时不能直接加水,可用澄清的饱和食盐水浸泡,然后再逐步加水稀释,洗去盐分,贮存期间应使其保持湿润。
二、脱水树脂复苏树脂干燥失水是最大危险之一,失水树脂用10%食盐水浸泡1—2小时,然后稀释,再投入使用,以防止树脂水合急剧膨胀而破损。
大孔吸附树脂概述大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型树脂,为用于固体萃取而设计。
是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。
合成吸附剂有大的比表面积和类似活性炭颗粒的内细孔结构。
这些多孔特性使之从水溶液中有效的吸附有机化合物。
用合成吸附剂萃取的过程能与其它溶剂萃取技术相比减少溶剂的使用量增加操作的安全性。
大孔吸附树脂特性大孔吸附树脂具有多孔骨架,其性质与天然吸附剂活性炭相似,但具有下列优点,弥补了天然吸附剂-活性炭之不足。
1)物理、化学稳定性高,机械强度好,经久耐用。
2)再生容易,一般用水、稀酸、碱或有机溶剂,如低碳醇,丙酮即可,而且分离出来的物质灰分低。
3)品种多,可根据不同要求,改变树脂孔结构、极性等表面性能适用于吸附多种有机化合物。
4)树脂一般为小球状,直径为0.2-0.8毫米之间,因此流体阻力不像粉状活性使用时不便。
大孔吸附树脂是一类不含离子交换基因的交联聚合物。
由于它具有交联立体结构,决定了它不溶于任何酸、碱、有机溶剂及加热不熔的特点,又因它的弹性结构,使其具有较高的机械稳定性,及它的较高交联度而使其产生抗化学性,所以在较严酷的条件下,大孔吸附树脂比凝胶树脂具有更高的物理及化学稳定性。
其热失重温度266℃。
耐热、辐照性能好,聚苯乙烯型树脂耐热、耐辐照一般可用于150℃左右,在惰性气相中,短时间可经受200℃-250℃。
对有机物浓缩,分离作用是不受无机盐类及强离子、低分子化合物的干扰。
其本身由于范德力或氢键的作用,具有吸附性,又具有多孔网状结构和很高的比表面积,而有筛选性能,所以它是一类不同于离子交换树脂的吸附和筛选性能相结合的分离材料。
其化学结构不带或带有不同极性的功能基。
根据树脂的表面性质,可分为非极性、中极性、极性、强极性四类。
非极性吸附树脂是由偶极距很小的单体聚合制得的不带任何功能基,孔表疏水性较强,最适于由极性溶剂(如水)中吸附非极性物质。
大孔树脂的应用大孔树脂是20世纪60年代末在离子交换剂和其它吸附剂应用的基础上发展起来的一种新型树脂。
它是一种具有多孔立体结构,人工合成的有机高分子聚合物,具有巨大的比表面积使其具有良好的吸附性能,能吸附液体中的特质,又称为大孔吸附树脂(macroporous absorbing resin )大孔吸附树脂主要以苯乙烯、二乙烯苯等为原料,在0.5%的明胶溶液中,加入一定比例的致孔剂聚合而成。
其中,苯乙烯为聚合单体,二乙烯苯为交联剂,甲苯、二甲苯等作为致孔剂,它们互相交联聚合形成了大孔吸附树脂的多孔骨架结构。
树脂一般为白色的球状颗粒,粒度为20~60 目,是一类含离子交换集团的交联聚合物。
聚合物形成后,致孔剂被除去,在树脂中留下了大大小小、形状各异、互相贯通的孔穴。
因此大孔树脂在干燥状态下其内部具有较高的孔隙率,且孔径较大,在100-1000nm 之间,故称为大孔吸附树脂。
大孔吸附树脂理化性质稳定,不溶于酸、碱及有机溶剂,对有机物选择性好,不受无机盐类及强离子、低分子化合物存在的影响,在水和有机溶剂中可吸附溶剂而膨胀。
大孔吸附树脂为吸附性和筛选性原理相结合的分离材料。
大孔吸附树脂的吸附实质为一种物体高度分散或表面分子受作用力不均等而产生的表面吸附现象,这种吸附性能是由于范德华引力或生成氢键的结果。
同时由于大孔吸附树脂的多孔结构使其对分子大小不同的物质具有筛选作用。
通过上述这种吸附和筛选原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定溶剂洗脱而达到分离、纯化、除杂、浓缩等不同目的。
吸附树脂的表面发生吸附作用后,会使树脂表面上溶质的浓度高于溶剂内溶质的浓度,其结果引起体系内放热和自由能的下降。
一般说来,吸附分为物理吸附和化学吸附两大类。
吸附质通过树脂的孔道而扩散到树脂的内表面被吸附,其吸附能力的大小除取决于比表面积外,还与吸附质的分子量和构型有关,树脂孔径的大小直接影响不同大小分子的自由出入,从而使树脂具有选择性。
大孔强酸性阳离子交换树脂产品详细描述离子交换树脂是一种聚合物,带有相应的功能基团。
其他补充:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。
但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。
近年国内外生产的树脂品种达数百种,年产量数十万吨。
在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。
以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。
离子交换技术的开发和应用还在迅速发展之中。
离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。
膜分离技术在糖业的应用也受到广泛的研究。
离子交换树脂都是用有机合成方法制成。
常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。
离子交换树脂不溶于水和一般溶剂。
大多数制成颗粒状,也有一些制成纤维状或粉状。
树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。
它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。
离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。
即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。
离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。
*本项目1987年获国家自然科学二等奖;主要完成人为何炳林,张全兴,史作清,钱庭宝,陈洪彬,孙君坦,李效白。
大孔离子交换树脂及新型吸附树脂的结构与性能*何炳林,史作清(南开大学高分子化学研究所,天津 300071) 摘要:该项研究发现了大孔交联聚苯乙烯型离子交换树脂的合成方法,研究了惰性溶剂的性质与树脂的孔结构、树脂的孔结构与树脂的性能、树脂的特性与用途等方面的关系。
在此基础上,研制出高强度、抗辐射、动力学性能优越的大孔型离子交换树脂,使其不仅能更好地应用于无机离子的交换,还开拓了在有机合成、制药等领域的催化、脱色、提纯等多方面的广泛应用。
在多孔性离子交换树脂的基础上,还研制出系列吸附树脂。
此类提取、分离材料,可以有不同的结构和不同的吸附性能,在天然产物的提取分离、抗菌素的提取、纯化、医疗、环境保护等领域有实际用途。
上述两类功能高分子材料在多家企业实现了产业化,为化工、制药、环保、医疗、分析等诸多行业提供了必要的材料,在国民经济的发展中发挥了重要作用。
关键词:大孔离子交换树脂;吸附树脂;合成;提取分离背景离子交换树脂由酚醛型到聚苯乙烯型的转变是一个质的飞跃,这使离子交换树脂的性能大幅度提高,品种成倍地增加,应用范围迅速扩大。
其中最引人注意的两个应用领域是纯水的制备和核燃料的提取,对世界经济、政治、军事的发展产生了巨大的影响。
用离子交换树脂脱盐是制备软化水和纯水最有效的方法,解决了锅炉用水对水质的严格要求问题,大大促进了化工企业、火电厂、医药、食品、电子、环保等行业的发展。
进入上世纪50年代以后,核技术和核能的利用成为世界性的科学、技术、经济、军事课题。
核燃料的生产,包括铀的提取和U 235的分离浓缩两项关键技术,成为由极少数国家控制的、许多国家积极开发的绝密技术。
前一项技术就是采用阴离子交换树脂从含量很低的矿石中将铀提取出来。
铀的特点是能与SO 42-形成带负电荷的络合物,可被交换到阴离子交换树脂上,从而与其它金属阳离子分离。
大孔强酸阳离子交换树脂再生温度一、什么是大孔强酸阳离子交换树脂?大孔强酸阳离子交换树脂是一种高效的离子交换材料,具有较大的孔径和高度的强酸性。
它主要由聚苯乙烯等高分子材料制成,通过化学反应将其表面上的苯环上的氢原子替换成硫酸根离子。
因此,它具有优异的吸附性能和选择性,可用于水处理、化学制品生产、食品加工等领域。
二、为什么需要再生大孔强酸阳离子交换树脂?随着使用时间的增长,大孔强酸阳离子交换树脂表面会逐渐被污染物质覆盖,导致其吸附能力下降。
为了保持其稳定性和高效性,需要对其进行再生。
再生可以去除污染物质并恢复其吸附性能。
三、大孔强酸阳离子交换树脂再生温度有哪些影响因素?1. 再生液浓度:再生液浓度越高,温度越低,再生效果越好。
2. 再生时间:再生时间越长,温度越低,再生效果越好。
3. 再生液pH值:酸性再生液可以更有效地去除污染物质,但过高或过低的pH值会影响树脂的稳定性。
4. 树脂类型和使用情况:不同类型的大孔强酸阳离子交换树脂在使用过程中会受到不同程度的污染和损伤,因此需要根据具体情况选择适当的再生方法和温度。
四、大孔强酸阳离子交换树脂再生有哪些方法?1. 酸性再生法:将酸性溶液(如盐酸、硫酸等)通过树脂床层,使其与树脂表面上的阳离子发生置换反应,去除污染物质并恢复其吸附能力。
这种方法适用于大孔强酸阳离子交换树脂的再生。
2. 碱性再生法:将碱性溶液(如氢氧化钠、氢氧化钾等)通过树脂床层,使其与树脂表面上的阴离子发生置换反应,去除污染物质并恢复其吸附能力。
这种方法适用于大孔强碱阴离子交换树脂的再生。
3. 溶剂再生法:将有机溶剂(如醇、醚等)通过树脂床层,将污染物质溶解并带走,恢复其吸附能力。
这种方法适用于特定类型的大孔强酸阳离子交换树脂。
五、大孔强酸阳离子交换树脂再生温度有哪些常见范围?大孔强酸阳离子交换树脂再生温度一般在50℃-90℃之间,具体范围取决于再生液浓度、pH值、再生时间等因素。
在实际操作中,应根据具体情况选择适当的温度和时间,并注意控制过高或过低的温度对树脂稳定性的影响。
大孔强酸性阳离子交换树脂的注意事项与说明大孔强酸性阳离子交换树脂的注意事项与说明【产品介绍】D001产品技术标准:GB/T136592023 DL51993 SH2605.071997本产品的性能与001×7强酸性阳离子交换树脂相像,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及更好的抗氧化性能,由于具有大孔结构,本产品能用于吸附分子量尺寸较大的杂质以及在非水介质中使用。
本产品相当于美国Amberlite IRA200,德国Lewatitsp120,日本Diaion PK,英国Zerolite S1104,法国Allassion AS,前苏联Ky212P,相当于我国老牌号:D031;61号;72号;D1099;744、【使用时参考指标】1.PH范围:0142.允许温度(℃):钠型≤120氢型≤1003.膨胀率:%(Na+→OH+)≤104.工业用树脂层高度:m 1.03.05.再生液浓度:%HCL:25 H2SO4:12;246.再生剂用量(按100计):kg/m3湿树脂HCL(工业)40100H2SO4(工业)751507.再生液流速:m/h 588.再生接触时间:minute:30609.正洗流速:m/h:102010.正洗时间:minute:约3011.运行流速:m/h,1525高流速:8010012.工作交换容量:mmol/l(湿树脂)≥1300【产品技术标准】指标名称D001 H/NaD001 FC H/NaD001 SC H/NaD001MB H/Na D001 TR全交换容量mmol/g≥4.80/4.35体积交换容量mmol/ml≥1.60/1.70含水量5060/4555湿视密度g/ml0.740.80/0.750.85湿真密度g/ml1.161.24/1.251.28粒度(0.3151.25mm)≥95(有效粒径mm0.400.70均一系数≤1.60磨后圆球率≥95外观浅棕色或灰褐色不透亮球状颗粒出厂型式Na【用途】本产品重要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净打扮置(HOH或MH4OH混床系统),还能用于废水处置,回收重金属;氨基酸回收;也可作催化剂。
氨基酸树脂大孔吸附-概述说明以及解释1.引言1.1 概述氨基酸树脂大孔吸附是一种重要的吸附分离技术,通过利用氨基酸树脂的特殊结构和性质,在大孔结构的基础上引入含有氨基官能团的功能团,实现对目标分子的高效吸附和分离。
这种技术在生物医药、环境监测、食品安全等领域有着广泛的应用。
本文将详细探讨氨基酸树脂大孔吸附的原理、应用领域及优势,以及实验结果分析,旨在深入了解这一技术的特点和潜在价值。
通过深入研究氨基酸树脂大孔吸附技术,我们可以更好地应用其在实践中,为相关领域的发展与进步提供有力支持和帮助。
1.2 文章结构文章结构部分主要包括介绍了本文的组织结构和内容安排,具体包括引言部分、正文部分和结论部分。
引言部分主要是对整个文章的概述和目的的介绍,为读者提供了一个整体理解的框架。
正文部分是对氨基酸树脂大孔吸附原理、应用领域及优势以及实验结果分析的详细阐述。
结论部分则是对前文内容的总结和展望,同时也包括一些对未来研究方向的提出和结束语。
整个文章结构的设计旨在让读者能够系统地了解氨基酸树脂大孔吸附的相关知识并对其应用和发展有一个清晰的认识。
1.3 目的:本文旨在探讨氨基酸树脂大孔吸附的原理、应用领域及优势,通过实验结果的分析,系统地展示该技术在分离纯化、生物制药等领域的应用潜力。
同时,希望通过本文的研究,为相关领域的研究人员提供参考和启发,促进氨基酸树脂大孔吸附技术在实际生产中的应用与推广。
1.3 目的部分的内容2.正文2.1 氨基酸树脂大孔吸附原理氨基酸树脂是一种特殊的功能性吸附材料,其具有大孔结构,能够有效地吸附大分子物质。
其原理主要包括两个方面:首先,氨基酸树脂具有氨基功能团,这些氨基团在吸附过程中可以与目标物质发生化学反应,形成氨基酰化或氨基醇化产物。
这种化学反应可以大大提高吸附效率和选择性,使得氨基酸树脂在生物分离、蛋白纯化等领域得到广泛应用。
其次,氨基酸树脂的大孔结构也是其吸附原理的关键之一。
大孔结构可以提供更大的表面积和孔隙空间,从而增加吸附物质与吸附剂之间的接触面积,加快吸附速度。