高中数学函数 第31教时人教版第一册
- 格式:doc
- 大小:104.50 KB
- 文档页数:3
高中数学学习材料马鸣风萧萧*整理制作第31课时对数函数的性质及应用课时目标1.掌握对数函数的图象及其性质.2.能运用对数函数的性质解决一些简单问题.识记强化1.对数函数y=log a x(a>0,a≠1,x>0)图象特征:(1)图象都在y轴右侧.(2)图象都过(1,0)点.2.(1)a>1时,函数y=log a x在(0,+∞)上是单调递增函数,应0<x<1时,y<0;x>1时,y>0.(2)0<a<1时,函数y=log a x在(0,+∞)上是单调递减函数,0<x<1时y>0;x>1时,y<0.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.函数y=log2x+3(x≥1)的值域是()A.[2,+∞) B.(3,+∞)C.[3,+∞) D.R答案:C解析:∵log2x≥0(x≥1),∴y=log2x+3≥3.2.函数y=log0.5(x-5)的定义域是()A.(5,+∞) B.(6,+∞)C.(5,6] D.(5,6)答案:C解析:∵log0.5(x-5)≥0,∴0<x-5≤1,∴5<x≤6.3.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象为()答案:C 解析:y =a -x =(1a )x ,∵a >1,0<1a<1,则y =a -x 在(-∞,+∞)上是减函数,过定点(0,1);对数函数y =log a x 在(0,+∞)上是增函数,过定点(1,0).故选C.4.若y =-3log (2a -3)x 在(0,+∞)上是减函数,则实数a 的取值范围为( )A .(0,1)B .(0,1)∪(1,+∞)C .(32,2) D .(2,+∞)答案:D解析:由已知,得y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2,故选D.5.若函数f (x )=⎩⎪⎨⎪⎧ (14)x ,x ∈[-1,0)4x ,x ∈[0,1],则f (log 43)=( ) A.13B .3 C.14D .4 答案:B解析:由0<log 43<1,得f (log 43)=44log 3=3.6.函数f (x )=log 2|2x -4|的图象为( )答案:A解析:函数f (x )=log 2|2x -4|的图象可以看作是将函数y =log 2|2x |的图象向右平移2个单位得到的,故选A.二、填空题(本大题共3个小题,每小题5分,共15分)7.函数f (x )=lg (4-x )x -3的定义域为________. 答案:{x |x <4且x ≠3}解析:由题意得⎩⎪⎨⎪⎧4-x >0x -3≠0,解得x <4且x ≠3,即函数f (x )的定义域为{x |x <4且x ≠3}. 8.函数y =log 12|x -3|的单调递减区间是________.答案:(3,+∞)解析:令t =|x -3|,则在(-∞,3)上t 为x 的减函数,在(3,+∞)上t 为x 的增函数,又∵0<12<1,∴在区间(3,+∞)上y 为x 的减函数. 9.函数f (x )=log 13(5-4x -x 2)的最小值为________.答案:-2解析:因为5-4x -x 2=-(x +2)2+9∈(0,9]而y =log 13x 在(0,9]上单调递减.当x =9时取到最小值-2.三、解答题(本大题共4小题,共45分)10.(12分)分别比较下列各组数的大小:(1)log 3.82.5,log 2.82.9,log 2.84.6;(2)2 015-0.201 4,log 2 0140.201 5,log 0.201 50.201 4;(3)log 54,(log 53)2,log 45.解:(1)∵y =log 2.8x 在(0,+∞)上是增函数,∴log 2.84.6>log 2.82.9>log 2.82.8=1.又∵y =log 3.8x 在(0,+∞)上是增函数,∴log 3.82.5<log 3.83.8=1.∴log 3.82.5<log 2.82.9<log 2.84.6.(2)∵y =2 015x 在R 上是增函数,∴0<2015-0.2014<20150=1.∵y =log 2014x 在(0,+∞)上是增函数,∴log 20140.2015<log 20141=0.∵y =log 0.2015x 在(0,+∞)上是减函数,∴log 0.20150.2014>log 0.20150.2015=1.∴log 0.20150.2014>2015-0.2014>log 20140.2015.(3)∵y =log 5x 在(0,+∞)上是增函数,∴0=log 51<log 53<log 54<log 55=1.∵y =log 4x 在(0,+∞)上是增函数,∴log 45>log 44=1,∴0<log 53<log 54<1<log 45. 又(log 53)2-log 53=log 53×(log 53-1)<0,∴(log 53)2<log 53,∴(log 53)2<log 54<log 45.11.(13分)讨论函数f (x )=log a (3x 2-2x -1)的单调性.解:由3x 2-2x -1>0得函数的定义域为⎩⎨⎧⎭⎬⎫x |x >1或x <-13 令u =3x 2-2x -1=3(x -13)2-43,则 当a >1时,若x >1,∵u =3x 2-2x -1为增函数,∴f (x )=log a (3x 2-2x -1)为增函数.若x <-13,∵u =3x 2-2x -1为减函数.∴f (x )=log a (3x 2-2x -1)为减函数.当0<a <1时,若x >1,则f (x )=log a (3x 2-2x -1)为减函数,若x <-13,则f (x )=log a (3x 2-2x -1)为增函数. 能力提升12.(5分)已知0<x <y <a <1,则有( )A .log a (xy )<0B .0<log a (xy )<1C .1<log a (xy )<2D .log a (xy )>2答案:D解析:因为0<x <a <1,所以log a x >log a a .又因为0<y <a <1,所以log a y >log a a ,所以log a x +log a y >log a a +log a a =2.13.(15分)已知f (x )是对数函数,且f (b 2-2b +5)的最大值为-2,其中b ∈R .(1)求函数f (x )的解析式;(2)若对于任意的实数x ∈[2,8],都有2f (x )-m +6<0恒成立,求实数m 的取值范围. 解:(1)设f (x )=log a x (a >0,a ≠1),则f (b 2-2b +5)=log a (b 2-2b +5).令u =b 2-2b +5=(b -1)2+4,所以当b =1时,u 取得最小值4.因为f (b 2-2b +5)的最大值为-2,所以0<a <1,且log a 4=-2,解得a =12, 所以函数f (x )的解析式为f (x )=log 12x .(2)由于对于任意的实数x ∈[2,8],都有2f (x )-m +6<0恒成立,所以m >2f (x )+6对于任意的x ∈[2,8]恒成立.设g (x )=2f (x )+6=2log 12x +6,x ∈[2,8],则m >g (x )max . 因为g (x )=2log 12x +6在[2,8]上是减函数,所以g (x )max =g (2)=2log 122+6=4,所以m >4,即实数m 的取值范围为(4,+∞).。
3.1.1 函数的概念考点学习目标核心素养函数的概念理解函数的概念,了解构成函数的三要素数学抽象求函数的定义域会求一些简单函数的定义域,并会用区间表示数学运算同一个函数掌握同一个函数,并会判断数学抽象求函数值和值域会求简单函数的函数值和值域,并会用区间表示值域数学运算问题导学预习教材P60-P66,并思考以下问题:1.函数的定义是什么?2.函数的自变量、定义域是如何定义的?3.函数的值域是如何定义的?4.区间的概念是什么?如何用区间表示数集?1.函数的有关概念■名师点拨对函数概念的3点说明(1)当A,B为非空数集时,符号f:A→B表示从集合A到集合B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”表示对应关系,在不同的函数中f的具体含义不一样.2.区间的概念及表示(1)区间定义及表示设a,b是两个实数,而且a<b.定义名称符号数轴表示{x|a≤x≤b} 闭区间[a,b]{x|a<x<b} 开区间(a,b){x|a≤x<b} 半开半闭区间[a,b){x|a<x≤b} 半开半闭区间(a,b](2)无穷概念及无穷区间表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a) ■名师点拨关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.判断正误(正确的打“√”,错误的打“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)已知定义域和对应关系就可以确定一个函数.( )(3)根据函数的定义,定义域中的每一个x可以对应着不同的y.( )(4)区间可以表示任何集合.( )答案:(1)×(2)√(3)×(4)×已知函数g(x)=2x2-1,则g(1)=( )A.-1 B.0C.1 D.2解析:选C.因为g(x)=2x2-1,所以g(1)=2-1=1.函数f(x)=14-x的定义域是( )A.(-∞,4) B.(-∞,4]C.(4,+∞) D.[4,+∞)解析:选A.由4-x>0,解得x<4,所以此函数的定义域为(-∞,4).已知全集U=R,A={x|1<x≤3},则∁U A用区间表示为________.解析:∁U A={x|x≤1或x>3},用区间可表示为(-∞,1]∪(3,+∞).答案:(-∞,1]∪(3,+∞)下图中能表示函数关系的是________.解析:由于③中的2与1和3同时对应,故③不是函数. 答案:①②④函数的概念(1)如图可作为函数y =f (x )的图象的是( )(2)下列三个说法:①若函数的值域只含有一个元素,则定义域也只含有一个元素; ②若f (x )=5(x ∈R ),则f (π)=5一定成立; ③函数就是两个集合之间的对应关系. 其中正确说法的个数为( ) A .0 B .1 C .2D .3(3)已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作是从A 到B 的函数关系的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x【解析】 (1)观察图象可知,A ,B ,C 中任取一个x 的值,y 有可能有多个值与之对应,所以不是函数图象.D 中图象是函数图象.(2)①错误.若函数的值域只含有一个元素,则定义域不一定只含有一个元素; ②正确.因为f (x )=5,这个数值不随x 的变化而变化,所以f (π)=5; ③错误.函数就是两个非空数集之间的对应关系.(3)对于A 中的任意一个元素,在对应关系f :x →y =18x ;f :x →y =14x ;f :x →y =12x 下,在B 中都有唯一的元素与之对应,故能构成函数关系.对于A 中的元素8,在对应关系f :x →y=x 下,在B 中没有元素与之对应,故不能构成函数关系.【答案】 (1)D (2)B (3)D(1)判断所给对应关系是否为函数的方法 ①先观察两个数集A ,B 是否非空;②验证对应关系下,集合A 中x 的任意性,集合B 中y 的唯一性. (2)根据图形判断对应关系是否为函数的步骤 ①任取一条垂直于x 轴的直线l ; ②在定义域内平行移动直线l ;③若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.1.下列图形中可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选C.由函数的定义知选C.2.下列对应关系是集合P 上的函数的是________.①P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; ②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对P 中的三角形求面积与集合Q 中的元素对应.解析:②显然正确,由于①中的集合P 中的元素0在集合Q 中没有对应元素,并且③中的集合P 不是数集,从而①③不正确.答案:②求函数的定义域求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =3-x |x |-5.【解】 (1)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧3-x ≥0,|x |-5≠0,解得x ≤3,且x ≠-5,即函数的定义域为{x |x ≤3,且x ≠-5}.(1)求函数定义域的常用方法①若f (x )是分式,则应考虑使分母不为零; ②若f (x )是偶次根式,则被开方数大于或等于零;③若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合; ④若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集; ⑤若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.(2)第(1)题易出现化简y =x +1-1-x ,错求定义域为{x |x ≤1},在求函数定义域时,不能盲目对函数式变形.求下列函数的定义域.(1)f (x )=x -1·4-x +2; (2)y =(x +1)|x |-x ;(3)f (x )=x +3+1x +2. 解:(1)要使此函数有意义,应满足⎩⎪⎨⎪⎧x -1≥0,4-x ≥0,解得1≤x ≤4,所以此函数的定义域是{x |1≤x ≤4}. (2)因为00无意义,所以x +1≠0, 即x ≠-1.①作为分母不能为0,二次根式的被开方数不能为负, 所以|x |-x >0,即x <0.②由①②可得函数y =(x +1)|x |-x 的定义域是{x |x <0且x ≠-1}.(3)要使此函数有意义,则⎩⎪⎨⎪⎧x +3≥0,x +2≠0⇒⎩⎪⎨⎪⎧x ≥-3,x ≠-2⇒x ≥-3且x ≠-2.所以f (x )的定义域为{x |x ≥-3且x ≠-2}.同一个函数(1)给出下列三个说法:①f (x )=x 0与g (x )=1是同一个函数;②y =f (x ),x ∈R 与y =f (x +1),x ∈R 可能是同一个函数;③y =f (x ),x ∈R 与y =f (t ),t ∈R 是同一个函数.其中正确说法的个数是( )A .3B .2C .1D .0(2)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3.其中表示同一个函数的是________(填上所有同一个函数的序号).【解析】 (1)①错误.函数f (x )=x 0的定义域为{x |x ≠0},函数g (x )=1的定义域是R ,不是同一个函数;②正确.y =f (x ),x ∈R 与y =f (x +1),x ∈R 两函数定义域相同,对应关系可能相同,所以可能是同一个函数;③正确.两个函数定义域相同,对应关系完全一致,是同一个函数.所以正确的个数有2个.(2)①定义域不同,f (x )的定义域为{x |x ≠0},g (x )的定义域为R .不相等. ②对应关系不同,f (x )=1x,g (x )=x .不是同一个函数.③定义域、对应关系都相同.同一个函数.④对应关系不同,f (x )=|x +3|,g (x )=x +3.不是同一个函数. 【答案】 (1)B (2)③判断两个函数为同一个函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是同一个函数,即使定义域与值域都相同,也不一定是同一个函数.(2)函数是两个非空数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.(3)在化简解析式时,必须是等价变形.下列各组函数表示同一个函数的是( )A .f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0与g (x )=|x |B .f (x )=1与g (x )=(x +1)0C .f (x )=x 2与g (x )=(x )2D .f (x )=x +1与g (x )=x 2-1x -1解析:选A.A 项中两函数的定义域和对应关系相同,为同一个函数;B 项中,f (x )的定义域为R ,g (x )的定义域为(-∞,-1)∪(-1,+∞);C 项中f (x )的定义域为R ,g (x )的定义域为[0,+∞);D 项中,f (x )的定义域为R ,g (x )的定义域为(-∞,1)∪(1,+∞).B ,C ,D 三项中两个函数的定义域都不相同,所以不是相等函数.故选A.求函数值和值域已知f (x )=12-x (x ∈R ,x ≠2),g (x )=x +4(x ∈R ).(1)求f (1),g (1)的值; (2)求f (g (x )).【解】 (1)f (1)=12-1=1,g (1)=1+4=5.(2)f (g (x ))=f (x +4)=12-(x +4)=1-2-x =-1x +2(x ∈R ,且x ≠-2).1.(变设问)在本例条件下,求g (f (1))的值及f (2x +1)的表达式. 解:g (f (1))=g (1)=1+4=5.f (2x +1)=12-(2x +1)=-12x -1⎝ ⎛⎭⎪⎫x ∈R ,且x ≠12. 2.(变条件)若将本例g (x )的定义域改为{0,1,2,3},求g (x )的值域.解:因为g (x )=x +4,x ∈{0,1,2,3},所以g (0)=4,g (1)=5,g (2)=6,g (3)=7.所以g (x )的值域为{4,5,6,7}.(1)求函数值的方法①先要确定出函数的对应关系f 的具体含义;②然后将变量取值代入解析式计算,对于f (g (x ))型函数的求值,按“由内到外”的顺序进行,要注意f (g (x ))与g (f (x ))的区别.(2)求函数值域的常用方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.1.已知函数f (x )=x -1,且f (a )=3,则a =________. 解析:因为f (x )=x -1, 所以f (a )=a -1. 又因为f (a )=3, 所以a -1=3,a =16. 答案:162.求下列函数的值域:(1)y =2x +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =3x -1x +1;(4)y =x +x .解:(1)因为x ∈R ,所以2x +1∈R , 即函数的值域为R .(2)配方:y =x 2-4x +6=(x -2)2+2,因为x ∈[1,5),如图所示.所以所求函数的值域为[2,11). (3)借助反比例函数的特征求.y =3(x +1)-4x +1=3-4x +1(x ≠-1), 显然4x +1可取0以外的一切实数, 即所求函数的值域为{y |y ≠3}. (4)设u =x (x ≥0),则x =u 2(u ≥0),y =u 2+u =⎝ ⎛⎭⎪⎫u +122-14(u ≥0).由u ≥0,可知⎝ ⎛⎭⎪⎫u +122≥14,所以y ≥0.所以函数y =x +x 的值域为[0,+∞).1.若f (x )=x +1,则f (3)=( ) A .2 B .4 C .2 2D .10解析:选A.因为f (x )=x +1,所以f (3)=3+1=2. 2.对于函数f :A →B ,若a ∈A ,则下列说法错误的是( ) A .f (a )∈BB .f (a )有且只有一个C .若f (a )=f (b ),则a =bD .若a =b ,则f (a )=f (b )解析:选C.根据函数的定义可知,A ,B ,D 正确;C 错误. 3.若[0,3a -1]为一确定区间,则a 的取值范围是________.解析:根据区间表示数集的方法原则可知,3a -1>0,解得a >13,所以a 的取值范围是⎝ ⎛⎭⎪⎫13,+∞. 答案:⎝ ⎛⎭⎪⎫13,+∞4.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.答案:(1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 5.已知函数f (x )=6x -1-x +4.(1)求函数f (x )的定义域(用区间表示); (2)求f (-1),f (12)的值.解:(1)根据题意知x -1≠0且x +4≥0,所以x ≥-4且x ≠1, 即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.[A 基础达标]1.下列对应关系是从集合M 到集合N 的函数的是( ) A .M =R ,N ={x ∈R |x >0},f :x →|x | B .M =N ,N =N *,f :x →|x -1| C .M ={x ∈R |x >0},N =R ,f :x →x 2D .M =R ,N ={x ∈R |x ≥0},f :x →x解析:选C.对于A ,集合M 中x =0时,|x |=0,但集合N 中没有0;对于B ,集合M 中x =1时,|x -1|=0,但集合N 中没有0;对于D ,集合M 中x 为负数时,集合N 中没有元素与之对应;分析知C 中对应是集合M 到集合N 的函数.2.下列四个图中,不是以x 为自变量的函数的图象是( )解析:选C.根据函数定义,可知对自变量x 的任意一个值,都有唯一确定的实数(函数值)与之对应,显然选项A ,B ,D 满足函数的定义,而选项C 不满足,故选C.3.区间(-3,2]用集合可表示为( ) A .{-2,-1,0,1,2} B .{x |-3<x <2} C .{x |-3<x ≤2}D .{x |-3≤x ≤2}解析:选C.由区间和集合的关系,可得区间(-3,2]可表示为{x |-3<x ≤2},故选C.4.已知函数f (x )=x 21+|x -1|,则f (-2)=( )A .-1B .0C .1D .2解析:选C.由题意知f (-2)=(-2)21+|-2-1|=44=1.故选C.5.若函数y =x 2-3x 的定义域为{-1,0,2,3},则其值域为( )A .{-2,0,4}B .{-2,0,2,4}C .{y |y ≤-94}D .{y |0≤y ≤3} 解析:选A.依题意,当x =-1时,y =4;当x =0时,y =0;当x =2时,y =-2;当x =3时,y =0,所以函数y =x 2-3x 的值域为{-2,0,4}.6.将函数y =31-1-x 的定义域用区间表示为________. 解析:由⎩⎨⎧1-x ≥0,1-1-x ≠0解得x ≤1且x ≠0, 用区间表示为(-∞,0)∪(0,1].答案:(-∞,0)∪(0,1]7.若f (x )=5x x 2+1,且f (a )=2,且a =________. 解析:令5a a 2+1=2,即2a 2-5a +2=0,解得a =12或a =2,故a 的值为12或2. 答案:12或2 8.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.解析:由题意知,对a ∈A ,|a |∈B ,故函数值域为{1,2,3,4}.答案:{1,2,3,4}9.已知f (x )=1-x 1+x(x ∈R ,且x ≠-1),g (x )=x 2-1(x ∈R ). (1)求f (2),g (3)的值;(2)求f (g (3))的值及f (g (x )).解:(1)因为f (x )=1-x 1+x ,所以f (2)=1-21+2=-13. 因为g (x )=x 2-1,所以g (3)=32-1=8.(2)依题意,知f (g (3))=f (8)=1-81+8=-79, f (g (x ))=1-g (x )1+g (x )=1-(x 2-1)1+(x 2-1)=2-x 2x2(x ≠0). 10.已知函数y =kx +1k 2x 2+3kx +1的定义域为R ,求实数k 的值. 解:函数y =kx +1k 2x 2+3kx +1的定义域即使k 2x 2+3kx +1≠0的实数x 的集合.由函数的定义域为R ,得方程k 2x 2+3kx +1=0无解.当k =0时,函数y =kx +1k 2x 2+3kx +1=1,函数定义域为R , 因此k =0符合题意;当k ≠0时,k 2x 2+3kx +1=0无解,即Δ=9k 2-4k 2=5k 2<0,不等式不成立.所以实数k 的值为0.[B 能力提升]11.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (72)等于( )A .p +qB .3p +2qC .2p +3qD .p 3+q 2 解析:选B.因为f (ab )=f (a )+f (b ),所以f (9)=f (3)+f (3)=2q , f (8)=f (2)+f (2)+f (2)=3p ,所以f (72)=f (8×9)=f (8)+f (9)=3p +2q .12.若函数f (x )的定义域为[-2,1],则g (x )=f (x )+f (-x )的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2≤x ≤1,-2≤-x ≤1,即-1≤x ≤1. 故g (x )=f (x )+f (-x )的定义域为[-1,1].答案:[-1,1]13.求下列函数的值域.(1)y =x -1(x ≥4);(2)y =2x +1,x ∈{1,2,3,4,5};(3)y =x +2x -1;(4)y =x 2-2x -3(x ∈[-1,2]).解:(1)因为x ≥4,所以x ≥2,所以x -1≥1,所以y ∈[1,+∞).(2)y ={3,5,7,9,11}.(3)设u =2x -1,则u ≥0,且x =1+u 22, 于是,y =1+u 22+u =12(u +1)2≥12, 所以y =x +2x -1的值域为⎣⎢⎡⎭⎪⎫12,+∞. (4)y =x 2-2x -3=(x -1)2-4,因为x ∈[-1,2],作出其图象(图略)可得值域为[-4,0].14.已知函数f (x )=x 2-mx +n ,且f (1)=-1,f (n )=m ,求f (-1),f (f (-1))的值及f (f (x ))的表达式.解:由题意知⎩⎪⎨⎪⎧1-m +n =-1,n 2-mn +n =m , 解得⎩⎪⎨⎪⎧m =1,n =-1,所以f (x )=x 2-x -1,故f (-1)=1,f (f (-1))=-1,f (f (x ))=f (x 2-x -1)=(x 2-x -1)2-(x 2-x -1)-1=x 4-2x 3-2x 2+3x +1.[C 拓展探究]15.(2019·石家庄检测)已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)由(1)中求得的结果,你发现f (x )与f ⎝ ⎛⎭⎪⎫1x 有什么关系?并证明你的发现. (3)求2f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017+f (2 018)+f ⎝ ⎛⎭⎪⎫12 018的值.解:(1)因为f (x )=x 21+x 2,所以f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)由(1)可发现f (x )+f ⎝ ⎛⎭⎪⎫1x =1.证明如下: f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1,是定值.(3)由(2)知,f (x )+f ⎝ ⎛⎭⎪⎫1x =1, 因为f (1)+f (1)=1,f (2)+f ⎝ ⎛⎭⎪⎫12=1, f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1, … f (2 018)+f ⎝ ⎛⎭⎪⎫12 018=1, 所以2f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017+f (2 018)+f ⎝ ⎛⎭⎪⎫12 018=2 018.。
函数与方程__________________________________________________________________________________ __________________________________________________________________________________1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度;第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、三、四步。
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A 版必修第一册3.1.1 函数的概念(教师独具内容)课程标准:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.在此基础上学习用集合与对应的符号语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求一些简单函数的定义域.教学重点:1.理解函数的定义,会求一些简单函数的定义域和值域.2.明确函数的两个要素,了解同一个函数的定义,会判定两个给定的函数是否是同一个函数.教学难点:1.对应关系f 的正确理解,函数符号y =f (x )的理解.2.抽象函数的定义域.3.一些简单函数值域的求法.【知识导学】知识点一 函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有□01唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作□02y =f (x ),x ∈A .其中,x 叫做□03自变量,x 的取值范围A 叫做函数的□04定义域;与x 的值相对应的y 值叫做□05函数值,函数值的集合{f (x )|x ∈A }叫做函数的□06值域.显然,□07值域是集合B 的子集. 注意:(1)两个非空实数集间的对应能否构成函数,主要看是否满足三性:任意性、存在性、唯一性.这是因为函数概念中明确要求对于非空实数集A 中的任意一个(任意性)元素x ,在非空实数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.(2)集合A 是函数的定义域,因为给定A 中每一个x 值都有唯一的y 值与之对应;集合B 不一定是函数的值域,因为B 中的元素可以在A 中没有与之对应的x ,也就是说,B 中的某些元素可以不是函数值,即{f (x )|x ∈A }⊆B .(3)在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示“x 对应的函数值”,而不是“f 乘x ”.知识点二 函数的两要素从函数的定义可以看出,函数有三个要素:□01定义域、□02对应关系、□03值域,由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:□04定义域和对应关系.即要检验给定的两个变量(变量均为数值)之间是否具有函数关系,只要检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值是否都有唯一的函数值y 和它对应.知识点三 区间的概念(1)设a ,b 是两个实数,而且a <b .我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做□01闭区间,表示为□02[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做□03开区间,表示为□04(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做□05半开半闭区间,分别表示为□06[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的□07端点. 实数集R 可以用区间表示为□08(-∞,+∞),“∞”读作“□09无穷大”,“-∞”读作“□10负无穷大”,“+∞”读作“□11正无穷大”. 我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合,用区间分别表示为□12[a ,+∞),□13(a ,+∞),□14(-∞,b ],□15(-∞,b ). (2)区间的几何表示在用数轴表示区间时,用实心点表示□16包括在区间内的端点,用空心点表示□17不包括在区间内的端点.(3)含“∞”的区间的几何表示注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号. 知识点四 同一个函数如果两个函数的□01定义域相同,并且□02对应关系完全一致,即相同的□03自变量对应的□04函数值也相同,那么这两个函数是同一个函数.【新知拓展】(1)函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图象.(2)函数的概念中强调“三性”:任意性、存在性、唯一性,这是因为函数定义中明确要求是对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一确定(唯一性)的数y 和它对应,这“三性”只要有一个不满足,便不能构成函数.1.判一判(正确的打“√”,错误的打“×”)(1)函数值域中的每一个数都有定义域中的数与之对应.( ) (2)函数的定义域和值域一定是无限集合.( )(3)定义域和对应关系确定后,函数值域也就确定了.( )(4)若函数的定义域中只有一个元素,则值域中也只有一个元素.( )(5)对于定义在集合A 到集合B 上的函数y =f (x ),x 1,x 2∈A ,若x 1≠x 2,则f (x 1)≠f (x 2).( )答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(请把正确的答案写在横线上)(1)下列给出的对应关系f ,不能确定从集合A 到集合B 的函数关系的是________. ①A ={1,4},B ={-1,1,-2,2},对应关系:开平方; ②A ={0,1,2},B ={1,2},对应关系:③A =[0,2],B =[0,1],对应关系:(2)下列函数中,与函数y =x 是同一个函数的是________. ①y =x 2;②y =3x 3;③y =(x )2;④s =t . 答案 (1)①③ (2)②④题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =2x +3;(2)f (x )=1x +1;(3)y =x -1+1-x ;(4)y =x +1x 2-1;(5)y =(1-2x )0. [解] (1)函数y =2x +3的定义域为{x |x ∈R }.(2)要使函数式有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(3)要使函数式有意义,则⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,所以x =1,从而函数的定义域为{x |x =1}.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以函数的定义域是{x |x ≠±1}. (5)∵1-2x ≠0,即x ≠12,∴函数的定义域为{|x x ≠12}.例2 已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. [解] 已知函数f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32,∴函数f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. 例3 如图所示,用长为1 m 的铁丝做一个下部为矩形、上部为半圆形的框架(铁丝恰好用完),若半圆的半径为x (单位:m),求此框架围成的面积y (单位:m 2)与x 的函数关系式.[解] 由题意可得,AB =2x ,CD ︵的长为πx , 于是AD =1-2x -πx2,∴y =2x ·1-2x -πx 2+πx 22,即y =-π+42x 2+x .由⎩⎪⎨⎪⎧2x >0,1-2x -πx2>0,得0<x <1π+2,∴此函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 故所求的函数关系式为y =-π+42x 2+x ⎝ ⎛⎭⎪⎫0<x <1π+2.金版点睛求函数定义域的基本要求(1)整式:若y =f (x )为整式,则函数的定义域是实数集R .(2)分式:若y =f (x )为分式,则函数的定义域为使分母不为0的实数集.(3)偶次根式:若y =f (x )为偶次根式,则函数的定义域为被开方数非负的实数集(特别注意0的0次幂没有意义).(4)几部分组成:若y =f (x )是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.(5)对于抽象函数的定义域:①若f (x )的定义域为[a ,b ],则f [g (x )]中,g (x )∈[a ,b ],从中解得x 的解集即f [g (x )]的定义域.②若f [g (x )]的定义域为[m ,n ],则由x ∈[m ,n ]可确定g (x )的范围,设u =g (x ),则f [g (x )]=f (u ),又f (u )与f (x )是同一个函数,所以g (x )的范围即f (x )的定义域.③已知f [φ(x )]的定义域,求f [h (x )]的定义域,先由f [φ(x )]中x 的取值范围,求出φ(x )的取值范围,即f (x )中的x 的取值范围,即h (x )的取值范围,再根据h (x )的取值范围便可以求出f [h (x )]中x 的取值范围.(6)实际问题:若y =f (x )是由实际问题确定的,其定义域要受实际问题的约束.如:例3中,任何一条线段的长均大于零.[跟踪训练1] (1)若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________;(2)求下列函数的定义域:①y =(x +1)2x +1-1-x ;②y =x +1|x |-x ;(3)①求函数y =5-x +x -1-1x 2-9的定义域; ②将长为a m 的铁丝折成矩形(铁丝恰好用完),求矩形的面积y (单位:m 2)关于一边长x (单位:m)的解析式,并写出此函数的定义域.答案 (1)⎣⎢⎡⎦⎥⎤32,4 (2)见解析 (3)见解析解析 (1)由题意知,-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.∴f (x -1)的定义域为⎣⎢⎡⎦⎥⎤32,4.(2)①要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1,∴函数的定义域为{x |x ≤1,且x ≠-1}.②要使函数有意义,需满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}. (3)①解不等式组⎩⎪⎨⎪⎧5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.②因为矩形的一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <a 2. 题型二 已知函数值求自变量的值例4 已知函数f (x )=2x 2-4,x ∈R ,若f (x 0)=2,求x 0的值. [解] 易知f (x 0)=2x 20-4, ∴2x 20-4=2,即x 20=3. 又∵x 0∈R ,∴x 0=± 3. 金版点睛就本例而言,已知函数值求自变量的值就是解方程,需要注意:所求的自变量的值必须在函数的定义域内.如果本例中加一个条件“x ∈[0,+∞)”,则x 0=3(-3不符合题意,舍去).[跟踪训练2] 已知函数f (x )=x 2-2x ,x ∈(-∞,0),若f (x 0)=3.求x 0的值. 解 由题意可得f (x 0)=x 20-2x 0. ∴x 20-2x 0=3,即x 20-2x 0-3=0. 解得x 0=3或x 0=-1.又∵x 0∈(-∞,0),∴x 0=-1. 题型三 已知自变量的值求函数值 例5 已知f (x )=x 2,x ∈R ,求: (1)f (0),f (1); (2)f (a ),f (a +1).[解] (1)f (0)=02=0,f (1)=12=1. (2)∵a ∈R ,a +1∈R , ∴f (a )=a 2,f (a +1)=(a +1)2. 金版点睛对于函数定义域内的每一个值,都可以求函数值(当然函数值唯一),本例可以直接应用公式:f (x )=x 2求解,实质上就是求代数式的值,例如f (1)就是当x =1时,代数式x 2的值,而f (a +1)就是当x =a +1时,代数式x 2的值.[跟踪训练3] 已知f (x )=x +1x +1,求: (1)f (2);(2)当a >0时,f (a +1)的值. 解 (1)f (2)=2+13.(2)易知f (x )的定义域A =[0,+∞), ∵a >0,∴a +1>1,则a +1∈A , ∴f (a +1)=a +1+1a +2. 题型四 求函数的值域 例6 求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3;(4)y =2x -x -1.[解] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.(2)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(4)(换元法)设t =x -1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t=2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如右图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 金版点睛求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算法则确定其值域. (2)常用方法①观察法:对于一些比较简单的函数,其值域可通过观察法得到. ②配方法:是求“二次函数”类值域的基本方法.③换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.④分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.[跟踪训练4] 求下列函数的值域: (1)y =xx +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =x +x +1. 解 (1)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0,∴函数y =xx +1的值域为{y |y ≠1}.(2)配方,得y =(x -2)2+2. ∵x ∈[1,5),∴结合函数的图象可知,函数的值域为{y |2≤y <11}. (3)(换元法)设t =x +1,则x =t 2-1,且t ≥0,所以y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54,由t ≥0,再结合函数的图象可得函数的值域为[-1,+∞). 题型五 相同函数的判断例7 下列各组函数表示同一函数的是( ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2+1,g (t )=t 2+1 C .f (x )=1,g (x )=x xD .f (x )=x ,g (x )=|x |[解析] A 项中,由于f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{x |x ≥0},它们的定义域不相同,所以它们不是同一函数.B 项中,函数的定义域、值域和对应关系都相同,所以它们是同一函数.C 项中,由于f (x )=1的定义域为R ,g (x )=x x的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数.D 项中,两个函数的定义域相同,但对应关系不同,所以它们不是同一函数. [答案] B 金版点睛判断两个函数为同一函数的条件(1)判断两个函数是相同函数的准则是两个函数的定义域和对应关系分别相同.定义域、对应关系两者中只要有一个不相同就不是相同函数,即使定义域与值域都相同,也不一定是相同函数.(2)函数是两个实数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.另外,在化简解析式时,必须是等价变形.[跟踪训练5] 下列函数中哪个与函数y =x 相同?(1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.解 (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相同. (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相同. (3)y =x2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y=x 不相同,所以不相同.(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相同.1.下列各图中,可能是函数y =f (x )的图象的是( )答案 D解析 A ,B 中的图象与y 轴有两个交点,即有两个y 值与x =0对应,所以A ,B 不可能是函数y =f (x )的图象;对于C 中图象,过x =1作与x 轴垂直的直线,与图象有两个交点,所以C 不可能是函数y =f (x )的图象.故选D.2.函数f (x )=x +2-x 的定义域是( )A .{x |x ≥2} B.{x |x >2}C .{x |x ≤2} D.{x |x <2}答案 C解析 要使函数式有意义,则2-x ≥0,即x ≤2.所以函数的定义域为{x |x ≤2}.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 ∵原函数的定义域为(-1,0),∴-1<2x +1<0,解得-1<x <-12. ∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =________.答案 2解析 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2. 5.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ,f (a +1); (2)若f (x )=5,求x . 解 (1)f (2)=22+2-1=5,f ⎝ ⎛⎭⎪⎫1x =1x 2+1x -1=1+x -x 2x 2, f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0,解得x =2或x =-3.。
必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。
函数
第三十一教时
教材:单元复习之二——续单元复习之一
目的:通处理一些未了的例题(《教学与测试》备用题),加深学生对概念的理解
过程:
1.某产品的总成本 y 万元与产量 x 台之间的函数关系式是 21.0203000x x y -+= x ∈(0,240),若每台产品的售价为25万元,则生产者不亏本的最低产量为多少?
解:21.020300025x x x -+≥ 即: 03000502≥-+x x
∴x ≥150 (x ≤-120 舍去) 即:最低产量为150台
2.已知函数 3222)(a b x a ax x f -++=
1︒ 当x ∈(-2,6)时,其值为正;x ∈),6()2,(+∞⋃--∞时,其值为负,求a , b 的
值及f (x )的表达式
2︒ 设)16(2)1(4)(4
)(-+++-
=k x k x f k x F ,k 为何值时,函数F (x )的值恒为 负值 解:1︒ 由已知 ⎩
⎨⎧=-++==-+-=-02636)6(0224)2(3232a b a a f a b a a f 解得:08322=+a a (a < 0) ∴a = - 4 从而 b = - 8 ∴48164)(2++-=x x x f
2︒ 24)16(2)1(4)48164(4
)(22-+=-+++++--=x kx k x k x x k x F 欲 0)(<x F 则 ⎩⎨⎧<+=∆<0
8160k k 得 k < - 2
3.已知 a > 0,且5233=+-x x a a ,求 a x 的值。
解:设x x a a t -+=则52)3())((22233=-=+-+=+----t t a a a a a a a a x x x x x x x x
∴0)134)(4(052323=++-⇒=--t t t t t
∵09)2(13422>++=++t t t
∴t = 4 即 4=+-x x a a ∴014)(2=+-x x a a ∴22±=x a
4.已知 a > 0,a ≠ 1,211)(2
1n n a a x -+= , 求 n x x )1(2-+的值。
解:211222112
)(411)2(411(411n n n n n n a a a a a a x ----=-++=-+=-)Θ ⎪⎩⎪⎨⎧<<>=-++=-+∴--)10(1)1()](21)(21[)1(11112a a a a a a a a x x n n n n n n
5.已知n ∈N *,n n n f 9.0)(⋅= 比较 f (n ) 与 f (n +1) 大小,并求 f (n )的最大值。
解:n n n n n n n n n n f n f 9.010
9)9.09.0(9.09.09.0)1()()1(1⋅-=-+=⋅-⋅+=-++ ∵09.0>n ∴)
()1(9)9()10()()1(9)
()1(91n f n f n f f n f n f n n f n f n <+>==+=>+<<时,当即时,当时,当
综上:f (0) < f (1) < ……< f (9) = f (10) > f (11) > f (12) >…… ∴ 当 n = 9 或 n = 10时,f (n )最大,最大值为 f (9) = 9×0.9 9
6.已知 149=+y x ,求 12123--+y x 的最大值。
解:∵9
5)313(21)91(21331232121+--=-+⋅=+--x x x y x ∴当313=x 即 x = - 1时, 12123--+y x 有最大值 9
5
7.画出函数 |2
1)21(|||-=x y 的图象,并利用图象回答:k 为何值时,方程 k x =-|2
1)21(|||无解?有一解?有两解? 解:当 k <0或k >21时,无解。
当 2
1=k 时,方程有唯一解 (x = 0) 。
当 k = 0时,方程有两解 (x =±1) 。
当 21
0<<k 时,方程有四个不同解。
作业:《课课练》P76—77 “例题推荐” 1、2 练习:4、5、6、7、8。