《函数的概念》教案及说明
- 格式:doc
- 大小:121.94 KB
- 文档页数:8
函数的概念教案初中教学目标:1. 了解函数的概念,理解函数是一种对应关系,每个自变量都有一个唯一的因变量与之对应。
2. 能够用函数的定义来判断一个关系是否为函数。
3. 能够利用函数的概念解决实际问题。
教学重点:1. 函数的概念。
2. 函数的性质。
教学难点:1. 理解函数的定义,特别是“唯一的”这个关键词。
2. 如何判断一个关系是否为函数。
教学准备:1. 教学课件或黑板。
2. 相关实例。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的变量知识,让学生举例说明生活中的变量。
2. 提问:变量之间的关系可以怎么描述?二、新课讲解(15分钟)1. 介绍函数的概念:函数是一种对应关系,每个自变量都有一个唯一的因变量与之对应。
2. 解释“唯一的”这个关键词:对于同一个自变量,其对应的因变量必须是唯一的。
3. 通过实例来让学生理解函数的概念,如抛物线与平面直角坐标系中的点的对应关系。
4. 讲解如何判断一个关系是否为函数,强调对于每个自变量,其对应的因变量必须是唯一的。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固函数的概念。
2. 引导学生通过函数的定义来判断一个关系是否为函数。
四、应用拓展(10分钟)1. 让学生举例说明生活中遇到的函数关系,如温度与高度的关系。
2. 引导学生利用函数的概念解决实际问题。
五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念及其性质。
2. 强调函数在实际生活中的应用价值。
教学反思:本节课通过引入实例,让学生直观地理解函数的概念,并通过练习题让学生巩固所学知识。
在应用拓展环节,学生能够举例说明生活中的函数关系,并利用函数的概念解决实际问题。
但在教学过程中,要注意引导学生正确理解“唯一的”这个关键词,避免学生产生误解。
《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
中职数学函数的概念教案第一章:函数的概念与性质1.1 函数的定义引入函数的概念,通过实例让学生理解函数的定义。
讲解函数的表示方法,包括函数表格、函数图像和函数表达式。
1.2 函数的性质讲解函数的单调性、奇偶性、周期性等基本性质。
通过实例让学生理解函数的性质,并学会如何判断函数的性质。
第二章:函数的图像2.1 函数图像的绘制讲解如何绘制函数的图像,包括直线、二次函数、指数函数等。
通过实例让学生学会绘制函数图像,并理解函数图像与函数性质的关系。
2.2 函数图像的性质讲解函数图像的性质,包括对称性、单调性、极值等。
通过实例让学生理解函数图像的性质,并学会如何分析函数图像。
第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义和性质,包括斜率和截距的概念。
通过实例让学生理解一次函数的图像和性质,并学会解一次方程组。
3.2 二次函数讲解二次函数的定义和性质,包括开口方向、顶点、对称轴等。
通过实例让学生理解二次函数的图像和性质,并学会解二次方程。
第四章:函数的极限与连续性4.1 函数的极限讲解函数极限的概念,包括左极限和右极限。
通过实例让学生理解函数极限的性质,并学会计算函数极限。
4.2 函数的连续性讲解函数连续性的概念,包括连续函数的性质和判定条件。
通过实例让学生理解函数连续性的重要性,并学会判断函数的连续性。
第五章:函数的导数与微分5.1 函数的导数讲解函数导数的概念和计算方法,包括导数的定义和导数的计算规则。
通过实例让学生理解函数导数的意义,并学会计算常见函数的导数。
5.2 函数的微分讲解函数微分的概念和计算方法,包括微分的定义和微分的计算规则。
通过实例让学生理解函数微分的应用,并学会计算函数的微分。
第六章:函数的积分与累积6.1 定积分的概念讲解定积分的定义和性质,包括定积分的几何意义和计算方法。
通过实例让学生理解定积分的概念,并学会计算常见函数的定积分。
6.2 定积分的应用讲解定积分在几何和物理中的应用,包括面积和体积的计算。
函数的概念教案函数是数学中的一个重要概念,它在数学理论和实际问题中都有着广泛的应用。
本教案将介绍函数的定义、性质以及常见的函数类型。
一、函数的定义函数是一个将每个元素都从一个集合(称为定义域)映射到另一个集合(称为值域)的规则。
简单来说,函数就是根据输入值得到输出值的过程。
记作:y = f(x),其中x为自变量,y为因变量。
f(x)表示函数f对x 的输出值。
二、函数的性质1. 定义域与值域:- 定义域是函数f中所有可能的输入值x的集合。
- 值域是函数f中所有可能的输出值y的集合。
2. 一一对应关系:- 函数f的每个输入对应唯一一个输出,即不同的输入得到不同的输出。
- 一个输出可能对应多个不同的输入(但不可逆)。
3. 符号化表示:- 对于给定的函数,可以通过数学符号来表示,如多项式函数、三角函数等。
三、常见的函数类型1. 线性函数:- 定义:一个函数是线性的,当且仅当它可表示为f(x) = ax + b的形式,其中a和b是常数。
- 例子:y = 2x + 3,y = -0.5x + 1等。
2. 幂函数:- 定义:一个函数是幂函数,当且仅当它可表示为f(x) = ax^b的形式,其中a和b是常数。
- 例子:y = 2x^3,y = 0.5x^2等。
3. 指数函数:- 定义:一个函数是指数函数,当且仅当它可表示为f(x) = a^x的形式,其中a是常数。
- 例子:y = 2^x,y = 0.5^x等。
4. 对数函数:- 定义:一个函数是对数函数,当且仅当它可表示为f(x) = loga(x)的形式,其中a是常数。
- 例子:y = log2(x),y = log10(x)等。
四、总结函数是数学中的一个重要概念,它描述了输入和输出之间的关系。
我们可以通过函数来解决各种实际问题,并且函数具有很多有用的性质和种类。
熟练掌握函数的概念和常见类型,有助于我们加深对数学的理解,并能更好地应用函数的知识解决实际问题。
函数的概念教学设计八上一、教学目标1. 理解函数的概念及其定义。
2. 掌握函数的使用方法和相关符号表示。
3. 能够解决实际问题中的函数运用题。
二、教学重点1. 函数的概念及定义。
2. 函数的使用方法和符号表示。
三、教学难点1. 函数的概念理解和应用。
2. 复杂问题中的函数运用。
四、教学过程1. 引入学习教师可通过一个实际生活中的例子来引入函数的概念,如购买水果时的价格计算问题。
引导学生思考,通过已知的输入和输出之间的关系,能否使用某种方法来简化计算过程。
2. 探究函数的概念(1)通过一个简单的数学运算问题,如两个数的相加,引导学生思考输入和输出之间的关系。
(2)解释函数的概念:函数是一种特殊的关系,每一个输入值对应唯一的输出值。
(3)通过多个具体的例子,让学生体会函数的特点和使用方法。
如将温度从摄氏度转换为华氏度、计算长方形的面积等。
3. 函数的定义和符号表示(1)引导学生思考函数的定义,即输入、输出和对应关系的表达方式。
(2)讲解函数的符号表示方法,如常用的函数表示法和简化形式。
(3)通过具体的例子,让学生掌握函数的符号表示法,并理解其意义。
4. 函数的使用方法(1)引导学生学习函数的调用和使用方法。
(2)通过具体的例题,让学生运用函数解决实际问题,如计算圆的周长和面积等。
5. 函数运用题的解决(1)通过一些实际问题的应用,让学生运用函数解决复杂问题。
(2)引导学生分析问题,确定输入和输出的关系,然后选用合适的函数进行计算。
六、教学方法1. 启发式教学法通过引导学生思考和实际操作,促使学生主动探究和构建函数的概念。
2. 讨论交流法通过课堂讨论和小组合作,让学生相互交流和分享彼此的思考和解题方法,提高学生的思维能力和合作能力。
七、教学资源1. 教科书和课本2. 多媒体教学工具八、教学评估1. 课堂练习通过课堂练习让学生巩固课堂所学知识,并检验学生的理解程度。
2. 作业布置布置相关作业,要求学生运用函数解决实际问题,并收集学生的作业进行评估和反馈。
函数的概念教案教学目标:1. 了解函数的基本概念,并能正确区分函数和变量。
2. 理解函数的定义、域、值域和图像的概念。
3. 掌握构建函数的方法,并能应用函数解决实际问题。
教学内容:1. 函数的基本概念- 引入函数的概念:函数是数学中的基本概念,它描述了自变量与因变量之间的关系。
- 区分函数和变量:函数是变量的一种特殊形式,函数表示一种映射关系,而变量只是数值的占位符。
2. 函数的定义- 讲解函数的定义:函数是一种关系,它把一个集合的每一个元素映射到另一个集合的唯一元素上。
- 引入函数的符号表示:函数的定义可以用数学符号 f(x) = ... 表示,其中 f 表示函数名称,x 表示自变量,... 表示与 x 相关的表达式。
3. 函数的域、值域和图像- 解释函数的域的概念:函数的域定义了函数的自变量能够取值的范围。
- 引入函数的值域的概念:函数的值域是函数在定义域内所有可能的函数值的集合。
- 对比域和值域:域是自变量的取值范围,而值域是函数的所有可能值的范围。
- 讲解函数的图像:函数的图像是函数在坐标平面上的表示,其中自变量 x 对应横轴,函数值 f(x) 对应纵轴。
4. 构建函数的方法- 教授常见函数的构建方法:常见的函数构建方法包括代数运算、复合函数、反函数等。
- 给出函数构建实例:通过实例,展示如何应用不同的构建方法,例如构建线性函数、二次函数等。
5. 应用函数解决实际问题- 引导学生将数学函数与实际问题联系起来:函数在现实生活中有许多应用场景,例如描述物体的运动轨迹、计算财务成本等。
- 给出实际问题例子并解答:通过实际问题的解答,强化函数与实际应用之间的联系。
教学方法:1. 解释法:通过口头解释函数的概念和定义来引导学生理解。
2. 案例分析法:通过实际问题例子的分析,引导学生应用函数解决实际问题。
3. 演示法:通过图像展示、计算步骤等方式,展示函数的构建过程。
教学评价:1. 课堂互动:提问学生函数与变量的区别、函数的定义、域和值域的概念等。
函数概念教案一、教学目标1. 理解函数的概念;2. 掌握函数的定义与表示方法;3. 能够正确使用函数进行数学运算;4. 能够分析并解决与函数相关的实际问题。
二、教学内容1. 函数的定义与概念;2. 函数的表示方法与性质;3. 函数的运算与应用。
三、教学步骤步骤一:引入1. 开场导入:介绍函数的概念,以一个日常生活中的例子引入,如“每天早上起床后都要刷牙”,将这个过程比喻成函数的概念,即“起床刷牙”函数。
2. 引导学生思考一件事情或过程是否符合函数的定义,让学生尝试举其他例子。
步骤二:函数的定义与表示方法1. 讲解函数的定义:函数是一种将一个集合的元素映射到另一个集合的元素的特殊关系。
2. 引入函数的符号表示方法:f(x) = y,其中f(x)表示函数名称,x称为自变量,y称为因变量。
3. 举例解释函数的含义:比如f(x) = 2x,表示自变量x经过函数f(x)的运算后得到的结果是2倍的x。
步骤三:函数的性质与特点1. 介绍函数的定义域与值域概念:函数的定义域是自变量可能取值的集合,值域是函数的所有可能结果的集合。
2. 讲解函数的奇偶性:如果函数满足f(x) = f(-x),则称该函数为偶函数;如果函数满足f(x) = -f(-x),则称该函数为奇函数。
3. 给出一些例子并让学生判断函数的奇偶性。
步骤四:函数的运算与应用1. 讲解函数的四则运算规则:加法、减法、乘法、除法。
强调在进行运算时要根据函数的定义域与值域进行合理的运算。
2. 给出具体的函数表达式并进行运算练习,比如f(x) = 2x + 3,g(x) = x^2,让学生计算f(g(x))等。
3. 引导学生思考函数在实际生活中的应用,比如利用函数进行数据分析、计算预期收益等。
步骤五:练习与拓展1. 给学生一些函数的运算和应用题目进行练习,并讲解答案与解题思路。
2. 引导学生思考更多与函数相关的问题,如反函数、复合函数、函数的图像、函数的极限等。
函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
函数的概念教案说明教案说明:函数的概念一、教学目标1.知识目标:了解函数的概念及其特点。
2.能力目标:能够分析问题并编写简单的函数来解决问题。
3.情感目标:培养学生分析问题和解决问题的能力,增强对数学的兴趣。
二、教学重点1.函数的概念及其特点。
2.函数的图像和函数的定义域、值域。
三、教学难点1.函数概念的理解。
2.函数图像和定义域、值域的掌握。
四、教学过程一、导入新知识1.提出问题:小明花了20元钱买了4个苹果,想买苹果的数量与花费的关系能否表示成一个方程?为什么?2.引入函数:解释小明购买苹果数量与花费之间的关系可以看作是一个函数。
二、概念讲解1.函数的定义:-函数是一种特殊关系,每一个自变量对应且只对应一个因变量。
-函数可以看做是输入和输出之间的映射关系。
-函数的定义通常写作f(x)=...-函数的自变量和因变量可以是任意数值。
2.函数的特点:-函数有定义域和值域。
-函数可以用图像表示。
-函数可以用公式或图表表示。
三、图像表示1.函数的图像:将函数的自变量和因变量的所有可能值对应起来,得到的点集就是函数的图像。
2.函数的定义域:自变量的所有可能取值的集合。
3.函数的值域:因变量的所有可能取值的集合。
四、例题讲解1.函数的图像:给定f(x)=x^2,绘制函数的图像。
2.函数的定义域和值域:求函数f(x)=3-2x的定义域和值域。
五、练习1.让学生完成一些函数的图像绘制和定义域、值域的求解的练习题。
2.提供一些实际问题,让学生将其表示成函数的关系式,并求解定义域和值域。
六、拓展思考1.什么是奇函数和偶函数?2.如何通过一个函数的图像来判断其奇偶性?3.函数与方程的区别是什么?七、归纳总结1.总结函数的概念及其特点。
2.提醒学生要区分函数的图像、定义域和值域。
八、作业布置1.完成课堂上的练习题。
2.设计一个实际问题,将其表示成函数的关系式,并求解定义域和值域。
五、教学反思本次课程通过问题导入和具体例题讲解,引导学生理解函数的概念及其特点。
教案:初中函数的概念教学目标:1. 了解函数的概念,理解函数是一种描述变量之间依赖关系的重要数学模型。
2. 掌握函数的定义域、值域的定义,并能求出一些简单函数的定义域和值域。
3. 能够用集合与对应的语言来描述函数,对事物间的联系进行数学化的思考。
教学重点:1. 函数的概念及定义域、值域的定义。
2. 用集合与对应的语言来描述函数。
教学难点:1. 函数概念的理解。
2. 函数定义域、值域的求解。
教学准备:1. 教材或教学PPT。
2. 相关实例和图片。
教学过程:一、导入(5分钟)1. 通过现实生活中的实例,如气温、海拔高度与时间的关系,让学生感受函数的概念。
2. 引导学生思考:这些实例中,变量之间的依赖关系是如何描述的?二、新课讲解(15分钟)1. 讲解函数的概念:函数是一种描述变量之间依赖关系的重要数学模型。
2. 讲解函数的定义域、值域的定义:定义域是函数所有可能的输入值的集合,值域是函数所有可能的输出值的集合。
3. 通过具体例子,讲解如何求解简单函数的定义域和值域。
三、课堂练习(15分钟)1. 让学生独立完成教材中的相关练习题。
2. 引导学生思考:如何用集合与对应的语言来描述函数?四、案例分析(10分钟)1. 分析现实生活中的实例,如销售问题、物体运动问题等,让学生理解函数在实际问题中的应用。
2. 引导学生思考:如何将实际问题转化为函数问题?五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念、定义域、值域等知识点。
2. 强调函数在实际问题中的应用价值。
六、课后作业(课后自主完成)1. 复习本节课所学的内容,巩固函数的概念、定义域、值域等知识点。
2. 完成教材中的相关练习题。
教学反思:本节课通过现实生活中的实例,引导学生理解函数的概念,掌握函数的定义域、值域的求解方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,通过案例分析,让学生了解函数在实际问题中的应用,提高学生的数学素养。
课题:函数的概念(一)教材:普通高中课程标准实验教材教科数学必修(1)人教版授课教师:2008年10月【三维目标】1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性,激发学生学习的积极性.【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.【教学难点】函数概念及符号y =f (x )的理解.【教学方法】诱思教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.【教学手段】多媒体课件辅助教学【教学过程设计】一、创设情景 引入课题北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.在初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.二、观察分析 探索新知1.实例分析(1)一枚炮弹发射后,经过26s 落到地面击中目标. 炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:h =130t -5t 2. (﹡)提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系.根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1 “八五”计划以来我国城镇居民恩格尔系数变化情况时间(年)1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 城镇居民家庭 恩格尔系数(%) 53.852.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9 提出问题:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.根据上表,可知时间t 的变化范围是数集},20011991{*∈≤≤=N t t t A ,恩格尔系数y 的变化范围是数集}8.539.37{≤≤=y y B . 并且,对于数集A 中的任意一个时间t ,根据表1,在数集B 中都有唯一确定的恩格尔系数y 和它对应. 2025 5101530图126 25tSO 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 20012.问题探讨以上三个实例有什么不同点和共同点?活动:让学生分小组讨论交流,请小组代表汇报讨论结果.归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A ,B ;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应. 记作.:B A f →3.归纳概括引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?活动:让学生分组讨论交流,讨论归纳出:(1)函数的概念:一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集.(2)函数的本质:两个非空数集间的一种确定的对应关系.(3)函数的构成要素:定义域、对应关系、值域.强调:①值域由定义域和对应关系唯一确定;②f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与x 的乘积.在不同的函数中f 的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f (x )表示外,还可用g (x ),F (x )等表示.三、新知演练 及时反馈1. 提出问题:一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?并用函数的概念来描述这些函数.设计意图:通过集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素.2. 思考辨析:(1) 1=y (x ∈R )是函数吗? (2))0(≥±=x x y 是函数吗? (3)x x y -+=13-是函数吗?方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? 由学生总结得到:(1)理解函数的定义应注意:①符号“f:A →B ”表示从A 到B 的一个函数;②函数是非空数集A 到非空数集B 上的一种对应;③集合A 中数的任意性,集合B 中数的唯一性.(2)判断函数的标准可以简化成:两个非空数集A ,B ,一个对应关系.提出问题:在三个实例中,按照一定的对应关系,能看作从B 到A 的函数吗? 你能举出函数的实例吗?设计意图:使学生更深刻理解函数的概念,培养学生的数学应用意识.3.练习反馈下列图像中不能作为函数y =f (x )图像的是( B )四、提炼总结 分享收获 1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系.3.明确了构成函数的三要素:定义域、对应关系、值域.五、布置作业1. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.2.课本P24 习题1.2 1、3、4六、板书设计教案说明函数是高中数学的重要内容之一.它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础. 因此,函数概念是中学数学最重要的基本概念之一,本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.学生在初中已学习过函数的概念,概念从运动的观点刻画了两变量之间的相互依赖关系,在已有认识的基础上,让学生学会用集合与对应的语言来刻画函数的概念,并体会函数是描述客观世界中变量间依赖关系的重要模型,是本节课的教学重点. 本节课的教学难点是:函数概念及符号y=f(x)的理解. 函数的概念比较抽象,但函数现象大量存在于学生周围,因此本节课教学设计的整体指导思想是:让学生通过观察分析,去发现,并归纳概括出函数的概念,从而更好的理解函数的概念,熟练的去应用概念解决问题. 通过本节课的学习,进一步培养学生观察问题,提出问题的探究能力;培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,学会数学表达和交流,发展数学应用意识;同时使学生感受到学习函数的必要性,激发学生学习的积极性.本节课对重难点的处理方法是:(1)为了让学生抽象概括出函数的概念,首先以三个实际问题引入,让学生认识到生活中充满着变量间的依赖关系,先建立起函数的背景,为学生理解函数概念打下感性基础. 在三个不同的实例中,通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征. 进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力. 教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力. 高一的学生是以感性思维为主的年龄阶段,在第一个例子中,通过动画演示炮弹的发射过程,让学生更清晰直观的感知:对于每一个时间t,都有唯一确定的高度h与它对应. 这样设计符合他们的认知规律,化抽象为直观,学生更容易理解. 第二、三个例子,让学生仿照前例,尝试用集合与对应的语言去描述两个变量之间的依赖关系,学会数学表达和交流.由学生抽象概括出函数的概念,其间经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,进一步提高了学生的数学思维能力;教学中注重培养学生积极主动,勇于探索的学习方式. 本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.(2)为了使学生正确理解函数的概念,首先让学生用集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素. 其次通过思考辨析,由学生讨论、列举出函数的例子,再次加深对函数概念的理解,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此,数学学习的核心是思考,没有思考就没有真正的数学. 在本节课的教学中,我以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。