函数的概念教案
- 格式:doc
- 大小:280.00 KB
- 文档页数:4
函数的概念与性质教案一、教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 能够运用函数的性质解决问题。
二、教学内容:1. 函数的概念:函数的定义、函数的表示方法(列表法、解析法、图象法)。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数性质的应用:解决实际问题。
三、教学重点与难点:1. 重点:函数的概念与表示方法,函数的性质及其应用。
2. 难点:函数的单调性、奇偶性、周期性的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数的性质。
2. 利用数形结合法,直观展示函数的性质。
3. 运用实例分析法,让学生学会运用函数的性质解决实际问题。
五、教学准备:1. 教学课件:包含函数的概念、性质及其应用的实例。
2. 教学素材:包括函数图象、实际问题等。
3. 学生用书、练习题。
【导入】(此处简要介绍本节课的教学目标和内容,引导学生进入学习状态。
)【新课导入】1. 函数的概念:(1)引导学生回顾数学中的变量概念,引入函数的定义。
(2)讲解函数的表示方法:列表法、解析法、图象法。
2. 函数的性质:(1)单调性:讲解函数单调递增和单调递减的概念,引导学生通过图象观察函数的单调性。
(2)奇偶性:讲解函数奇偶性的定义,引导学生通过图象观察函数的奇偶性。
(3)周期性:讲解函数周期性的定义,引导学生通过图象观察函数的周期性。
【课堂练习】1. 让学生自主完成教材中的练习题,巩固所学内容。
2. 选取部分学生进行答案展示,并讲解答案的得出过程。
【实例分析】1. 给出实际问题,让学生运用函数的性质解决问题。
2. 引导学生总结解题思路和方法,并进行讲解。
【小结】1. 让学生回顾本节课所学内容,总结函数的概念、性质及其应用。
2. 强调函数在实际问题中的重要性。
【作业布置】1. 让学生完成课后作业,巩固所学内容。
2. 鼓励学生进行自主学习,提前预习下一节课的内容。
《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
中职数学函数的概念教案第一章:函数的概念与性质1.1 函数的定义引入函数的概念,通过实例让学生理解函数的定义。
讲解函数的表示方法,包括函数表格、函数图像和函数表达式。
1.2 函数的性质讲解函数的单调性、奇偶性、周期性等基本性质。
通过实例让学生理解函数的性质,并学会如何判断函数的性质。
第二章:函数的图像2.1 函数图像的绘制讲解如何绘制函数的图像,包括直线、二次函数、指数函数等。
通过实例让学生学会绘制函数图像,并理解函数图像与函数性质的关系。
2.2 函数图像的性质讲解函数图像的性质,包括对称性、单调性、极值等。
通过实例让学生理解函数图像的性质,并学会如何分析函数图像。
第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义和性质,包括斜率和截距的概念。
通过实例让学生理解一次函数的图像和性质,并学会解一次方程组。
3.2 二次函数讲解二次函数的定义和性质,包括开口方向、顶点、对称轴等。
通过实例让学生理解二次函数的图像和性质,并学会解二次方程。
第四章:函数的极限与连续性4.1 函数的极限讲解函数极限的概念,包括左极限和右极限。
通过实例让学生理解函数极限的性质,并学会计算函数极限。
4.2 函数的连续性讲解函数连续性的概念,包括连续函数的性质和判定条件。
通过实例让学生理解函数连续性的重要性,并学会判断函数的连续性。
第五章:函数的导数与微分5.1 函数的导数讲解函数导数的概念和计算方法,包括导数的定义和导数的计算规则。
通过实例让学生理解函数导数的意义,并学会计算常见函数的导数。
5.2 函数的微分讲解函数微分的概念和计算方法,包括微分的定义和微分的计算规则。
通过实例让学生理解函数微分的应用,并学会计算函数的微分。
第六章:函数的积分与累积6.1 定积分的概念讲解定积分的定义和性质,包括定积分的几何意义和计算方法。
通过实例让学生理解定积分的概念,并学会计算常见函数的定积分。
6.2 定积分的应用讲解定积分在几何和物理中的应用,包括面积和体积的计算。
函数的概念教案函数是数学中一个非常重要的概念,它在数学建模、物理、经济学等领域有着广泛的应用。
本文将介绍函数的概念及其相关内容,帮助学生理解和掌握函数的基本知识。
一、函数的定义及表示函数是一个将一个集合的元素映射到另一个集合的元素的规则。
通常,将原集合中的元素称为自变量,将映射后的元素称为函数值。
函数可以用多种方式表示,常见的有:1. 函数的符号表示:一般用字母 f、g 等来表示函数,自变量用 x、y 等表示,函数值用 f(x)、g(x) 等表示。
2. 函数的图像表示:可以通过绘制函数的图像来表示函数。
将自变量 x 的取值范围确定后,可以根据函数的表达式或函数值计算出函数的函数值,然后绘制函数图像。
3. 函数的表达式表示:可以用代数表达式表示函数。
常见的函数表达式有:多项式、指数函数、对数函数、三角函数等。
二、函数的性质函数有许多重要的性质,下面介绍其中的几个常见性质:1. 定义域和值域:函数的定义域是自变量的取值范围,而函数的值域是函数值所能取到的范围。
2. 奇偶性:函数的奇偶性指的是函数关于原点对称的性质。
奇函数满足 f(-x) = -f(x),即函数图像关于原点对称;偶函数满足f(-x) = f(x),即函数图像关于 y 轴对称。
3. 单调性:函数的单调性指的是函数图像的变化趋势。
递增函数表示函数在定义域内随着自变量的增大,函数值逐渐增大;递减函数表示函数在定义域内随着自变量的增大,函数值逐渐减小。
三、函数的运算在数学中,函数之间可以通过运算生成新的函数。
常见的函数运算有:1. 函数的和、差、积、商:两个函数的和、差、积、商也是一个函数。
2. 函数的复合:给定两个函数 f(x) 和 g(x),可以将一个函数的输出作为另一个函数的输入,生成新的函数。
复合函数表示为(f ∘ g)(x) 或 f(g(x))。
四、函数的应用函数在数学、物理、经济学等领域有着广泛的应用,下面介绍几个常见的应用举例:1. 物体的运动:通过函数来描述物体的运动状态,如位置函数、速度函数、加速度函数等。
中职数学函数的概念教案一、教学目标:1.知识目标:掌握数学函数的概念、函数的定义域、值域、反函数以及函数的图象特性。
2.能力目标:能够正确理解和运用函数的概念和相关定理,解决函数相关的问题。
3.情感目标:培养学生对于数学函数的兴趣,增强他们的自学能力和数学思维能力。
二、教学重难点:1.重点:函数的概念、定义域、值域、反函数以及函数的图象特性。
2.难点:函数的图象特性。
三、教学过程:Step 1:导入新知(10分钟)1.让学生回顾一元二次方程的函数图像,回顾函数的概念。
2.提问:什么是函数?回答学生提出的问题,引导学生思考。
Step 2:概念解释与讲解(15分钟)1.讲解函数的定义:函数是一个有序对集合的规律关系,即每个自变量(x)只对应一个唯一的因变量(y)。
2.讲解函数的记号:y=f(x)表示函数,y是因变量,x是自变量,f(x)是函数名称。
3.通过例题解释函数的概念,让学生理解函数的定义。
Step 3:函数的定义域和值域(15分钟)1.讲解定义域:定义域是自变量可能取值的集合,记作D(f)。
2.讲解值域:值域是因变量可能取值的集合,记作R(f)。
3.通过例题解释定义域和值域的概念,让学生掌握如何确定函数的定义域和值域。
Step 4:反函数(15分钟)1.讲解反函数的概念:如果函数f的定义域和值域分别为D(f)和R(f),则对于任意y∈R(f),都存在唯一的x∈D(f)使得f(x)=y。
此时,由y关于x的关系式y=f(x)确定一个关于y的函数g,称为函数f的反函数。
2.通过例题,让学生理解反函数的概念,掌握如何求反函数。
Step 5:函数的图象特性(20分钟)1.讲解函数图象的基本概念:函数图象是反映函数f(x)经过点(x,f(x))的轨迹。
2.讲解函数图象的性质:单调性、奇偶性、周期性、最值点等。
3.通过例题,让学生掌握函数图象的特性及如何根据函数图象确定函数的性质。
Step 6:练习与巩固(15分钟)1.分发练习题,让学生根据所学知识完成练习。
函数的概念教案函数是数学中的一个重要概念,它在数学理论和实际问题中都有着广泛的应用。
本教案将介绍函数的定义、性质以及常见的函数类型。
一、函数的定义函数是一个将每个元素都从一个集合(称为定义域)映射到另一个集合(称为值域)的规则。
简单来说,函数就是根据输入值得到输出值的过程。
记作:y = f(x),其中x为自变量,y为因变量。
f(x)表示函数f对x 的输出值。
二、函数的性质1. 定义域与值域:- 定义域是函数f中所有可能的输入值x的集合。
- 值域是函数f中所有可能的输出值y的集合。
2. 一一对应关系:- 函数f的每个输入对应唯一一个输出,即不同的输入得到不同的输出。
- 一个输出可能对应多个不同的输入(但不可逆)。
3. 符号化表示:- 对于给定的函数,可以通过数学符号来表示,如多项式函数、三角函数等。
三、常见的函数类型1. 线性函数:- 定义:一个函数是线性的,当且仅当它可表示为f(x) = ax + b的形式,其中a和b是常数。
- 例子:y = 2x + 3,y = -0.5x + 1等。
2. 幂函数:- 定义:一个函数是幂函数,当且仅当它可表示为f(x) = ax^b的形式,其中a和b是常数。
- 例子:y = 2x^3,y = 0.5x^2等。
3. 指数函数:- 定义:一个函数是指数函数,当且仅当它可表示为f(x) = a^x的形式,其中a是常数。
- 例子:y = 2^x,y = 0.5^x等。
4. 对数函数:- 定义:一个函数是对数函数,当且仅当它可表示为f(x) = loga(x)的形式,其中a是常数。
- 例子:y = log2(x),y = log10(x)等。
四、总结函数是数学中的一个重要概念,它描述了输入和输出之间的关系。
我们可以通过函数来解决各种实际问题,并且函数具有很多有用的性质和种类。
熟练掌握函数的概念和常见类型,有助于我们加深对数学的理解,并能更好地应用函数的知识解决实际问题。
高中数学8个基本函数教案一、函数的概念1.1 函数的定义- 什么是函数?函数是一个规则,它把一个集合的每个元素对应到另一个集合的唯一元素上。
- 如何表示函数?可以用f(x) = y表示函数,其中x为自变量,y为因变量。
1.2 函数的图像- 如何画出函数的图像?可以通过绘制函数的函数表格或者利用函数的特性来画出函数的图像。
二、常见函数2.1 平方函数- f(x) = x^2- 特点:单调递增,抛物线图像2.2 根号函数- f(x) = √x- 特点:非负数,开口向上的图像2.3 一次函数- f(x) = ax + b- 特点:斜率为常数,直线图像2.4 指数函数- f(x) = a^x- 特点:底数大于1时为增函数,底数小于1时为减函数2.5 对数函数- f(x) = loga(x)- 特点:定义域为正实数,值域为实数2.6 正弦函数- f(x) = sin(x)- 特点:周期为2π,振幅为12.7 余弦函数- f(x) = cos(x)- 特点:周期为2π,振幅为12.8 正切函数- f(x) = tan(x)- 特点:周期为π,无界区间三、函数的性质3.1 奇偶性- 奇函数:f(-x) = -f(x)- 偶函数:f(-x) = f(x)3.2 周期性- 周期函数:f(x+T) = f(x),其中T为周期3.3 单调性- 增函数:f'(x) > 0,减函数:f'(x) < 03.4 最值- 最小值:f(x) >= min,最大值:f(x) <= max 3.5 零点- 零点:f(x) = 0四、函数的运算4.1 四则运算- 加法:(f+g)(x) = f(x) + g(x)- 减法:(f-g)(x) = f(x) - g(x)- 乘法:(f*g)(x) = f(x) * g(x)- 除法:(f/g)(x) = f(x) / g(x)(g(x) ≠ 0)4.2 复合函数- 复合函数:(fog)(x) = f(g(x))四、实例分析5.1 题目一- 已知f(x) = x^2 - 2x + 1,求f(2)解:f(2) = 2^2 - 2*2 + 1 = 35.2 题目二- 已知f(x) = x^2,求f(3) - f(-3)解:f(3) = 3^2 = 9,f(-3) = (-3)^2 = 9,f(3) - f(-3) = 0六、练习题6.1 计算f(4)和f(-4),其中f(x) = 2x + 36.2 求函数f(x) = x^2 + 2x的最值6.3 求函数f(x) = sin(x)在区间[0, 2π]上的最小值以上为高中数学8个基本函数的教案范本,希望对您有所帮助。
函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
课时:2课时年级:大学教学目标:1. 让学生理解函数的概念,掌握函数的定义域、值域、单调性、奇偶性等基本性质。
2. 通过实例,使学生能够运用函数知识解决实际问题。
3. 培养学生运用数学思维分析问题的能力。
教学重点:1. 函数的概念及其性质。
2. 函数在实际问题中的应用。
教学难点:1. 函数性质的理解和运用。
2. 函数在实际问题中的应用。
教学过程:第一课时一、导入1. 回顾初中所学的函数知识,引导学生回顾函数的定义。
2. 引出本节课的主题——函数。
二、讲授新课1. 函数的概念:函数是数学中一个重要的概念,它表示两个变量之间的关系。
其中一个变量是自变量,另一个变量是因变量。
2. 函数的定义域和值域:定义域是指自变量可以取的所有值的集合,值域是指因变量可以取的所有值的集合。
3. 函数的单调性:函数的单调性是指函数在定义域内,随着自变量的增加(或减少),因变量也相应地增加(或减少)。
4. 函数的奇偶性:函数的奇偶性是指函数图像关于y轴的对称性。
三、课堂练习1. 判断下列函数的定义域和值域。
2. 判断下列函数的单调性和奇偶性。
四、小结1. 回顾本节课所学内容,总结函数的概念、定义域、值域、单调性、奇偶性等基本性质。
2. 强调函数在实际问题中的应用。
第二课时一、导入1. 回顾上一节课所学内容,提问学生函数在实际问题中的应用。
2. 引出本节课的主题——函数在实际问题中的应用。
二、讲授新课1. 函数在实际问题中的应用实例:a. 一次函数:描述直线上的变化规律,如速度、距离等。
b. 二次函数:描述抛物线上的变化规律,如物体的运动轨迹、经济增长等。
c. 反比例函数:描述双曲线上的变化规律,如电流、电阻等。
d. 三角函数:描述周期性变化规律,如正弦波、余弦波等。
2. 案例分析:a. 一个物体以匀速直线运动,求物体在不同时间的位置。
b. 一个企业生产的产品数量与成本之间的关系。
c. 一个电路中的电流与电阻之间的关系。
三、课堂练习1. 根据实例,分析函数在实际问题中的应用。
《函数的概念》教学教案一、教学目标1. 知识与技能:(1)理解函数的定义及其基本性质;(2)能够正确运用函数的概念解决实际问题。
2. 过程与方法:(1)通过实例分析,引导学生掌握函数的定义;(2)利用数形结合,让学生理解函数的性质。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)函数的定义及其基本性质;(2)函数图像的特点。
2. 教学难点:(1)函数概念的理解;(2)函数图像的解读。
三、教学方法1. 情境导入:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲授法:(1)讲解函数的定义及基本性质;(2)分析函数图像的特点,引导学生理解函数的概念。
3. 讨论法:(1)分组讨论函数实例,让学生深入理解函数的概念;(2)组织学生展示讨论成果,促进学生之间的交流。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
四、教学过程1. 导入新课:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲解函数的定义及基本性质:(1)讲解函数的定义,让学生理解函数的概念;(2)介绍函数的基本性质,如单调性、奇偶性等。
3. 分析函数图像的特点:(1)让学生观察函数图像,理解函数的性质;(2)引导学生学会解读函数图像,掌握函数图像的特点。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
5. 课堂小结:(2)强调函数在实际问题中的应用价值。
五、课后作业1. 复习本节课所学内容,整理函数的定义及基本性质;2. 运用函数概念,解决实际问题;3. 观察函数图像,分析函数的单调性、奇偶性等性质。
【课题】 函数的概念
授课人:石磊 班级:12金融2班 时间:【教学目标】
知识目标:
(1) 通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型; (2) 理解函数的概念及其构成要素; (3) 理解函数值的概念及表示. 能力目标:
(1) 通过函数概念的学习,培养学生的数学思维能力; (2) 通过函数值的学习,培养学生的计算能力.
【教学重点】
体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念.
【教学难点】
函数的概念及记号)(x f y 的理解.
【教学过程】
*复习旧知,为新课铺垫 问题
世界充满变化,函数无处不在,今天我们又开始接触函数了,你们还记得初中学习过哪些函数吗?函数的定义又是什么? 归纳
一次函数、反比例函数及二次函数;定义:在一个变化过程中,有两个变量x 和y ,如果对于x 的每一个确定的值,y 都有唯一确定的值与其相对应,那么我们就说x 是自变量,y 是x 的函数.
通过对初中学过的函数模型的回忆,帮助学生回忆函数的“变量说”;此外注意变量与选取字母无关. *创设情景 兴趣导入
我们在了解初中函数的概念之后,下面一起来看三个实例,分析其中的变量,说明它们之间能否构成函数关系?
(1)某水库的存水量Q 与水深h (指最深处的水深)如下表: 水深h (米)
5 10 15 20 25
存水量Q (万立方) 0 20
40
90
160 275
(2)设时间为t ,温度为0
()T C ,自动测温仪测得杭州10月21日从凌晨0点到白天14点的温度曲线如下图:
(3)今年中国海军在东海进行实弹演习,通过数据监测,一枚炮弹发射后,炮弹距地面的高度h (单位m )随时间t (单位s )变化的规律是2
1305h t t =-. 归纳
判断两个变量的对应关系能否构成函数的标准是“对一个变量的每一个取值,另一个变量都有唯一的值与之对应”,而表现这种“对应”的数学形式,除了大家熟悉的函数解析式外,还可以有列表法、图像法. 问题
在(3)中,请大家计算,当30t s =时,所对应的h 值是多少?
600h m =-,而经过计算,得到炮弹从发射到落到海面爆炸只经历26s .
归纳
由此看来,初中的函数定义,只强调了两个变量x 和y 的对应关系,而没有明确给出自变量x 的取值范围,所以我们说这个定义是不够严密的,事实上,例(3)中的变量时间t 的取值范围是[0,26],例1、2中自变量也有取值范围,因此我们把初中函数的概念稍加修饰.
通过观察三个实例,使学生进一步认识函数的实质:对一个变量的每一个取
值,另一个变量都有唯一的值与之对应.
从实例发现已有的函数定义没有明确指出自变量的取值范围,从而催生更严密的函数定义.
*动脑思考 探索新知
概念
在某一个变化过程中有两个变量x 和y ,设变量x 的取值范围为数集D ,如果对于D 内的每一个x 值,按照某个对应法则f ,y 都有唯一确定的值与它对应,那么,把x 叫做自变量,把y 叫做x 的函数.
D
x
f
对应法则y
表示
将上述函数记作(),y f x x D =∈,其中数集D 叫做函数的定义域. 当0x x =时,在对应法则f 的作用下,相对应的值0y 叫做函数()y f x =在点0x 处的函数值.记作()00y f x =.
函数值的集合(){}|,y y f x x D =∈叫做函数的值域. 实际上当去掉集合的外衣后,可发现两个概念的本质是一样的;高中函数概念明确了自变量x 的取值范围是数集D ,明确了对应法则f ,把()y f x =就叫做函数.
*函数概念的初步应用
例1 五名同学的数学竞赛的成绩如下: 序号 1 2 3 4 5 成绩
92
70
80
85
71
(1)成绩能够看成序号的函数吗?
(2)若序号5对应的同学缺考,没有分数,并且我们在成绩单上也没有记录,还能看成函数吗?
例2 下列图形中可以作为函数()f x 的图像的是( )
辨析回味概念
1、请大家提炼下概念中的关键词有哪些?
定义域D ,对应法则f ,值域,而定义域D 和对应法则f 确定后,值域也就被确定了,所以确定函数只需确定定义域D 和对应法则f ,此处定义域D 、对应法则f 和值域叫做函数的三要素.
2、用函数的其中两要素重新解释初中学过的函数. 函数
一次函数21y x =+
反比例函数1y x
=
定义域D R
(,0)(0,)-∞+∞
对应法则f
2()1⨯*+
1*
充分讲解函数变量和法则之间的关系.
通过对例题
的辨析,加深学生对高中函数概念的理解,培养学生运用概念思考问题的能力,特别是运用图像来观察数集之间的对应关系,对学生来说,更是全新的问题,但
这是数形结合基
础,应该培养这方面能力.
鉴于函数定
义的重要和理解的困难,本环节分二个步骤来辨析新概念,促进学生理解新概念.
x y
O
x
y
O
C D
x
y
O x
y
O
A
B
*例题演示
例3 已知函数1()31f x x =
-,求1
(2),(0),()2
f f f -和函数的定义域. 解:1(2)7f -=-,(0)1f =-,1
()12
f =.
为使分式
131x -有意义,必须310x -≠,即13
x ≠,所以原函数的定义域为1|3x x ⎧
⎫≠⎨⎬⎩
⎭,即11
(,)
(,)33
-∞+∞.
例3是求函数值和定义域,这些都是基础而
需要掌握的.
*归纳小结 强化思想
1、本节课主要是函数的概念及其三要素,毫无疑问,函数是中学数学最重要的概念之一,由于其重要性和难理解,因此对函数的概念再怎么强调都不过份.
2、辨析概念的三个步骤及图形理解都是精华,对函数的理解非一日之功,需要学生课后及将来学习中去慢慢体会.
*继续探索 活动探究
(1)举出生活中两个函数的例子,并用函数的概念进行描述,并且写出它们的定义域、对应法则和值域.
(2)思考()1()f x x R =∈是函数吗?若是,写出它的定义域、对应法则和值域;若不是,请说明理由. (3)课后作业:习题 A 组第1、2、3题.
通过此例,
不难发现,用本节课所学函数概念来解释更方便.。