最新2019年山西省中考数学试卷
- 格式:doc
- 大小:4.04 MB
- 文档页数:21
{来源}2019年山西省中考数学试卷 {适用范围:3.九年级}{标题}2019年山西省中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共10小题,每小题3分,合计30分. {题目}1.(2019·山西省,1)﹣3的绝对值是( )A.﹣3B.3C.﹣31D.31{答案}B{解析}本题考查了绝对值的代数意义,正数的绝对是是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以3 =3,因此本题选B . {分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019·山西省,2)下列运算正确的是( )A. 2a +3a =5a 2B.(a +2b )2=a 2+4b 2C a 2·a 3=a 6D(﹣ab 2)3=﹣a 3b 6{答案}D{解析}本题考查了整式的加法、乘法公式,幂的有关运算,整式加法的实质合并同类项即字母及字母的指数不变,将系数相加,故A 选项的正确结果为5a ;完全平方公式的展开式可根据口诀进行即“首平方,尾平方,积的2倍夹中间”,故B 选项的正确结果为a 2+4ab +4b 2;同底数幂相乘,底数不变,指数相加,故C 选项正确结果为a 5;积的乘方,等于积的每一个因式分别乘方,再把所得的幂相乘,故D 选项正确.因此本题选D . {分值}3{章节:[1-15-2-3]整数指数幂} {考点:积的乘方} {考点:幂的乘方} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}3.(2019·山西省,3)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想{答案}B{解析}本题考查了正方体的侧面展开图,在展开图中,寻找相对面的方法:“不在同一行时,找Z 两头;在同一行(列)时,找隔一个”,因此本题选B . {分值}3{章节:[1-4-1-1]立体图形与平面图形} {考点:几何体的展开图} {类别:常考题} {难度:2-简单}{题目}4.(2019·山西省,4)下列二次根式是最简二次根式的是( )A.21B.712 C.8D.3{答案}D{解析}本题考查了最简二次根式的定义,判断最简二次根式,必须具备两个条件:①被开方数中不含分母;②被开方数中所有因数(或因式)的幂指数都小于2,两个条件缺一不可.A 、B 两选项中,被开方数都含有分母,故A 、B 不正确;C 选项中,被开方数8=23,幂指数>2,故C 不正确,因此本题选D .{分值}3{章节:[1-16-1]二次根式} {考点:最简二次根式} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}5.(2019·山西省,5)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°{答案}C{解析}本题考查了三角形的内角和定理,等腰三角形的性质,三角形的外角性质,平行线的性质.由等腰三角形的性质和内角和定理可得∠ACB=75°,再由三角形的外角性质可得∠AED=115°,结合平行线性质可得∠2=115°-75°=40°,因此本题选C . {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {考点:等边对等角}{考点:两直线平行同位角相等} {考点:三角形的外角} {类别:常考题} {难度:3-中等难度}{题目}6.(2019·山西省,6)不等式组⎩⎨⎧--42231<>x x ,的解集是( )A.x >4B.x >﹣1C.﹣1<x <4D.x <﹣1{答案}A{解析}本题考查了一元一次不等式组的解法,先分别解每一个不等式,再取每个不等式解集的公共部分.不等式组解集的确定方法:①借助数轴;②利用口诀“同大取大,同小取小,大小小大中间取,大大小小无解集”.解不等式x -1>3得x >4,解不等式2-2x <4得x >﹣1,所以不等式组的解集为x >4.因此本题选A .{分值}3{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组} {类别:常考题} {难度:2-简单}{题目}7.(2019·山西省,7)五自山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人,以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016x107元C.2.016x107元D.2016×104元{答案}C{解析}本题考查了用科学记数法表示一个绝对值较大的数,用科学记数法表示数,就是把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),其具体步骤是:(1)确定a 的值,a 为整数位数只有一位的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).168×120000=20 160 000=2.016x107,因此本题选C . {分值}3{章节: [1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:2-简单}{题目}8.(2019·山西省,8)一元二次方程x 2﹣4x ﹣1=0配方后可化为( )A.(x +2)2=3B.(x +2)2=5C.(x ﹣2)2=3D.(x ﹣2)2=5{答案}D{解析}本题考查了一元二次方程的配方,其具体步骤是:①先将未知数的系数化为1;②再将含有未知数的项移到等号的左边,不含未知数的项移到等号的右边;③在等式的两边同时加上一次项系数一半的平方;④将等号的左边写成完全平方的形式.因此本题选D . {分值}3{章节:[1-21-2-1] 配方法} {考点:配方法的应用} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}9.(2019·山西省,9)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线型钢拱的函数表达式为( )A.y=267526x B.y=﹣267526x C.y=2135013x D.y=﹣2135013x{答案}B{解析}本题考查了利用二次函数模型解决实际问题,由二次函数的图象和性质可知:A (﹣45,﹣78),将其代入y =ax 2(a <0)可得a =﹣67526,因此本题选B .{分值}3{章节:[1-22-3]实际问题与二次函数} {考点:二次函数y=ax2的图象} {考点:二次函数y=ax2的性质} {考点:桥洞问题} {类别:思想方法} {类别:高度原创} {类别:常考题} {难度:3-中等难度}{题目}10.(2019·山西省,10)如图,在Rt △ABC 中,∠ABC=90°,AB=23,BC=2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π- B.2435π+ C.23-πD.43-2π{答案}A{解析}本题考查了锐角三角函数,圆周角定理,扇形的面积公式,阴影部分面积的计算方法.计算阴影部分的面积方法:①间接法;②割补法. 连结OD ,过点D 作DE ⊥AB 于点E ,在Rt △ABC 中,∠ABC=90°,AB=23,BC=2,所以tan ∠BAC=33,即∠BAC=30°,由圆周角定理可得∠BOD=2∠BAC=60°,在Rt △DOE 中,∠DEO=90°,OD=AO=21AB=3,∠DOE=60°,所以DE=ODsin ∠DOE=3×23=23,S △ABC =21AB ×BC=23,S 扇形BOD =()3603602π=2π,S △AOD =21AO ×DE=433,所以S 阴影=S △ABC -S 扇形BOD -S △AOD =23-2π-433=2435π-.因此本题选A .{分值}3{章节:[1-24-4]弧长和扇形面积} {考点:三角函数的关系} {考点:圆周角定理} {考点:解直角三角形} {考点:扇形的面积}{类别:思想方法} {类别:常考题} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共5小题,每小题3分,合计15分. {题目}11.(2019·山西省,11)化简12-x x -xx-1的结果是 {答案}13-x x{解析}本题考查了两个异分母分式的加减法.两个异分母分式相加减,先通分变为同分母分式,然后分母不变,分子相加减.12-x x -x x -1=12-x x +1-x x =13-x x. {分值}3{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}12.(2019·山西省,12)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .{答案}扇形统计图{解析}本题考查了统计图的选择,扇形统计图能反映出扇形各部分所占的百分比;条形统计图能直观地反映出各部分的数据多少;折线统计图能反映出各部分的变化趋势.因此本题答案为“扇形统计图”.{分值}3{章节:[1-10-1]统计调查} {考点:扇形统计图} {类别:常考题} {难度:2-简单}{题目}13.(2019·山西省,13)如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77m 2.设道路的宽为xm ,则根据题意,可列方程为 .{答案}(12-x )(8-x )=77或x 2-20x +19=0{解析}本题考查了一元二次方程的实际应用,解决这类问题的关键是分析题意,找到题中的等量关系,列出方程,把实际问题转化为数学问题来解决. {分值}3{章节:[1-21-4]实际问题与一元二次方程} {考点:一元二次方程的应用—面积问题} {类别:常考题} {难度:3-中等难度}{题目}14.(2019·山西省,14)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 的坐标为(﹣4,0),点D 的坐标为(﹣1,4),反比例函数y=xk(x>0)的图象恰好经过点C ,则k 的值为 .{答案}16{解析}本题考查了点的坐标的应用,菱形的性质,待敌系数法求反比例函数的解析式. 过点D 作DE ⊥x 轴于点E ,由点D 的坐标为(﹣1,4)可得DE=4,OE=1,结合点A 的坐标为(﹣4,0)可得AE=3,在Rt △ADE 中,由勾股定理得AD=5,再由菱形的性质可知:DC=AD=5,所以点C 的坐标为(4,4),将其代入反比例函数解析可得k=16.{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:点的坐标的应用} {考点:反比例函数的解析式} {考点:菱形的性质} {类别:思想方法} {类别:常考题} {难度:3-中等难度}{题目}15.(2019·山西省,15)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .{答案}10-26{解析}本题考查了旋转的性质、等腰直角三角形、三角函数的关系、勾股定理. 过点A 作AG ⊥DE 于点G ,由旋转的性质可知:AE=AD=6,∠DAE=∠BAC=90°,∠CAE=∠BAD=15°,所以△DAE 是等腰直角三角形即∠ADE=45°,因为AG ⊥DE ,所以AG=DG=GE ,再由勾股定理可得AG=32.由三角形的外角性质可知∠AFG=60°,在Rt △AFG 中,AF=AFGAG∠sin =26,所以CF=AC -AF=10-26.{分值}3{章节:[1-28-1-2]解直角三角形}{考点:旋转的性质} {考点:等腰直角三角形} {考点:三角函数的关系} {考点:勾股定理}{类别:思想方法} {类别:常考题} {类别:易错题} {难度:4-较高难度}{题型:3-解答题}三、解答题:本大题共8小题,合计75分. {题目}16.(2019·山西省,16(1))计算:27+(﹣21)﹣2﹣3tan60°+(π﹣2)0 {解析}本题考查了二次根式的化简、负整指数幂、特殊角的三角函数值、零指数幂. {答案}解: 原式=33+4-33+1=5 {分值}5{章节:[1-28-3]锐角三角函数} {难度:1-最简单}{类别:常考题}{考点:逆用二次根式乘法法则} {考点:负指数参与的运算} {考点:特殊角的三角函数值} {考点:零次幂}{题目}16.(2019·山西省,16(2))解方程组:⎩⎨⎧=+-=-②,①.02823y x y x{解析}本题考查了二元一次方程的解法. {答案}解: ①+②得:4x=﹣8,∴x=﹣2, 将x=﹣2代入②得:2y=2,解得y=1, ∴方程组的解为:⎩⎨⎧=-=12y x{分值}5{章节:[1-8-2]消元——解二元一次方程组} {难度:2-简单} {类别:常考题}{考点:加减消元法}{题目}17.(2019·山西省,17)已知:如图,点B 、D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠F.求证:BC=DF.{解析}本题考查了角角边判定三角形全等.{答案}证明:∵ AD=BE ,∴AD -BD=BE -BD ,即AB=DE ,∵AC ∥EF ,∴∠A=∠E ,在△ABC 和△DEF 中,∠C=∠F ,∠A=∠E ,AB=DE , ∴△ABC ≌△DEF , ∴BC=DF.{分值}7{章节:[1-12-2]三角形全等的判定} {难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定ASA,AAS}{题目}18.(2019·山西省,18)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲,乙两班分别招募10人作为颁奖礼仪志愿者,同学们勇跃报名,甲,乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲,乙两班学生的成绩绘制了如图所示的统计图. 请解答下列问题(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲,乙两班各被录用的10名志愿者的成绩作出评价(从“众数”“中位数”或“平均数”中的一个方面评价即可).(3)甲,乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两 个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A ,B ,C ,D 表示.现把分别印有A ,B ,C ,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A ”和“B ”的概率.{解析}本题考查了用“中位数、众数、平均数”分析问题,借助树状图或列表法计算两步概率问题. {答案}解:(1)小华不能,小丽能被录用;(2)从众数来看:甲,乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多.从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数.从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数. ( 第二张 第一张AB C D A(A ,B )(A ,C ) (A ,D ) B (B ,A ) (B ,C )(B ,D ) C (C ,A ) (C ,B ) (C ,D )D(D ,A )(D ,B )(D ,C )有表格可知:一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“A ”和“B ”的结果有2种.所以P (抽到“A ”和“B ”)=122=61. {分值}9{章节:[1-25-1-2]概率} {难度:3-中等难度} {类别:常考题}{考点:条形统计图}{考点:统计的应用问题}{考点:算术平均数}{考点:中位数}{考点:众数}{考点:两步事件不放回}{题目}19.(2019·山西省,19)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆游泳的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元)(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.{解析}本题考查了从实际问题中抽象出一次函数模型,利用一元一次不等式解决实际问题.{答案}解:(1)y1=30x+200,y2=40x(2)由y1<y2得30x+200<40x,解得x>20,当x>20时,选择方式一比方式二省钱.{分值}8{章节:[1-19-4]课题学习选择方案}{难度:3-中等难度}{类别:思想方法}{类别:常考题}{考点:函数关系式}{考点:一元一次不等式的应用}{题目}20.(2019·山西省,20)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx 组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD= 1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内.点C,D,E在同一条直线上,点E在GH上任务一:两次测量A ,B 之问的距离的平均值是 m .任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度.(参考数据:si n25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳,你认为其原因可能是什么?{解析}本题考查了解直角三角形的应用——仰角. {答案}解:任务一:5.5任务二:由题意可得:四边形ACDB ,四边形ACEH 都是矩形, ∴EH=AC=1.5,CD=AB=5.5, 设EG=xm ,在Rt △DEG 中,∠DEG=90°,∠GDE=31°, ∵tan31°=DE EG ,∴DE=︒31tan x, 在Rt △CEG 中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=CE EG ,∴CE=︒7.25tan x, ∵CD=CE -DE ,∴︒7.25tan x -︒31tan x=5.5,∴x=13.2,∴GH=GE +EH=13.2+1.5=14.7. 答:旗杆GH 的高度为14.7m.任务三:没有太阳;或旗杆底部不可到达;或测量旗杆影子的长度遇到困难(答案不唯一) {分值}9{章节:[1-28-1-2]解直角三角形} {难度:3-中等难度} {类别:思想方法} {类别:发现探究}{类别:常考题}{考点:解直角三角形的应用-仰角}{题目}21.(2019·山西省,21)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则OI 2=R 2﹣2Rr.如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切于点F ,设⊙O 的半径为R ,⊙O 的半径为r ,外心O(三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI=d ,则有d 2=R 2﹣2Rr.下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN. ∵∠D=∠N ,∠DMI=∠NAI (同弧所对的圆周角相等), ∴△MDN ∽△ANI. ∴INIDIA IM =.∴IA ▪ID=IM ▪IN.① 如图2,在图1(隐去MD ,AN)的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF. ∵DE 是⊙O 的直径,∴∠DBE=90°.∵⊙I 与AB 相切于点F ,∴∠AFI=90°.∴∠DBE=∠IFA. ∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF ∽△EDB. ∴BDIFDE IA =.∴IA▪BD=DE▪IF.② …(第21题图1) (第21题图2) 任务:(1)观察发现:IM=R +d ,IN= (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm.{解析}本题考查了三角形的内心与外心,圆周角定理,相似三角形的判定与性质. {答案}解:(1)R -d (2)BD=ID理由如下:∵点I 是△ABC 的内心, ∴∠BAD=∠CAD ,∠CBI=∠ABI ,∵∠DBC=∠CAD ,∠BID=∠BAD+∠ABI ,∠DBI=∠DBC+∠CBI , ∴∠BID=∠DBI. ∴BD=DI.(3)证明:由(2)知:BD=ID ,∴IA▪ID=DE ▪IF ,又∵IA▪ID=IM▪IN ,∴D E▪IF=IM▪IN , ∴2R▪r=(R +d)(R -d).∴R 2-d 2=2Rr. ∴d 2=R 2-2Rr..(4)5{分值}8{章节:[1-27-1-2]相似三角形的性质}{难度:4-较高难度} {类别:思想方法} {类别:常考题}{类别:新定义}{考点:圆周角定理}{考点:三角形的外接圆与外心} {考点:三角形的内切圆与内心}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质}{题目}22.(2019·山西省,22)综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.再沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一条直线上,折痕分别为CE ,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5.图中的虚线为折痕. 问题解决:(1)在图5中,∠BEC 的度数是 ,BEAE的值是 ; (2)在图5中,请判断四边形EMCF 的形状,并说明理由;(第22题图1) (第22题图2)(第22题图3)(第22题图4) (第22题图5)(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .{解析}本题考查了正方形的性质,锐角三角函数,矩形的判定,菱形的性质与判定. {答案}解:(1)67.5°,2(2)理由如下:∵四边形ABCD 是正方形,∠B=∠BCD=∠D=90°, 由折叠可知:∠1=∠2=∠3=∠4,CM=CG ,∠BEC=∠NEC=∠NFC=∠DFC ,∴∠1=∠2=∠3=∠4=490=22.5°, ∴∠BEC=∠NEC=∠NFC=∠DFC=67.5°.由折叠可知:MH ,GH 分别垂直平分EC ,FC ,∴MC=ME ,GC=GF. ∴∠5=∠1=22.5°,∠6=∠4=22.5°, ∴∠MEF=∠GFE=90°.∵∠MCG=90°,CM=CG ,∠CMG=45°,又∵∠BME=∠1+∠5=45°,∴∠EMG=180°﹣∠CMG ﹣∠BME=90°,∴四边形EMGF 是矩形 (3)菱形FGCH(或菱形EMCH){分值}11{章节:[1-18-2-2]菱形} {难度:5-高难度} {类别:思想方法} {类别:发现探究}{类别:易错题}{考点:正方形的性质} {考点:三角函数的关系} {考点:轴对称的性质} {考点:矩形的性质}{考点:与矩形菱形有关的综合题}{题目}23.(2019·山西省,23)综合与探究如图,抛物线y=ax 2+bx +6经过点A (﹣2,0),B (4,0)两点,与y 轴交于点C.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m<4).连接AC ,BC ,DB ,DC. (1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.{解析}本题考查了待定系数法确定函数关系式,二次函数与一元二次方程的关系,二次函数与平行四边形的综合与探究.{答案}解:作直线DE ⊥x 轴于点E ,交BC 于点G.作CF ⊥DE ,垂足为点F. ∵点A 的坐标为(﹣2,0),∴OA=2.由x=0,得y=6,∴点C 的坐标为(0,6),∴OC=6.∴S △AOC =21OA ▪OC=21×2×6=6. ∵S △BCD =43S △AOC .∴S △BCD =43×6=29.设直线BC 的函数表达式为y=kx +n.由B ,C 两点的坐标得⎩⎨⎧==+604n n k ,解得⎪⎩⎪⎨⎧=-=623n k .∴直线BC 的函数表达式为y=﹣23x +6.∴点G 的坐标为(m ,﹣23m+6).∴DG=﹣43m 2+23m+6-(﹣23m+6)=﹣43m 2+3m.∵点B 的坐标为(4,0),∴OB=4.∴S △BCD =S △CDG +S △BDG =21DG▪CF+21DG▪BE=21DG(CF +BE)=21DG▪BO =21(﹣43m 2+3m)×4=-﹣23m 2+6m. ∴﹣23m 2+6m=29.解得m 1=1(舍去),m 2=3.∴m 的值为3(3)答:存在M 1(8,0),M 2(0,0),M 3(14,0),M 4(﹣14,0) {分值}13{章节:[1-22-3]实际问题与二次函数} {难度:5-高难度} {类别:思想方法} {类别:高度原创}{类别:发现探究}{考点:二次函数与平行四边形综合}。
2019年山西省中考数学试卷一、选择题(本大题共10小题,共30分) 1. -3的绝对值是( )A. −3B. 3C. −13D. 132. 下列运算正确的是( )A. 2a +3a =5a 2B. (a +2a )2=a 2+4a 2C. a 2⋅a 3=a 6D. (−aa 2)3=−a 3a 6 3. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是( )A. 青B. 春C. 梦D. 想 4. 下列二次根式是最简二次根式的是( )A. √12B. √127C. √8D. √35. 如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是( ) A. 30∘ B. 35∘ C. 40∘ D. 45∘ 6. 不等式组{a −1>32−2a <4的解集是( )A. a >4B. a >−1C. −1<a <4D. a <−17. 五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示( )A. 2.016×108元B. 0.2016×107元C. 2.016×107元D. 2016×104元 8. 一元二次方程x 2-4x -1=0配方后可化为( )A. (a +2)2=3B. ( a +2)2=5C. (a −2)2=3D. ( a −2)2=5 9. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )2A. a =26675a 2B. a =−26675a 2C. a =131350a 2D. a =−131350a 210. 如图,在Rt △ABC 中,∠ABC =90°,AB =2√3,BC =2,以AB的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.5√34−a2B.5√34+a2C. 2√3−aD. 4√3−a2二、填空题(本大题共5小题,共15分) 11. 化简2aa −1-a1−a 的结果是______.12. 要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是______. 13. 如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为xm ,则根据题意,可列方程为______. 14. 如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数y =aa (x >0)的图象恰好经过点C ,则k 的值为______. 15. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为______cm .三、解答题(本大题共8小题,共75分)16. (1)计算:√27+(-12)-2-3tan60°+(π-√2)0.(2)解方程组:17.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E 在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数25.6°25.8°25.7°∠GDE的度数31.2°30.8°31°A,B之间的距离 5.4m 5.6m……任务一:两次测量,之间的距离的平均值是______.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子4测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21. 阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其中外心和内心,则OI 2=R 2-2Rr .如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切分于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2-2Rr . 下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN . ∵∠D =∠N ,∠DMI =∠NAI (同弧所对的圆周角相等).∴△MDI ∽△ANI .∴aa aa =aaaa ,∴IA •ID =IM •IN ,①如图2,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF . ∵DE 是⊙O 的直径,所以∠DBE =90°. ∵⊙I 与AB 相切于点F ,所以∠AFI =90°, ∴∠DBE =∠IFA .∵∠BAD =∠E (同弧所对的圆周角相等), ∴△AIF ∽△EDB , ∴aa aa =aa aa .∴IA •BD =DE •IF ②任务:(1)观察发现:IM =R +d ,IN =______(用含R ,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为______cm .22.综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是______,aaaa的值是______.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:______.23.综合与探究如图,抛物线y=ax2+bx+6经过点A(-2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的34时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.6答案和解析1.【答案】B【解析】解:|-3|=3.故-3的绝对值是3.故选:B.根据绝对值的定义,-3的绝对值是指在数轴上表示-3的点到原点的距离,即可得到正确答案.本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.2.【答案】D【解析】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(-ab2)3=-a3b6,正确.故选:D.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.根据正方体展开z字型和L型找对面的方法即可求解;本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.4.【答案】D【解析】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.【答案】C【解析】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°-75°=40°,故选:C.先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.6.【答案】A【解析】解:,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选:A.首先求出不等式组中每一个不等式的解集,再求出其公共解集.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.【答案】C【解析】解:120000×168=20160000=2.016×107,故选:C.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】D【解析】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.9.【答案】B【解析】解:设抛物线的解析式为:y=ax2,将B(45,-78)代入得:-78=a×452,解得:a=-,故此抛物线钢拱的函数表达式为:y=-x2.故选:B.直接利用图象假设出抛物线解析式,进而得出答案.此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.10.【答案】A【解析】8解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tanA=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】3aa−1【解析】解:原式=.故答案为:先把异分母转化成同分母,再把分子相减即可.此题考查了分式的加减运算,在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.12.【答案】扇形统计图【解析】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.13.【答案】(12-x)(8-x)=77【解析】解:∵道路的宽应为x米,∴由题意得,(12-x)(8-x)=77,故答案为:(12-x)(8-x)=77.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14.【答案】16【解析】10解:过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F , ∵ABCD 是菱形, ∴AB=BC=CD=DA , 易证△ADF ≌△BCE ,∵点A (-4,0),D (-1,4), ∴DF=CE=4,OF=1,AF=OA-OF=3, 在Rt △ADF 中,AD=,∴OE=EF-OF=5-1=4, ∴C (4,4) ∴k=4×4=16 故答案为:16.要求k 的值,求出点C 坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k 的值.本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法. 15.【答案】(10-2√6) 【解析】解:过点A 作AG ⊥DE 于点G , 由旋转知:AD=AE ,∠DAE=90°,∠CAE=∠BAD=15°, ∴∠AED=∠ADG=45°,在△AEF 中,∠AFD=∠AED+∠CAE=60°, 在Rt △ADG 中,AG=DG==3,在Rt △AFG 中,GF==,AF=2FG=2,∴CF=AC-AF=10-2, 故答案为:10-2.过点A 作AG ⊥DE 于点G ,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG ,GF ,AF 的长,即可求出CF=AC-AF=10-2.本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题. 16.【答案】解:(1)原式=3√3+4-3√3+1 =5;(2)①+②得, 4x =-8, ∴x =-2,把x =-2代入①得, -6-2y =-8, ∴y =1, ∴{a =−2a =1.【解析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.17.【答案】证明:∵AD =BE ,∴AD -BD =BE -BD ,∴AB =ED ,∵AC ∥EF ,∴∠A =∠E ,在△ABC 和△EDF 中,{∠a =∠a∠a =∠aaa =aa ,∴△ABC ≌△EDF (AAS ),∴BC =DF .【解析】由已知得出AB=ED ,由平行线的性质得出∠A=∠E ,由AAS 证明△ABC ≌△EDF ,即可得出结论.本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.18.【答案】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多; 从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数; 从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A ”和“B ”的有2种结果,所以抽到的两张卡片恰好是“A ”和“B ”的概率为212=16.【解析】(1)判断小华和小丽在各自班级的名次即可得出答案;(2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)当游泳次数为x 时,方式一费用为:y 1=30x +200,方式二的费用为:y 2=40x ;(2)由y 1<y 2得:30x +200<40x ,解得x >20时,当x>20时,选择方式一比方式二省钱.【解析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.20.【答案】5.5【解析】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE-DE,∴-=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5;任务二:设EC=xm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一).本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】R-d√5【解析】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON-OI=R-d故答案为:R-d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID12(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R-d)∴R2-d2=2Rr∴d2=R2-2Rr(4)由(3)知:d2=R2-2Rr;将R=5,r=2代入得:d2=52-2×5×2=5,∵d>0∴d=故答案为:.(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等.22.【答案】67.5° √2菱形EMCH或菱形FGCH【解析】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°-∠CMG-∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:14∵由折叠可知:MH 、GH 分别垂直平分EC 、FC ,同时EC 、FC 也分别垂直平分MH 、GH , ∴四边形EMCH 与四边形FGCH 是菱形,故答案为:菱形EMCH 或菱形FGCH .(1)由折叠的性质得BE=EN ,AE=AF ,∠CEB=∠CEN ,∠BAC=∠CAD ,由正方形性质得∠EAF=90°,推出∠AEF=∠AFE=45°,得出∠BEN=135°,∠BEC=67.5°,证得△AEN 是等腰直角三角形,得出AE=EN ,即可得出结果;(2)由正方形性质得∠B=∠BCD=∠D=90°,由折叠的性质得∠BCE=∠ECA=∠ACF=∠FCD ,CM=CG ,∠BEC=∠NEC=∠NFC=∠DFC ,得出∠BCE=∠ECA=∠ACF=∠FCD=22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知MH 、GH 分别垂直平分EC 、FC ,得出MC=ME=CG=GF ,推出∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∠MEF=90°,∠GFE=90°,推出∠CMG=45°,∠BME=45°,得出∠EMG=90°,即可得出结论;(3)连接EH 、FH ,由折叠可知MH 、GH 分别垂直平分EC 、FC ,同时EC 、FC 也分别垂直平分MH 、GH ,则四边形EMCH 与四边形FGCH 是菱形.本题是几何变换综合题,考查了正方形的性质、折叠的性质、等腰直角三角形的判定与性质、矩形的判定、菱形的判定、等腰三角形的判定与性质等知识,熟练掌握折叠的性质、矩形与菱形的判定是解题的关键.23.【答案】解:(1)由抛物线交点式表达式得:y =a (x +2)(x -4)=a (x 2-2x -8)=ax 2-2ax -8a ,即-8a =6,解得:a =-34,故抛物线的表达式为:y =-34x 2+32x +6;(2)点C (0,6),将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =-32x +6,如图所示,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,-34m 2+32m +6),则点H (m ,-32m +6) S △BDC =12HB ×OB =2(-34m 2+32m +6+32m -6)=-34m 2+3m ,34S △ACO =34×12×6×2=92, 即:-34m 2+3m =92,解得:m =1或3(舍去1),故m =3;(3)当m =3时,点D (3,154),①当BD 是平行四边形的一条边时,如图所示:M 、N 分别有三个点,设点N (n ,-34n 2+32n +6) 则点N 的纵坐标为绝对值为154,即|-34n 2+32n +6|=154,解得:n =-1或3(舍去)或1±√14,故点N (N ′、N ″)的坐标为(-1,154)或(1+√14,-154)或(1-√14,-154), 当点N (-1,154)时,由图象可得:点M (0,0),当N ′的坐标为(1+√14,-154),由中点坐标公式得:点M ′(√14,0), 同理可得:点M ″坐标为(-√14,0),故点M 坐标为:(0,0)或(√14,0)或(-√14,0);②当BD 是平行四边形的对角线时,点B 、D 的坐标分别为(4,0)、(3,154)设点M (m ,0),点N (s ,t ),由中点坐标公式得:{4+3=a +a 154+0=a +0,而t =-34s 2+32s +6, 解得:t =154,s =-1,m =8,故点M 坐标为(8,0);故点M 的坐标为:(0,0)或(√14,0)或(-√14,0)或(8,0).【解析】(1)由抛物线交点式表达,即可求解;(2)利用S △BDC =HB×OB,即可求解;(3)分BD 是平行四边形的一条边、BD 是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.。
2019年山西省中考数学试卷及答案(Word版)2019年山西省中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算-3+(-1)的结果是()。
A。
2 B。
-2 C。
4 D。
-42.下列运算错误的是()。
A。
B。
x^2+x^2=2x^4C。
|a|=|-a| D。
3.从晋商大院的窗格图案中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()。
A。
B。
C。
D。
4.在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()。
A。
8 B。
10 C。
12 D。
145.解一元二次方程3x^2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()。
A。
转化思想 B。
函数思想 C。
数形结合思想 D。
公理化思想6.如图,直线a∥b,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()。
A。
105° B。
110° C。
120° D。
125°7.化简()的结果是()。
A。
B。
C。
D。
8.我国古代秦汉时期有一部数学著作,堪称是世界数学经典名著.它的出现,标志着我国古代数学体系的正式确立.它采用按类分章的问题集的形式进行编排.其中方程的解法和正负数加减运算法则在世界上遥遥领先,这部著作的名称是()。
A。
《九章算术》B。
《海岛算经》C。
《孙子算经》D。
《五经算术》9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()。
A。
B。
C。
D。
10.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()。
山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是 ( ) A .3-B .3C .13-D .132.下列运算正确的是 ( ) A .2235a a a += B .222(2)4a b a b +=+ C .236a a a = D .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是 ( ) A .青 B .春 C .梦 D .想4.下列二次根式是最简二次根式的是 ( ) A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是 ( ) A .30︒ B .35︒ C .40︒ D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -<7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元 B .70.201610⨯元 C .72.01610⨯元 D .4201610⨯元8.一元二次方程2410x x --=配方后可化为 ( ) A .2(2)3x += B .2(2)5x += C .2(2)3x -= D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为 ( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为 ( ) A .53π42- B .53π42+ C .23π-D .π432-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上) 11.化简211x xx x---的结果是 .12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .13.如图,在一块长12 m ,宽8 m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m 2.设道路的宽为x m ,则根据题意,可列方程为 .14.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(4,0)-,点D 的坐标为(1,4)-,反比例函数(0)k y x x=>的图象恰好经过点C ,则k 的值为 .15.如图,在ABC △中,90BAC ∠=︒,10AB AC == cm ,点D 为ABC △内一点,15BAD ∠=︒,6AD = cm ,连接BD ,将ABD △绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分,) (1)201()3tan60(π2)2---︒+-;(2)解方程组:328,20.x y x y -=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B ,D 在线段AE 上,AD BE =,AC EF ∥,C H ∠=∠.求证:BC DH =.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题 测量旗杆的高度 成员 组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图 说明:线段GH 表示学校旗杆,测量角度的仪器的高度 1.5AC BD == m ,测点A ,B 与H 在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目 第一次 第二次 第三次 GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数 31.2︒ 30.8︒ 31︒ A ,B 之间的距离 5.4 m 5.6 m… …任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(本小题满分8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC △中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则222OI R Rr =-.如图1,O 和I 分别是ABC △的外接圆和内切圆,I 与AB 相O 的半径为R ,I 的半径为三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离222d R Rr =-.下面是该定理的证明过程(部分):交O 于点D ,过点I 作O 的直径连接DM ,AN N ∠,∴DMI NAI ∠=∠(同弧所对的圆周角相等),MDI ANI △.∴IM IDIN=,∴IA ID IM IN =.①O 的直径O 的直径I 与AB 相切于点DBE IFA =∠BAD E ∠=∠(同弧所对圆周角相等AIF EDB △.IA IFDE BD=.∴IA BD DE IF =.②1)观察发现:IM R d =+,IN = (用含R 示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC △的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则ABC △的外心与内心之间的距离为 cm .22.(本小题满分11分) 综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.再沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,ACE △与ACF △重合,得到图3. 第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5.图中的虚线为折痕. 问题解决: (1)在图5中,BEC 的度数是 ,AE BE的值是 ;(2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =,故C 错误;D 、2336()aba b -=-,故D 正确.故选:D . 【考点】整式的运算.3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B . 【考点】正方体的展开与折叠. 4.【答案】D 【解析】A2=,本选项不合题意;B7=本选项不合题意;C=本选项不合题意;D,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=,∴26675a =-∴抛物线解析式为:226675y x =-,故选B .【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tanBC CAB AB ∠==,∴30CAB ∠=︒ 260BOD CAB ∠=∠=︒在Rt ODE △中:122OE OD ==,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π2223602︒=⨯--⨯⨯-︒故选A .【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx - 【解析】22311111x x x x xx x x x x -=+=-----. 【考点】分式的化简. 12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图. 【考点】统计图的选择.13.【答案】(12)(8)77x x --=或220190x +-=【解析】由题可知:(12)(8)77x x --=,化简得220190x +-= 【考点】一元二次方程解应用题. 14.【答案】16 【解析】过点D 作DE AB ⊥于点E ,则5AD =, ∵四边形ABCD 为菱形, ∴5CD =∴(4,4)C ,将C 代入k y x =得:44k =, ∴16k =.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A 作AG DE ⊥于点G ,由旋转知:AD AE =,90DAE ∠=︒,15CAE BAD ∠=∠=︒ ∴45AED ∠=︒在AEF △中:60AFD AED CAE ∠=∠+∠=︒在Rt ADG △中:AG DG ===在Rt AFG △中:GF =2AF FG ==∴10CF AC AF =-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数. 三、解答题16.【答案】(1)(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【解析】(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组. 17.【答案】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质. 18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID =∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC =∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
山西省2019年中考数学试题第I 卷 选择题(共30分)满分:120分 时间:120分钟一.选择题(本大题共10个小题,每小题3分,共30分)1.-3的绝对值是( )A.-3B.3C.31- D.31 【解析】3|-3|=,故选B2.下列运算正确的是( )A.2532a a a =+B.2224)2(b a b a +=+C.632a a a =⋅D.6332)(b a ab -=- 【解析】A.2a +3a =5a ,故A 错误;B.22244)2(b ab a b a ++=+,故B 错误;C.532a a a =⋅,故C 错误;D.6332)(b a ab -=-,故D 正确,故选D3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,而面“青”与面“梦”相对.故选B4.下列二次根式是最简二次根式的是( )A.21B.712 C.8 D.3 【解析】A.2221=,本选项不合题意;B.7212721=,本选项不合题意; C.228=不合题意;D.3是最简二次根式,符合题意,故选D5.如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°【解析】∵AB =AC 且∠A =30°,∴∠ACB =75°.在△ADE 中:∠1=∠A +∠3,∴∠3=115° ∵a ∥b ,∴∠3=∠2+∠ACB ,∴∠2=40°6.不等式组⎩⎨⎧<->-42231x x 的解集是( ) A.4>x B.1->x C.41<<-x D.1-<x【解析】4,31>>-x x ;1,22,422-><-<-x x x ;∴4>x ,故选A7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元【解析】120000×168=20160000=2.016×107,故选C8.一元二次方程0142=--x x 配方后可化为( )A.3)2(2=+xB.5)2(2=+xC.3)2(2=-xD.5)2(2=-x 【解析】5)2(,014)44(,014222=-=--+-=--x x x x x ,故选D9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( ) A.267526x y = B.267526x y -= C.2135013x y = D.2135013x y -=图1 图2 【解析】设抛物线的解析式为,2ax y =将)78,45(-B 代入得:67526,45782-=∴⋅=-a a ∴抛物线解析式为:267526x y -=,故选B 10.如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( ) A.2435π- B.2435π+ C.π-32 D.234π-【解析】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =33322==AB BC ,∴∠CAB =30°,∠BOD =2∠CAB =60°. 在Rt △ODE 中:OE =21OD =23,DE =3OE =23. S 阴影=S △ABC -S △AOD -S 扇形BOD =2360602121OB DE OD BC AB ⋅⋅︒︒-⋅⋅-⋅⋅π =2435)3(3606023321232212ππ-=⨯⨯︒︒-⨯⨯-⨯⨯,故选A第II 卷 非选择题(90分)二.填空题(本大题共5个小题,每小题3分,共15分)11.化简xx x x ---112的结果是 . 【解析】13112112-=-+-=---x x x x x x x x x x ,故答案为13-x x 12.要表示一个家庭一年用于“教育”,服装,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计是 .【解析】根据条形统计图、折线统计图,扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各站家庭本年总支出的百分比应选用扇形统计图,故答案为“扇形统计图”13.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ²,设道路的宽为x m ,则根据题意,可列方程为 .【解析】由题意可知:77)8)(12(=--x x ,故答案为77)8)(12(=--x x14.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD =5,∵四边形ABCD 为菱形,∴CD =5 ∴C (4,4),将C 代入x k y =得:44k =,∴16=k15.如图,在△ABC 中,∠BAC =90°,AB =AC =10cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .【解析】过点A 作AG ⊥DE 于点G ,由旋转可知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15° ∴∠AED =45°;在△AEF 中:∠AFD =∠AED +∠CAE =60°在Rt △ADG 中:AG =DG =232=AD 在Rt △AFG 中:622,63====FG AF AG GF ∴6210-=-=AF AC CF 故答案为:6210-三.解答题(本大题共8个小题,共75分)16.(本题共2个小题,每小题5分,共10分)(1)计算:02)2(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+(2)解方程组:⎩⎨⎧=+-=-②02①823y x y x【解析】(2)①+②得:84-=x ,解得2-=x ,将2-=x 代入②得:022=+-y ,解得1=y ∴原方程组的解为⎩⎨⎧=-=12y x 17.(本题7分)已知:如图,点B ,D 在线段AE 上,AD =BE ,AC ∥EF ,∠C =∠H .求证:BC =DH【解析】证明:∵AD =BE ,∴AD -BD =BE -BD ,即AB =DE .∵AC ∥EF ,∴∠A =∠E在△ABC 和△EDH 中∠C =∠H ,∠A =∠E ,AB =DE .∴△ABC ≌△EDH ,∴BC =DH18.(本题9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行,太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A ,B ,C ,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A ”和“B ”的概率.【解析】18.(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10 名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲、乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲、乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数 (从“众数”,“中位数”或“平均数”中的一方面即可)(3)画树状图如下:由树状图可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“A ”和“B ”的结果有2种.∴61122==P 19.(本题9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.【解析】(1)x y x y 40;2003021=+=(2)由21y y <得:x x 4020030<+解得:20>x ,∴当20>x 时选择方式一比方式2省钱20.(本题9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)任务一:两次测量A ,B 之间的距离的平均值是 m .任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校学校旗杆GH 的高度. (参考数据:sin 25.7°≈0.43,cos 25.7°≈0.90,tan 25.7°≈0.48,sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)任务三:该“综合与实践”小组在定制方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).【解析】20.解:任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形∴EH =AC =1.5,CD =AB =5.5任务二:设EC =x m在Rt △DEG 中:∠DEC =90°,∠GDE =31°∵tan 31°=DE EG ,∴︒=31tan x DE . 在Rt △CEG 中:∠CEG =90°,∠GCE =25.7°.∵tan 25.7°=CE EG ,CE =︒7.25tan x ∵CD =CE -DE ,∴5.531tan 7.25tan =︒-︒x x ,∴2.13=x ∴GH =CE +EH =13.2+1.5=14.7答:旗杆GH 的高度为14.7m任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.21.(8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则Rr R OI 222-=.下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN .∵∠D =∠N ,∴∠DMI =∠NAI (同弧所对的圆周角相等),∴△MDI ∽△ANI .∴INID IA IM =,∴IN IM ID IA ⋅=⋅① 如图②,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF ∵DE 是⊙O 的直径,∴∠DBE =90°.∵⊙I 与AB 相切于点F ,∴∠AFI =90°,∴∠DBE =∠IF A.∵∠BAD =∠E (同弧所对圆周角相等),∴△AIF ∽△ED B. ∴BDIF DE IA =,∴IF DE BD IA ⋅=⋅②任务:(1)观察发现:d R IM +=,=IN (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm .【解析】.解:(1)R -d(2)BD =ID理由如下:∵点I 是△ABC 的内心∴∠BAD =∠CAD ,∠CBI =∠ABI ∵∠DBC =∠CAD ,∠BID =∠BAD +∠ABI ,∠DBI =∠DBC +∠CBI∴∠BID =∠DBI ,∴BD =ID(3)由(2)知:BD =ID∴IA ·ID =DE ·IF又∵DE ·IF =IM ·IN ,∴))((2d R d R Rr -+=,∴Rr d R 222=-∴Rr R d 222-= (1)525252222=⨯⨯-=-=Rr R d ,∴5=d22.(本小题11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在直线折叠,展开铺平.在沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC 的度数是 ,BEAE 的值是 ; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .【解析】22.解:(1)67.5°2(2)四边形EMGF是矩形理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°由折叠可知:∠1=∠2=∠3=∠4,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC=67.5°由折叠可知:MH、GH分别垂直平分EC,FC,∴MC=ME,GC=GF∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF∠GFE=90°∵∠MCG=90°,CM=CG.∴∠CMG=45°又∵∠BME=∠1+∠5=45°,∴∠EMG=180°-∠CMG-∠BME=90°∴四边形EMGF是矩形.(3)菱形FGCH或菱形EMCH(一个即可),如下图所示23.(本题13分)综合与探究如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(2)求抛物线的函数表达式;(3)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (4)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解析】.解:(1)抛物线c bx ax y ++=2经过点A (-2,0),B (4,0), ∴⎩⎨⎧=++=+-064160624b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=2343b a ,∴抛物线的函数表达式为623432++-=x x y (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F .∵点A 的坐标为(-2,0),∴OA =2由0=x ,得6=y ,∴点C 的坐标为(0,6),∴OC =6∴S △OAC =6622121=⨯⨯=⋅⋅OC OA ,∵S △BCD =43S △AOC =29643=⨯设直线BC 的函数表达式为n kx y +=,由B ,C 两点的坐标得⎩⎨⎧==+604n n k ,解得⎪⎩⎪⎨⎧=-=623n k ∴直线BC 的函数表达式为623+-=x y . ∴点G 的坐标为),623,(+-m m ∴m m m m m DG 343)623(6234322+-=+--++-= ∵点B 的坐标为(4,0),∴OB =4S △BCD =S △CDG +S △BDG =BO DG BE CF DG BE DG CF DG ⋅⋅=+⋅=⋅⋅+⋅⋅21)(212121 =m m m m 62343432122+-=⨯+-)( ∴296232=+-m m ,解得11=m (舍),32=m ,∴m 的值为3(3))0,14(),0,14(),0,0(),0,8(4321-M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图以BD 为边进行构图,有3种情况,采用构造全等发进行求解.∵D 点坐标为)415,3(,所以21,N N 的纵坐标为415 415623432=++-x x ,解得3,121=-=x x (舍) 可得)0,0(),415,1(22M N ∴- ∴43,N N 的纵坐标为415-时,141,14141562343212+=-=-=++-x x x x ,∴)0,14(),415,141(33M N ∴-+,)0,14(),415,141(44-∴--M N 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解. ∵)0,8(),4150415),1(43(),415,1(111M M N ∴-+--+∴-。
山西省2019年中考数学试题含答案(word版)2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑。
)1.(2019·山西) 1的相反数是()A。
-1/6 B。
-6 C。
6 D。
-662.(2019·山西) 不等式组{2x<6,x≥-5}的解集是()A。
x>5 B。
x<3 C。
-5<x<3 D。
x<53.(2019·山西) 以下问题不适合全面调查的是()A。
调查某班学生每周课前预的时间 B。
调查某中学在职教师的身体健康状况 C。
调查全国中小学生课外阅读情况 D。
调查某篮球队员的身高4.(2019·山西) 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是(删除有问题的图片)5.(2019·山西) 我国计划在2020年左右发射火星探测卫星。
据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为()A。
5.5×10^6 B。
5.5×10^7 C。
55×10^6 D。
0.55×10^86.(2019·山西) 下列运算正确的是()A。
91/(425/2)^3=-(3/2)^3 B。
5-3÷(5-5)=undefined C。
3(3a^2)=9a^6 D。
8-50=-427.(2019·山西) 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物。
设甲每小时搬运xkg货物,则可列方程为(删除有问题的公式)A。
5000/(x-600)=8000/x B。
8 ⎨2 - 2x < 4 山西省2019年高中阶段教育学校招生统一考试数学第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1. -3的绝对值是( )A .-3B .3C .-1 3D . 132. 下列运算正确的是()A .2a +3a = 5a 2B .(a +2b )2 = a 2+4b 2C .a 2·a 3 = a 6D .(-ab 2)3 = -a 3b 6 3. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( ) A .青 B .春 C .梦 D .想4. 下列二次根式是最简二次根式的是( )A.B C . D .5. 如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是( )A .30°B .35°C .40°D .45°6. 不等式组⎧x -1 > 3 ⎩的解集是( )A .x > 4B .x > -1C .-1<x <4D .x < -17. 五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .2.016×108元 B .0.2016×107元 C .2.016×107元 D .2016×104元 8. 一元二次方程x 2-4x -1=0配方后可化为( )A .(x +2)2=3B .(x +2)2=5C .(x -2)2=3D .(x -2)2=59. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图像-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A . y = 26 x 2675 B . y = - 26x 2675 C. y =13 x 21350D. y = -13 x 2135033 3 ( 10. 如图,在Rt △ABC 中,∠ABC =90°,AB = 2 AC 于点D ,则图中阴影部分的面积为( ) ,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交A . 5 3 -4 2 B .5 3 +4 2 C . 2 -D . 4 -2第 II 卷 非选择题(90 分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11. 化简 2x - x的结果是 .x - 1 1 - x12. 要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计是.13. 如图,在一块长 12m ,宽 8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积 77m 2, 设道路的宽为 x m ,则根据题意,可列方程为 .14. 如图,在平面直角坐标中,点 O 为坐标原点,菱形 ABCD 的顶点 B 在 x 轴的正半轴上,点 A 坐标为(-4,0),点 D 的坐标为(-1,4),反比例函数 y = kxx >0)的图象恰好经过点 C ,则 k 的值为 .15. 如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点 D 为△ABC 内一点,∠BAD=15°,AD =6cm ,连接 BD ,将△ABD 绕点 A 按逆时针方向旋转,使 AB 与 AC 重合,点 D 的对应点为点 E ,连接 DE ,DE 交 AC 于点 F ,则 CF 的长为 cm.3⎩三、解答题(本大题共 8 个小题,共 75 分.解答应写出文字说明,证明过程或演算步骤) 16. (本题共 2 个小题,每小题 5 分,共 10 分)(1)计算:27 +( - 1 )-2- 3tan60︒+(π - 22)0 .⎧3 x - 2 y = - 8 ,①(2)解方程组: ⎨x +2 y =0 . ②17. (本题 7 分)已知:如图,点 B ,D 在线段 AE 上,AD=BE ,AC ∥EF ,∠C=∠F .求证:BC=DF.18.(本题 9 分)中华人民共和国第二届青年运动会(简称二青会)将于 2019 年8 月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募 10 人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了 20 人,现已对他们进行了基本素质测评,满分 10 分.各班按测评成绩从高分到低分的顺序各录用 10 人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为 7 分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10 名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D 表示.现把分别印有A,B,C,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(本题 8 分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡 200 元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30 元.方式二:顾客不购买会员卡,每次游泳付费 40 元.设小亮在一年内来此游泳馆的次数为 x 次,选择方式一的总费用为 y1(元),选择方式二的总费用为y2 (元).(1)请分别写出y1,y2 与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).测量项目之间的距离的平均值是m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)20.(本题9 分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).测量项目之间的距离的平均值是m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21. (本题 8 分)阅读以下材料,并按要求完成相应的任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC 中,R 和 r 分别为外接圆和内切圆的半径,O 和 I 分别为其中外心和内心,则 OI 2 =R 2- 2Rr.如图 1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与 AB 相切分于点 F ,设⊙O 的半径为 R ,⊙I 的半径为 r ,外心 O (三角形三边垂直平分线的交点)与内心 I (三角形三条角平分线的交点)之间的距离 OI=d ,则有 d 2=R 2-2Rr .下面是该定理的证明过程(部分):延长 AI 交⊙O 于点 D ,过点 I 作⊙O 的直径 MN ,连接 DM ,AN . ∵∠D =∠N ,∠DMI =∠NAI (同弧所对的圆周角相等),∴△MDI ∽△ANI .∴ IM = ID,∴IA·ID=IM·IN. ①IA IN如图 2,在图 1(隐去 MD ,AN )的基础上作⊙O 的直径 DE ,连接 BE ,BD ,IF .∵DE 是⊙O 的直径,所以∠DBE =90°.∵⊙I 与 AB 相切于点 F ,所以∠AFI =90°, ∴∠DBE=∠IFA.∵∠BAD =∠E (同弧所对的圆周角相等), ∴△AIF ∽△EDB. ∴ IA IF , DE BD ∴IA ·BD=DE ·IF ②任务:(1)观察发现:IM =R +d ,IN = (用含 R ,d 的代数式表示);(2) 请判断 BD 和 ID 的数量关系,并说明理由. (3) 请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分; (4) 应用:若△ABC 的外接圆的半径为 5cm ,内切圆的半径为 2cm ,则△ABC 的外心与内心之间的距离为 cm.22. (本题 11 分)综合与实践动手操作:第一步:如图 1,正方形纸片 ABCD 沿对角线 AC 所在的直线折叠,展开铺平.在沿过点 C 的直线折叠, 使点 B ,点 D 都落在对角线 AC 上.此时,点 B 与点 D 重合,记为点 N ,且点 E ,点 N ,点 F 三点在同一条直线上,折痕分别为 CE ,CF .如图 2.第二步:再沿 AC 所在的直线折叠,△ACE 与△ACF 重合,得到图 3.第三步:在图 3 的基础上继续折叠,使点 C 与点 F 重合,如图 4,展开铺平,连接 EF ,FG ,GM ,ME , 如图 5,图中的虚线为折痕.问题解决:(1) 在图 5 中,∠BEC 的度数是, AE的值是 ; BE(2) 在图 5 中,请判断四边形 EMGF 的形状,并说明理由; (3) 在不增加字母的条件下,请你以图中 5 中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .23.(本题13 分)综合与探究如图,抛物线y=ax2+bx+6 经过点A(-2,0),B(4,0)两点,与y 轴交于点C,点D 是抛物线上一个动点,设点D 的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的3时,求m 的值;4(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.。
2019年山西中考数学试题第Ⅰ卷 选择题(共24分)一.选择题 (本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算2×(-3)的结果是( )A. 6 B. -6 C. -1 D. 52.不等式组的解集在数轴上表示为( )3.如图是一个长方体包装盒,则它的平面展开图是( )4.某班实行每周量化考核制学期末对考核成绩进行统计,结果显示甲、乙的平均成绩相同,方差是甲=36,=30,则廉租成绩的稳定性:( )A.甲组比乙组的成绩稳定;B. 乙组比甲组的成绩稳定;C. 甲、乙组成绩一样稳定;D.无法确定。
5.下列计算错误的是( )A.x 3+x 3=2x 3;B.a 6÷a 3=a 2;C.3212=;D.1)31(-=3. 6.解分式方程31212=-++-xx x 时,去分母后变形为( ) A.2+(x+2)=3(x-1); B.2-x+2=3(x-1); C.2-(x+2)=3(1-x); D.2-(x+2)=3(x-1).该日最高气温的众数和中位数分别是( )A.27ºC ,28ºC ;B.28ºC ,28ºC ;C. 27ºC ,27ºC ,D. 29ºC ,29ºC 。
8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )条。
A. 1 ;B. 2;C. 4;D. 8.9.王先生先到银行存了一笔三年的定期存款,年利率是 4.25%,如果到期后取出的本息和为33825元,设王先生存入的本金为x 元,则下面所列方程正确的是( )A.x+3×4.25%=33825;B.x+4.25%x=33825;C. 3×4.25%x=33825;D.3(x+4.25%x )=33825.10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上),为了测量B 、C 两地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30º,则BC 两地间的距离为( )m 。
山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是 ( ) A .3-B .3C .13-D .132.下列运算正确的是 ( ) A .2235a a a += B .222(2)4a b a b +=+ C .236a a a = D .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是 ( ) A .青 B .春 C .梦 D .想4.下列二次根式是最简二次根式的是 ( ) A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是 ( ) A .30︒ B .35︒ C .40︒ D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -<7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元 B .70.201610⨯元 C .72.01610⨯元 D .4201610⨯元8.一元二次方程2410x x --=配方后可化为 ( ) A .2(2)3x += B .2(2)5x += C .2(2)3x -= D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为 ( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为 ( ) A .53π42- B .53π42+ C .23π-D .π432-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上) 11.化简211x xx x---的结果是 .12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .13.如图,在一块长12 m ,宽8 m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m 2.设道路的宽为x m ,则根据题意,可列方程为 .14.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(4,0)-,点D 的坐标为(1,4)-,反比例函数(0)k y x x=>的图象恰好经过点C ,则k 的值为 .15.如图,在ABC △中,90BAC ∠=︒,10AB AC == cm ,点D 为ABC △内一点,15BAD ∠=︒,6AD = cm ,连接BD ,将ABD △绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分,) (1)201()3tan60(π2)2---︒+-;(2)解方程组:328,20.x y x y -=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B ,D 在线段AE 上,AD BE =,AC EF ∥,C H ∠=∠.求证:BC DH =.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题 测量旗杆的高度 成员 组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图 说明:线段GH 表示学校旗杆,测量角度的仪器的高度 1.5AC BD == m ,测点A ,B 与H 在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目 第一次 第二次 第三次 GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数 31.2︒ 30.8︒ 31︒ A ,B 之间的距离 5.4 m 5.6 m… …任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(本小题满分8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC △中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则222OI R Rr =-.如图1,O 和I 分别是ABC △的外接圆和内切圆,I 与AB 相O 的半径为R ,I 的半径为三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离222d R Rr =-.下面是该定理的证明过程(部分):交O 于点D ,过点I 作O 的直径连接DM ,AN N ∠,∴DMI NAI ∠=∠(同弧所对的圆周角相等),MDI ANI △.∴IM IDIN=,∴IA ID IM IN =.①O 的直径O 的直径I 与AB 相切于点DBE IFA =∠BAD E ∠=∠(同弧所对圆周角相等AIF EDB △.IA IFDE BD=.∴IA BD DE IF =.②1)观察发现:IM R d =+,IN = (用含R 示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC △的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则ABC △的外心与内心之间的距离为 cm .22.(本小题满分11分) 综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.再沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,ACE △与ACF △重合,得到图3. 第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5.图中的虚线为折痕. 问题解决: (1)在图5中,BEC 的度数是 ,AE BE的值是 ;(2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =,故C 错误;D 、2336()aba b -=-,故D 正确.故选:D . 【考点】整式的运算.3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B . 【考点】正方体的展开与折叠. 4.【答案】D 【解析】A2=,本选项不合题意;B7=本选项不合题意;C=本选项不合题意;D,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=,∴26675a =-∴抛物线解析式为:226675y x =-,故选B .【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tanBC CAB AB ∠==,∴30CAB ∠=︒ 260BOD CAB ∠=∠=︒在Rt ODE △中:122OE OD ==,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π2223602︒=⨯--⨯⨯-︒故选A .【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx - 【解析】22311111x x x x xx x x x x -=+=-----. 【考点】分式的化简. 12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图. 【考点】统计图的选择.13.【答案】(12)(8)77x x --=或220190x +-=【解析】由题可知:(12)(8)77x x --=,化简得220190x +-= 【考点】一元二次方程解应用题. 14.【答案】16 【解析】过点D 作DE AB ⊥于点E ,则5AD =, ∵四边形ABCD 为菱形, ∴5CD =∴(4,4)C ,将C 代入k y x =得:44k =, ∴16k =.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A 作AG DE ⊥于点G ,由旋转知:AD AE =,90DAE ∠=︒,15CAE BAD ∠=∠=︒ ∴45AED ∠=︒在AEF △中:60AFD AED CAE ∠=∠+∠=︒在Rt ADG △中:AG DG ===在Rt AFG △中:GF =2AF FG ==∴10CF AC AF =-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数. 三、解答题16.【答案】(1)(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【解析】(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组. 17.【答案】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质. 18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID =∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC =∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .3C .13- D .132.下列运算正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236a a a =D .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A .青B .春C .梦D .想4.下列二次根式是最简二次根式的是( )A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是( )A .30︒B .35︒C .40︒D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -< 7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元 B .70.201610⨯元 C .72.01610⨯元 D .4201610⨯元8.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .53π2- B .53π2+C .23π-D .π432-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上)11.化简211x xx x---的结果是.12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m2.设道路的宽为x m,则根据题意,可列方程为.14.如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(4,0)-,点D的坐标为(1,4)-,反比例函数(0)ky xx=>的图象恰好经过点C,则k的值为.15.如图,在ABC△中,90BAC∠=︒,10AB AC==cm,点D为ABC△内一点,15BAD∠=︒,6AD=cm,连接BD,将ABD△绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分,每题5分,)(1)计算:20127()3tan60(π2)2-+--︒+-;(2)解方程组:328,20.x yx y-=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B,D在线段AE上,AD BE=,AC EF∥,C H∠=∠.求证:BC DH=.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.数学试卷第3页(共22页)数学试卷第4页(共22页)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A ,B ,C ,D 表示.现把分别印有A ,B ,C ,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A ”和“B ”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1,y 2与x 之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它课题 测量旗杆的高度成员组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH 表示学校旗杆,测量角度的仪器的高度1.5AC BD == m ,测点A ,B 与H在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目第一次第二次第三次GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数31.2︒30.8︒31︒A ,B 之间的距离5.4 m5.6 m……任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________21.(本小题满分8分)莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC△中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则222OI R Rr=-.如图1,O和I分别是ABC△的外接圆和内切圆,I与AB相切于点三角形三条角距离OI=22R Rr-.下面是该定理的证明过程(部分延长AI交O于点D,过点DM,AN.∵D∠=∠DMI∠=∠ANI△.∴,∴IA IDIFA=∠.BAD E=∠(同弧所对圆周角相等EDB△.IA IFDE BD=.∴IA任务:(1)观察发现:IM R d=+,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC△的外接圆的半径为5 cm,内切圆的半径为2 cm,则ABC△的外心与内心之间的距离为cm.22.(本小题满分11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,ACE△与ACF△重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.问题解决:(1)在图5中,BEC∠的度数是,AEBE的值是;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx=++经过点(2,0)A-,(4,0)B两点,与y轴交于点C.点D是抛物线上一个动点,设点D的横坐标为(14)m m<<.连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)BCD△的面积等于AOC△的面积的34时,求m的值;(3)在(2)的条件下,若点M是x轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷 第9页(共22页) 数学试卷 第10页(共22页)山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =,故C 错误;D 、2336()ab a b -=-,故D 正确.故选:D .【考点】整式的运算. 3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B .【考点】正方体的展开与折叠. 4.【答案】D 【解析】A=,本选项不合题意;B本选项不合题意;C本选项不合题意;D ,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C .【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D .【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=,∴26675a =-∴抛物线解析式为:226675y x =-,故选B . 【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tan BC CAB AB ∠===,∴30CAB ∠=︒ 260BOD CAB∠=∠=︒在Rt ODE △中:12OE OD =,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π22236042︒=⨯--⨯⨯=-︒故选A.【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx-【解析】22311111x x x x xx x x x x-=+=-----.【考点】分式的化简.12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图.【考点】统计图的选择.13.【答案】(12)(8)77x x--=或220190x+-=【解析】由题可知:(12)(8)77x x--=,化简得220190x+-=【考点】一元二次方程解应用题.14.【答案】16【解析】过点D作DE AB⊥于点E,则5AD=,∵四边形ABCD为菱形,∴5CD=∴(4,4)C,将C代入kyx=得:44k=,∴16k=.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A作AG DE⊥于点G,由旋转知:AD AE=,90DAE∠=︒,15CAE BAD∠=∠=︒∴45AED∠=︒在AEF△中:60AFD AED CAE∠=∠+∠=︒在Rt ADG△中:AG DG===在Rt AFG△中:GF=2AF FG==∴10CF AC AF=-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数.三、解答题16.【答案】(1)(1)原式415=+-=(2)+①②得:4 8x=-,解得:2x=-将2x=-代入②得:2 2 0y-+= 解得:1y=所以原方程组得解为21xy=-⎧⎨=⎩【解析】(1)原式415=-=(2)+①②得:4 8x=-,解得:2x=-将2x=-代入②得:2 2 0y-+= 解得:1y=所以原方程组得解为21xy=-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组.17.【答案】∵AD BE=,∴AD BD BE BD-=-∴AB DE=∵AC EF∥∴A E∠=∠数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质.18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)数学试卷 第15页(共22页) 数学试卷 第16页(共22页)∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB ==任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+-数学试卷 第17页(共22页) 数学试卷 第18页(共22页)∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+-∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,数学试卷 第19页(共22页) 数学试卷 第20页(共22页)∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解. ∵D 点坐标为153,4⎛⎫⎪⎝⎭, ∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫+- ⎪⎝⎭,∴3M可得41514N ⎛⎫- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.数学试卷 第21页(共22页) 数学试卷 第22页(共22页) ∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3.(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =-21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
构思新颖,品质一流,适合各个领域,谢谢采纳山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. (-a3 )2 =-a6B. 2a2 + 3a2 =6a2C. 2a2 ⋅a3 =2a6D.2633()2b ba a-=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河,壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498.如 图 ,在 Rt △ABC 中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:+-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF =12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .∠ A 的 度 数38°(1) 请帮助tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】 三 角 函 数 的 应 用 【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ ADC=90°, ∠ A=38°.AD + BD = AB = 234 . ∴ 54x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号” 列车 时 速 更快车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ又 ∠A'BZ'=∠ABZ. ∴△BA ' Z△BAZ∴Z ' A ' = BZ ' .ZA BZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形 ( 2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似构思新颖,品质一流,适合各个领域,谢谢采纳22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上构思新颖,品质一流,适合各个领域,谢谢采纳(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.构思新颖,品质一流,适合各个领域,谢谢采纳1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FGPE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .3C .13- D .132.下列运算正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236a a a =gD .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A .青B .春C .梦D .想4.下列二次根式是最简二次根式的是( )A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是( )A .30︒B .35︒C .40︒D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -< 7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元B .70.201610⨯元C .72.01610⨯元D .4201610⨯元8.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .53π2- B .53π42+ C .23π- D .π432-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上)11.化简211x xx x---的结果是.12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m2.设道路的宽为x m,则根据题意,可列方程为.14.如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(4,0)-,点D的坐标为(1,4)-,反比例函数(0)ky xx=>的图象恰好经过点C,则k的值为.15.如图,在ABC△中,90BAC∠=︒,10AB AC==cm,点D为ABC△内一点,15BAD∠=︒,6AD=cm,连接BD,将ABD△绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分,每题5分,)(1)计算:20127()3tan60(π2)2-+--︒+-;(2)解方程组:328,20.x yx y-=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B,D在线段AE上,AD BE=,AC EF∥,C H∠=∠.求证:BC DH=.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.数学试卷第3页(共22页)数学试卷第4页(共22页)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A ,B ,C ,D 表示.现把分别印有A ,B ,C ,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A ”和“B ”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1,y 2与x 之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它课题 测量旗杆的高度成员组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH 表示学校旗杆,测量角度的仪器的高度1.5AC BD == m ,测点A ,B 与H在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目第一次第二次第三次GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数31.2︒30.8︒31︒A ,B 之间的距离5.4 m5.6 m……任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________21.(本小题满分8分)莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC△中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则222OI R Rr=-.如图1,Oe和Ie分别是ABC△的外接圆和内切圆,Ie与AB相切于点任务:(1)观察发现:IM R d=+,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC△的外接圆的半径为5 cm,内切圆的半径为2 cm,则ABC△的外心与内心之间的距离为cm.22.(本小题满分11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,ACE△与ACF△重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.问题解决:(1)在图5中,BEC∠的度数是,AEBE的值是;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx=++经过点(2,0)A-,(4,0)B两点,与y轴交于点C.点D是抛物线上一个动点,设点D的横坐标为(14)m m<<.连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)BCD△的面积等于AOC△的面积的34时,求m的值;(3)在(2)的条件下,若点M是x轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷 第9页(共22页) 数学试卷 第10页(共22页)山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =g ,故C 错误;D 、2336()ab a b -=-,故D 正确.故选:D .【考点】整式的运算. 3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B .【考点】正方体的展开与折叠. 4.【答案】D 【解析】A=,本选项不合题意;B=本选项不合题意;C本选项不合题意;D ,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=g ,∴26675a =-∴抛物线解析式为:226675y x =-,故选B . 【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tan BC CAB AB ∠===,∴30CAB ∠=︒ 260BOD CAB∠=∠=︒在Rt ODE △中:12OE OD =,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒g g g g g g211360π2π2223602︒=⨯--⨯⨯=︒故选A.【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx-【解析】22311111x x x x xx x x x x-=+=-----.【考点】分式的化简.12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图.【考点】统计图的选择.13.【答案】(12)(8)77x x--=或220190x+-=【解析】由题可知:(12)(8)77x x--=,化简得220190x+-=【考点】一元二次方程解应用题.14.【答案】16【解析】过点D作DE AB⊥于点E,则5AD=,∵四边形ABCD为菱形,∴5CD=∴(4,4)C,将C代入kyx=得:44k=,∴16k=.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A作AG DE⊥于点G,由旋转知:AD AE=,90DAE∠=︒,15CAE BAD∠=∠=︒∴45AED∠=︒在AEF△中:60AFD AED CAE∠=∠+∠=︒在Rt ADG△中:AG DG===在Rt AFG△中:GF=,2AF FG==∴10CF AC AF=-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数.三、解答题16.【答案】(1)(1)原式415=+-=(2)+①②得:4 8x=-,解得:2x=-将2x=-代入②得:2 2 0y-+= 解得:1y=所以原方程组得解为21xy=-⎧⎨=⎩【解析】(1)原式415=-=(2)+①②得:4 8x=-,解得:2x=-将2x=-代入②得:2 2 0y-+= 解得:1y=所以原方程组得解为21xy=-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组.17.【答案】∵AD BE=,∴AD BD BE BD-=-∴AB DE=∵AC EF∥∴A E∠=∠数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多 从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可) 或画树状图如下:数学试卷 第15页(共22页) 数学试卷 第16页(共22页)【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-,∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =g g又∵DE IF IM IN =g g ,∴2()()R r R d R d =+-g ∴222R d R r -=g ,∴222d R Rr =- (4)222252525d R Rr =-=-⨯⨯=,d 【解析】(1)R d - (2)BD ID =数学试卷 第17页(共22页) 数学试卷 第18页(共22页)理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =g g又∵DE IF IM IN =g g ,∴2()()R r R d R d =+-g ∴222R d R r -=g ,∴222d R Rr =- (4)222252525d R Rr =-=-⨯⨯=,d【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,数学试卷 第19页(共22页) 数学试卷 第20页(共22页)∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=g g △ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=g g g g g g △△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解. ∵D 点坐标为153,4⎛⎫⎪⎝⎭, ∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =-21x =可得31514N ⎛⎫+- ⎪⎝⎭,∴3M可得41514N ⎛⎫- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=g g △ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.数学试卷 第21页(共22页) 数学试卷 第22页(共22页) ∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=g g g g g g △△△22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3.(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =-,21x =可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
最新山西省中考数学试卷第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是( )A .02<-B .53-<C .23-<-D .14<-2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》 3.下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a ⋅= D .326328b b a a ⎛⎫-=- ⎪⎝⎭4.下列一元二次方程中,没有..实数根的是( ) A .220x x -= B .2410x x +-= C .22430x x -+= D .2352x x =-5.近年来快递业发展迅速,下表是2018年13月份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市大同市长治市晋中市运城市临汾市吕梁市3303.78 332.68 302.34 319.79 725.86 416.01 338.8713月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .46.0610⨯立方米/时 B .63.13610⨯立方米/时 C .63.63610⨯立方米/时 D .536.3610⨯立方米/时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29 D .198.如图,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,6AC =,将ABC ∆绕点C 按逆时针方向旋转得到'''A B C ∆,此时点'A 恰好在AB 边上,则点'B 与点B 之间的距离为( )A .12B .6C .62D .63 9.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( )A .2(4)7y x =-+ B .2(4)25y x =-- C .2(4)7y x =++ D .2(4)25y x =+- 10.如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .44π-B .48π-C .84π-D .88π-第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(321)(321)+-= .12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 度.13.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm ,长与宽的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.如图,直线//MN PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在NAB ∠内交于点E ;③作射线AE 交PQ 于点F .若2AB =,60ABP ∠=︒,则线段AF 的长为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB 的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)210(22)4362---+⨯+.(2)222111442x x x x x x --⋅---+-. 17.如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)k y k x=≠的图象相交于点(4,2)C --,(2,4)D .(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整). 请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内 容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.测量数据 A ∠的度数 B ∠的度数AB 的长度 38︒28︒234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin 280.5︒≈,cos280.9︒≈,tan 280.5︒≈)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南—北京西”全程大约500千米,“复兴号”92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”92G 次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX BY XY ==.(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD CB =,连接BD .第二步,在CB 上取一点'Y ,作'//Y Z CA ,交BD 于点'Z ,并在AB 上取一点'A ,使''''Z A Y Z =.第三步,过点A 作//''AZ A Z ,交BD 于点Z .第四步,过点Z 作//ZY AC ,交BC 于点Y ,再过点Y 作//YX ZA ,交AC 于点X .则有AX BY XY ==. 下面是该结论的部分证明:证明:∵//''AZ A Z ,∴''BA Z BAZ ∠=∠, 又∵''A BZ ABZ ∠=∠.∴''BA Z BAZ ∆∆.∴'''Z A BZ ZA BZ=. 同理可得'''Y Z BZ YZ BZ =.∴''''Z A Y Z ZA YZ=. ∵''''Z A Y Z =,∴ZA YZ =.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明; (2)请再仔细阅读上面的操作步骤....,在(1)的基础上完成AX BY XY ==的证明过程; (3)上述解决问题的过程中,通过作平行线把四边形'''BA Z Y 放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是________.A .平移B .旋转C .轴对称D .位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:∵BE AB =,∴2AE AB =. ∵2AD AB =,∴AD AE =.∵四边形ABCD 是矩形,∴//AD BC .∴EM EBDM AB=.(依据1) ∵BE AB =,∴1EMDM=.∴EM DM =.即AM 是ADE ∆的DE 边上的中线, 又∵AD AE =,∴AM DE ⊥.(依据2) ∴AM 垂直平分DE . 反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究 如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接..写出此时点Q 的坐标;若不存在,请说明理由; (3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.试卷答案一、选择题1-5: BBDCC 6-10: CADBA二、填空题11. 17 12. 360 13. 55 14. 23 15.125三、解答题16.(1)解:原式84217=-++=. (2)解:原式22(1)(1)11(2)2x x x x x x --+=⋅---- 1122x x x +=--- 2x x =-. 17. 解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D , ∴114224k b k b -+=-⎧⎨+=⎩,解得112k b =⎧⎨=⎩.∴一次函数的表达式为12y x =+.∵反比例函数22k y x =的图象经过点(2,4)D ,∴242k=.∴28k =. ∴反比例函数的表达式为28y x=.(2)由10y >,得20x +>. ∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<. 18.解:(1)(2)10100%40%1015⨯=+.答:男生所占的百分比为40%. (3)50021%105⨯=(人).答:估计其中参加“书法”项目活动的有105人. (4)15155151********==+++.答:正好抽到参加“器乐”活动项目的女生的概率为516. 19.解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC ∆中,90ADC ∠=︒,38A ∠=︒. ∵tan 38CD AD ︒=,∴5tan 380.84CD x AD x ===︒. 在Rt BDC ∆中,90BDC ∠=︒,28B ∠=︒.∵tan 28CD BD ︒=,∴2tan 280.5CD xBD x ===︒. ∵234AD BD AB +==,∴522344x x +=.解得72x =.答:斜拉索顶端点C 到AB 的距离为72米.(2)答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 20.解法一:设乘坐“复兴号”92G 次列车从太原南到北京西需要x 小时, 由题意,得50050040151()646x x =+--. 解得83x =. 经检验,83x =是原方程的根. 答:乘坐“复兴号”92G 次列车从太原南到北京西需要83小时. 解法二:设“复兴号”92G 次列车从太原南到北京西的行驶时间需要x 小时,文库精品由题意,得5005004054x x =+. 解得52x =. 经检验,52x =是原方程的根. 518263+=(小时). 答:乘坐“复兴号”92G 次列车从太原南到北京西需要83小时. 21.解:(1)四边形AXYZ 是菱形.证明:∵//ZY AC ,//YX ZA ,∴四边形AXYZ 是平行四边形. ∵ZA YZ =,∴AXYZ 是菱形. (2)证明:∵CD CB =,∴12∠=∠. ∵//ZY AC ,∴13∠=∠. ∴23∠=∠.∴YB YZ =.∵四边形AXYZ 是菱形,∴AX XY YZ ==. ∴AX BY XY ==.(3)D (或位似).22.(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例). 依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”). ②答:点A 在线段GF 的垂直平分线上. (2)证明:过点G 作GH BC ⊥于点H , ∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴90CBE ABC GHC ∠=∠=∠=︒,∴1290∠+∠=︒. ∵四边形CEFG 为正方形,∴CG CE =,90GCE ∠=︒,∴1390∠+∠=︒.∴23∠=∠. ∴GHC CBE ∆≅∆.文库精品∴HC BE =,∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =,BE AB =,∴22BC BE HC ==,∴HC BH =. ∴GH 垂直平分BC .∴点G 在BC 的垂直平分线上.(3)答:点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上). 证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ∠=∠=∠=︒。