等腰三角形专题复习[1]
- 格式:docx
- 大小:152.36 KB
- 文档页数:5
第1、2、3、4、5题A第7题E D C B AF E D C BA F E D CB A 等腰三角形“三线合一”专题复习一、填空题:1、 如图,AB=AC ,AD ⊥BC(1)若∠BAC=140°,则∠1= ,∠C= ; (2)若BC=4cm ,则BD= 。
2、如图,AB=AC ,∠1=∠2,则∠ADB= ,若CD=1.5cm 则BC= 。
3、如图,已知AB=2cm ,∠1=∠2,AD ⊥BC ,则AC= 。
4、如图,AD 垂直平分BC ,AB+CD=5cm , 则△ABC 的周长是 。
5、如图,∠1=∠2,BD=CD ,则△ABC (填“是”或“不一定是”)等腰三角形。
6、在等腰直角三角形中,斜边上的高为2cm ,则面积为 。
7、如图,△AEC 中,点B 是AC 上中点,EB ⊥AC ,AD+CD=40,则△DEC 的周长是 。
8、等腰三角形是轴对称图形,它的对称轴是 的中垂线。
二、解答题剖析:1、如图已知在五边形ABCDE 中,AE=AB ,BC=DE ,∠B=∠E ,点F 是CD 的中点, 试说明(1)AF ⊥CD 的理由;(2)AF 平分∠BAE 的理由。
2、已知BD 是等边三角形ABC 的高,E 是BC 延长线上一点,且CE=CD ,DF ⊥BC 于点F ,试说明DF 平分∠BDE 。
E D CB A 21DCB A 1E DC AE D C B A 3、如图点A 、B 、C 、D 在同一直线上,EA=ED ,EB=EC ,请说明AB=CD 的理由。
4、如图∠1=∠2,AD 是BC 边上的中线, 试说明△ABC 是等腰三角形的理由。
5、如图AD 平分∠CAE ,AD ⊥CD 。
试猜想∠E ,∠1,∠ACD 之间的关系,并说明理由。
6、在等腰直角三角形ABC 中,∠BAC=90°,BD 平分∠ABC ,CE ⊥BD 于点E ,试说明BD=2CE 的理由。
中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。
中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)知识点总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
其中相等的两边叫做腰,另一边叫做底。
两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角。
2.等腰三角形的性质:①等腰三角形的两腰相等。
②等腰三角形的两底角相等。
(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。
(简称底边上三线合一)3.等腰三角形的判定:①有两条边相等的三角形是等腰三角形。
②有两个底角相等的三角形是等腰三角形。
(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。
练习题1、(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5 B.2 C.3.5 D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.2、(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°,故选:B.3、(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=∠ACB=39°.故选:A.4、(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.5、(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.6、(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDC,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.7、(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.8、(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB ⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.9、(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.10、(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.11、(2022•广安)若(a﹣3)2+5−b=0,则以a、b为边长的等腰三角形的周长为.【分析】先求a,b.再求第三边c即可.【解答】解:∵(a﹣3)2+=0,(a﹣3)2≥0,≥0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,设三角形的第三边为c,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.12、.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解答】解:∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.13、(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.14、(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.15、(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.11。
专题19等腰三角形【专题目录】技巧1:等腰三角形中四种常用作辅助线的方法技巧2:巧用特殊角构造含30°角的直角三角形技巧3:分类讨论思想在等腰三角形中的应用【题型】一、等腰三角形的定义【题型】二、根据等边对等角求角度【题型】三、根据三线合一求解【题型】四、根据等角对等边证明等腰三角形【题型】五、根据等角对等边求边长【题型】六、等腰三角形性质与判定的综合【题型】七、等边三角形的性质【题型】八、含30°角的直角三角形【考纲要求】1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段中垂线的性质及判定.【考点总结】一、等腰三角形等腰三角形等腰三角形概念有两边相等的三角形角等腰三角形。
等腰三角形性质1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).【考点总结】二、等边三角形【考点总结】三、直角三角形【技巧归纳】技巧1:等腰三角形中四种常用作辅助线的方法【类型】一、作“三线”中的“一线”1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,过点A 作EF ∥BC ,且AE =AF.求证:DE =DF.等边三角形等边三角形概念三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
等边三角形性质和判定(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
一次函数专题复习1----等腰三角形1.如图,在平面直角坐标系xOy中,直线y=﹣2x+4与x轴,y轴分别交于点A,点B.(1)求点A和点B的坐标;(2)若点P在x轴上,且S△BOP=S△AOB,求点P的坐标.(3)在y轴是否存在点M,使三角形MAB是等腰三角形,若存在,请求出点M坐标,若不存在,请说明理由.2.直线y=﹣x+b分别与x轴、y轴交于A、B两点,点A的坐标为(4,0).(1)求点B的坐标;(2)直线y=kx平分△ABO的面积,求k的值;(3)将△ABO沿过A点直线对折,使得边AB正好落在x轴上,折痕交y轴于点C,设B点的对称点为D,求C点的坐标;(4)若点P是x轴上一动点,当△ABP是等腰三角形,直接写出所有点P的坐标.3.如图,一次函数y=x+3的图象分别与y轴,x轴交于点A,B,点P从点B出发,沿射线BA以每秒1个单位的速度运动,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OP A的面积为3,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?请直接写出t的值.4.如图,直线y=x+8与x轴分别交于A、B两点,过点C(4,0)作CD⊥AB,垂足为D,点P是直线AB上一动点(1)求证:△ACD≌△ABO;(2)求点D的坐标及直线CD的关系式;(3)当△P AC为等腰三角形时,求点P坐标.5.如图,在直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO 的面积为12.(1)求k的值;(2)若P为直线AB上一动点,P点运动到什么位置时,△P AO是以OA为底的等腰三角形,求点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗如果是,试说明理由,如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.答案与解析1.如图,在平面直角坐标系xOy中,直线y=﹣2x+4与x轴,y轴分别交于点A,点B.(1)求点A和点B的坐标;(2)若点P在x轴上,且S△BOP=S△AOB,求点P的坐标.(3)在y轴是否存在点M,使三角形MAB是等腰三角形,若存在,请求出点M坐标,若不存在,请说明理由.【解答】解:(1)当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);当x=0时,y=﹣2x+4=4,∴点B的坐标为(0,4).(2)∵点P在x轴上,且S△BOP=S△AOB,∴OP=OA=1,∴点P的坐标为(﹣1,0)或(1,0).(3)∵OB=4,OA=2,∴AB==2.分三种情况考虑(如图所示):①当AB=AM时,OM=OB=4,∴点M1的坐标为(0,﹣4);②当BA=BM时,BM=2,∴点M2的坐标为(0,4+2),点M3的坐标为(0,4﹣2);③当MA=MB时,设OM=a,则BM=AM=4﹣a,∴AM2=OM2+OA2,即(4﹣a)2=a2+22,∴a=,∴点M4的坐标为(0,).综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,﹣4),(0,4+2),(0,4﹣2)和(0,).2.直线y=﹣x+b分别与x轴、y轴交于A、B两点,点A的坐标为(4,0).(1)求点B的坐标;(2)直线y=kx平分△ABO的面积,求k的值;(3)将△ABO沿过A点直线对折,使得边AB正好落在x轴上,折痕交y轴于点C,设B点的对称点为D,求C点的坐标;(4)若点P是x轴上一动点,当△ABP是等腰三角形,直接写出所有点P的坐标.【解答】解:(1)∵点A(4,0)在直线y=﹣x+b上,∴0=﹣×4+b,∴b=3,∴直线AB的关系式为y=﹣x+3.当x=0时,y=﹣x+3=3,∴点B的坐标为(0,3).(2)∵点A的坐标为(4,0),点B的坐标为(0,3),∴线段AB中点的坐标为(2,).∵直线y=kx平分△ABO的面积,∴点(2,)在直线y=kx上,∴=2k,∴k=.(3)在Rt△AOB中,AO=4,BO=3,∴AB==5.由折叠的性质,可知:AD=AB=5,∴点D的坐标为(9,0)或(﹣1,0).设线段BD的中点为E,如图1所示.①当点D的坐标为(9,0)时,点E的坐标为(,).设折痕所在的直线的关系式为y=mx+n(m≠0),将A(4,0),E(,)代入y=mx+n,得:,解得:,∴折痕所在的直线的关系式为y=3x﹣12.当x=0时,y=3x﹣12=﹣12,∴点C的坐标为(0,﹣12);②当点D的坐标为(﹣1,0)时,点E的坐标为(﹣,).同理,可得出折痕所在直线的关系式为y=﹣x+,当x=0时,y=﹣x+=,∴点C的坐标为(0,).综上所述:C点的坐标为(0,﹣12)或(0,).(4)设点P的坐标为(x,0).分三种情况考虑,如图2所示.①当AP=AB时,x﹣4=5或4﹣x=5,解得:x=9或﹣1,∴点P1的坐标为(9,0),点P2的坐标为(﹣1,0);②当BA=BP时,OP=OA,即0﹣x=4﹣0,解得:x=﹣4,∴点P3的坐标为(﹣4,0);③当P A=PB时,32+x2=(4﹣x)2,解得:x=,∴点P4的坐标为(,0).综上所述:点P的坐标为(9,0),(﹣1,0),(﹣4,0)或(,0).3.如图,一次函数y=x+3的图象分别与y轴,x轴交于点A,B,点P从点B出发,沿射线BA以每秒1个单位的速度运动,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OP A的面积为3,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?请直接写出t的值.【解答】解:(1)当x=0时,y=3,当y=0时,x=4,则A(0,3),B(4,0),∴AO=3,BO=4,设点P的坐标为(m,﹣m+3),∵△OP A的面积为3,∴×3×|m|=3,解得:m=±2,∴点P的坐标为(﹣2,)或(2,).(2)由题意可知BP=t,AP=5﹣t,当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.①当AP=AO时,则有5﹣t=3,解得t=2;或t﹣5=3,解得t=8;②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=;③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,则NP=AN=AP=(5﹣t),∵S△AOB=∴ON=,∵OB2=ON2+NB2,∴16=+(t+﹣)2,∴t=综上可知当t的值为2、8、和时,△AOP为等腰三角形.4.如图,直线y=x+8与x轴分别交于A、B两点,过点C(4,0)作CD⊥AB,垂足为D,点P是直线AB上一动点(1)求证:△ACD≌△ABO;(2)求点D的坐标及直线CD的关系式;(3)当△P AC为等腰三角形时,求点P坐标.【解答】解:(1)在y=x+8中,令y=0可求得x=﹣6,令x=0可求得y=8,∴A(﹣6,0),B(0,8),∴OA=6,OB=8,∴AB==10,∵C(4,0),∴OC=4,∴AC=OA+OC=6+4=10=AB,∵CD⊥AB,∴∠ADC=∠AOB=90°,在△ACD和△ABO中∴△ACD≌△ABO(AAS);(2)过D作DF⊥x轴于点F,如图1,由(1)可知△ACD≌△ABO,∴AD=AO=6,CD=BO=8,∵AC•DF=AD•CD,∴10DF=6×8,解得DF=,即D点的纵坐标为,在y=x+8中,令y=,可得=x+8,解得x=﹣,∴D(﹣,),且C(4,0),设直线CD关系式为y=kx+b,∴,解得,∴直线CD关系式为y=﹣x+3;(3)∵P是直线AB上一动点,∴可设P(x,x+8),且A(﹣6,0),C(4,0),∴P A2=(x+6)2+(x+8)2,PC2=(x﹣4)2+(x+8)2,且AC2=100,∵△P AC为等腰三角形,∴有P A=PC、P A=AC和PC=AC三种情况,①当P A=PC时,则P A2=PC2,即(x+6)2+(x+8)2=(x﹣4)2+(x+8)2,解得x=﹣1,此时P点坐标为(﹣1,);②当P A=AC时,则P A2=AC2,即(x+6)2+(x+8)2=100,解得x=0或x=﹣12,此时P点坐标为(0,8)或(﹣12,﹣8);③当PC=AC时,则PC2=AC2,即(x﹣4)2+(x+8)2=100,解得x=﹣6(与A点重合,舍去)或x=,此时P点坐标为(,);综上可知P点坐标为(﹣1,)或(0,8)或(﹣12,﹣8)或(,).5.如图,在直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO 的面积为12.(1)求k的值;(2)若P为直线AB上一动点,P点运动到什么位置时,△P AO是以OA为底的等腰三角形,求点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗如果是,试说明理由,如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.【解答】解:(1)∵y=kx+6,∴B(0,6),∴OB=6.又S△ABO=12,∴OA=4,∴A(﹣4,0).把A(﹣4,0)代入y=kx+6,即﹣4k+6=0,解得k=;(2)过OA的中点作OA的垂线交直线AB于P,则x P=﹣2,把x P=﹣2代入,得y=3,∴P(﹣2,3);(3)∵△APO是等腰三角形,∴∠P AO=∠POA,∵∠P AO+∠ABO=90°,∠POA+∠POB=90°,∴∠ABO=∠POB,∴△POB是等腰三角形;理由:∵P(﹣2,3),OB=6,∴P是OB中垂线上的一点.∴PB=PO.∴△POB是等腰三角形.。
等腰三角形【命题趋势】在中考中.等腰三角形常以选择题和填空题的形式考查;也经常在解答题中结合二次函数考查;等边三角形常以选择题、填空题和解答题考查.经常与圆综合题作为考查。
【中考考查重点】一、等腰三角形二、等边三角形考点一:等腰三角形的性质与判定1.(2021秋•绥棱县期末)有两边相等的三角形的两边长为4cm.5cm.则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm 【答案】D【解答】解:当相等的两边是4cm时.4+4>5.能够组成三角形.则它的周长是4+4+5=13(cm);当相等的两边是5cm时.4+5>5.能够组成三角形.则它的周长是5+5+4=14(cm).故选:D.2.(2021秋•延边州期末)如图.在△ABC中.AD是角平分线.且AD=AC.若∠BAC=60°.则∠B的度数是()A.45°B.50°C.52°D.58°【答案】A【解答】解:∵AD是△ABC的一条角平分线.∠BAC=60°.性质1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线.底边上的中线.底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形.有2条对称轴判定1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式.其中a是底边常.hs是底边上的高∴∠BAD=∠DAC=∠BAC=×60°=30°.∵AD=AC.∴∠ADC=∠C==75°.∴∠B=∠ADC﹣∠BAD=75°﹣30°=45°.故选:A.3.(2021秋•和平区校级期中)如图.∠ABC、∠ACB的平分线相交于点F.过F作DE ∥BC.交AB于点D.交AC于点E.BD=3cm.EC=2cm.则DE=5cm.【答案】5【解答】解:∵∠ABC和∠ACB的平分线相交于点F.∴∠DBF=∠FBC.∠ECF=∠BCF.∵DE∥BC.交AB于点D.交AC于点E.∴∠DFB=∠DBF.∠CFE=∠ECF.∴BD=DF=3cm.FE=CE=2cm.∴DE=DF+CE=5(cm).故答案为:5.4.(2021秋•龙凤区校级期末)已知等腰三角形一腰上的高线与另一腰的夹角为40°.那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°【答案】A【解答】解:①如图.等腰三角形为锐角三角形.∵BD⊥AC.∠ABD=40°.∴∠A=50°.即顶角的度数为50°.②如图.等腰三角形为钝角三角形.∵BD⊥AC.∠DBA=40°.∴∠BAD=50°.∴∠BAC=130°.故选:A.5.(2021•淄博)如图.在△ABC中.∠ABC的平分线交AC于点D.过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°.∠C=40°.求∠BDE的度数.【答案】(1)BE=DE(2)∠BDE的度数为30°【解答】解:(1)证明:在△ABC中.∠ABC的平分线交AC于点D.∴∠ABD=∠CBD.∵DE∥BC.∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.(2)∵∠A=80°.∠C=40°∴∠ABC=60°.∵∠ABC的平分线交AC于点D.∴∠ABD=∠CBD=∠ABC=30°.由(1)知∠EDB=∠EBD=30°.故∠BDE的度数为30°.6.(2021秋•临江市期末)如图.在△ABC中.AB=AC.点D、E、F分别在AB、BC、AC 边上.且BE=CF.BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时.求∠DEF的度数.【答案】(1)略(2)∠DEF=70°【解答】证明:∵AB=AC.∴∠ABC=∠ACB.在△DBE和△ECF中.∴△DBE≌△ECF.∴DE=EF.∴△DEF是等腰三角形;(2)∵△DBE≌△ECF.∴∠1=∠3.∠2=∠4.∵∠A+∠B+∠C=180°.∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°7.(2020秋•呼和浩特期末)如图.点O是等边△ABC内一点.D是△ABC外的一点.∠AOB=110°.∠BOC=α.△BOC≌△ADC.∠OCD=60°.连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时.试判断△AOD的形状.并说明理由;(3)探究:当α为多少度时.△AOD是等腰三角形.【答案】(1)△OCD是等边三角形(2)△AOD是直角三角形(3)α=110°或125°或140°【解答】证明:(1)∵△BOC≌△ADC.∴OC=DC.∵∠OCD=60°.∴△OCD是等边三角形.解:(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形.∴∠ODC=60°.∵△BOC≌△ADC.α=150°.∴∠ADC=∠BOC=α=150°.∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°.∴△AOD是直角三角形.(3)∵△OCD是等边三角形.∴∠COD=∠ODC=60°.∵∠AOB=110°.∠ADC=∠BOC=α.∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α.∠ADO=∠ADC﹣∠ODC=α﹣60°.∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时.190°﹣α=α﹣60°.∴α=125°.②当∠AOD=∠OAD时.190°﹣α=50°.∴α=140°.③当∠ADO=∠OAD时.α﹣60°=50°.∴α=110°.综上所述:当α=110°或125°或140°时.△AOD 是等腰三角形.考点二: 等边三角形的性质与判定8.(2021秋•浦城县期中)△ABC 是等边三角形.点P 在△ABC 内.P A =4.将△P AB 绕点A 逆时针旋转得到△P 1AC .则P 1P 的长等于( )A .4B .C .2D .【答案】A【解答】解:∵△ABC 是等边三角形.∴AC =AB .∠CAB =60°.∵将△P AB 绕点A 逆时针旋转得到△P 1AC∴△CP 1A ≌△BP A .∴AP 1=AP .∠CAP 1=∠BAP .∴∠CAB =∠CAP +∠BAP =∠CAP +∠CAP 1=60°.即∠P AP 1=60°.∴△APP 1是等边三角形.∴P 1P =P A =4.性质 1. 三条边相等 2. 三个内角相等.且每个内角都等于60°3. 等边三角形是轴对称图形.有3条对称轴判定 1. 三条边都相等的三角形是等边三角形2. 三个角相等的三角形是等边三角形3. 有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长.h 是任意边上的高9.(2020秋•紫阳县期末)如图.在等腰△ABC中.AB=AC.点E为AC的中点.延长BC 到点D.使得CD=CE.延长DE交AB于点F.若∠A=60°.EF=4cm.则DF的长为()A.12cm B.10cm C.8cm D.6cm【答案】A【解答】解:∵AB=AC.∠A=60°.∴△ABC为等边三角形.∴∠ACB=60°.∴∠ACB=∠CED+∠D.∵CD=CE.∴∠CED=∠D=∠ACB=30°.∴∠AEF=∠CED=30°.∴∠AFE=180°﹣∠A﹣∠AEF=90°.∵EF=4cm.∴设AF=x.则AE=2x.∴由勾股定理得:x2+42=4x2.∴x=.∴AF=.AE=.∴BF=AB﹣AF=2AE﹣AF=.∵∠D=30°.∴BD=2BF=.∴DF2=BD2﹣BF2=3BF2.∴DF=BF=×=12.10.(2021春•张店区期末)如图.P是等边三角形ABC内的一点.且P A=3.PB=4.PC=5.以BC为边在△ABC外作△BQC≌△BP A.连接PQ.则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°【答案】D【解答】解:∵△ABC是等边三角形.∴∠ABC=60°.∵△BQC≌△BP A.∴∠BP A=∠BQC.BP=BQ=4.QC=P A=3.∠ABP=∠QBC.∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°.∴△BPQ是等边三角形.∴PQ=BP=4.∵PQ2+QC2=42+32=25.PC2=52=25.∴PQ2+QC2=PC2.∴∠PQC=90°.即△PQC是直角三角形.∵△BPQ是等边三角形.∴∠BOQ=∠BQP=60°.∴∠BP A=∠BQC=60°+90°=150°.∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC.∵∠PQC=90°.PQ≠QC.∴∠QPC≠45°.即∠APC≠135°.∴选项A、B、C正确.选项D错误.故选:D.11.(2020秋•河东区期中)如图.点M.N分别在正三角形ABC的BC.CA边上.且BM=CN.AM.BN交于点Q.求证:∠BQM=60°.【答案】略【解答】证明:∵BM=CN.BC=AC.∴CM=AN.又∵AB=AC.∠BAN=∠ACM.∴△AMC≌△BNA.则∠BNA=∠AMC.∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°.∴∠AQN=∠ACB.∵∠BQM=∠AQN.∴∠BQM=∠AQN=∠ACB=60°1.(2021秋•九龙坡区期中)如图.在△ABC中.AB=AC.点D为边AC上一点.且AD=BD.∠A=40°.则∠DBC的度数是()A.20°B.30°C.40°D.50°【答案】B【解答】解:∵AB=AC.∠A=40°.∴∠ABC=∠C==70°.∵AD=BD.∴∠DBA=∠A=40°.∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°.故选:B.2.如图.为了让电线杆垂直于地面.工程人员的操作方法是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC.当固定点B.C到杆脚E的距离相等.且B.E.C在同一直线上时.电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【答案】D【解答】解:∵AB=AC.BE=CE.∴AE⊥BC.故工程人员这种操作方法的依据是等腰三角形“三线合一”.故选:D.3.(2021秋•九台区期末)如图.已知△ABC的面积为24.AB=AC=8.点D为BC边上一点.过点D分别作DE⊥AB于E.DF⊥AC于F.若DF=2DE.则DF长为()A.4B.5C.6D.8【答案】A【解答】解:连接AD.则:S△ABD+S△ACD=S△ABC.即:×8•DF+8•DE=24.可得:DE+DF=6.∵DF=2DE.∴DF=4.故选:A.5.(2021秋•天河区期末)如图所示的正方形网格中.网格线的交点称为格点.已知A、B是两格点.如果C也是图中的格点.且使得△ABC为等腰三角形.则点C的个数是()A.6个B.7个C.8个D.9个【答案】C【解答】解:如图.分情况讨论:①AB为等腰△ABC的底边时.符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时.符合条件的C点有4个.故选:C.55.(2021秋•南安市期末)如图:D为△ABC内一点.CD平分∠ACB.BD⊥CD.∠A =∠ABD.若BD=1.BC=3.则AC的长为()A.5B.4C.3D.2【答案】A【解答】解:延长BD交AC于E.如图.∵CD平分∠ACB.BD⊥CD.∴△BCE为等腰三角形.∴DE=BD=1.CE=CB=3.∵∠A=∠ABD.∴EA=EB=2.∴AC=AE+CE=2+3=5.故选:A.6.(2021•滨州)如图.在△ABC中.点D是边BC上的一点.若AB=AD=DC.∠BAD=44°.则∠C的大小为.【答案】34°【解答】解:∵AB=AD.∴∠B=∠ADB.∵∠BAD=44°.∴∠ADB==68°.∵AD=DC.∠ADB=∠C+∠DAC.∴∠C=∠DAC=∠ADB=34°.故答案为:34°.7.(2019•重庆)如图.在△ABC中.AB=AC.AD⊥BC于点D.(1)若∠C=42°.求∠BAD的度数;(2)若点E在边AB上.EF∥AC交AD的延长线于点F.求证:AE=FE.【答案】(1)48°(2)AE=FE【解答】解:(1)∵AB=AC.AD⊥BC于点D.∴∠BAD=∠CAD.∠ADC=90°.又∠C=42°.∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC.AD⊥BC于点D.∴∠BAD=∠CAD.∵EF∥AC.∴∠F=∠CAD.∴∠BAD=∠F.∴AE=FE.8.(2021秋•长春期末)如图.在等边△ABC中.点D在边BC上.过点D作DE∥AB交AC于点E.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.【答案】(1)30°(2)CD=CF【解答】(1)解:∵△ABC是等边三角形.∴∠B=60°.∵DE∥AB.∴∠B=∠EDC=60°.∵DE⊥EF.∴∠DEF=90°.∴∠F=∠DEF﹣∠EDF=90°﹣60°=30°;(2)证明:∵△ABC是等边三角形.∴∠B=∠ACB=60°.∵DE∥AB.∴∠B=∠EDC=60°.∴∠EDC=∠ECD=∠DEC=60°.∴△DEC是等边三角形.∴CE=CD.∵∠ECD=∠F+∠CEF.∠F=30°.∴∠CEF=∠F=30°.∴EC=CF.∴CD=CF.9.(2020秋•淮南期末)已知.在等边三角形ABC中.点E在AB上.点D在CB的延长线上.且ED=EC.(1)【特殊情况.探索结论】如图1.当点E为AB的中点时.确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发.解答题目】如图2.当点E为AB边上任意一点时.确定线段AE与DB的大小关系.请你直接写出结论.AE DB(填“>”、“<”或“=”);理由如下.过点E作EF∥BC.交AC 于点F.(请你完成以下解答过程).(3)【拓展结论.设计新题】在等边三角形ABC中.点E在直线AB上.点D在线段CB的延长线上.且ED=EC.若△ABC的边长为1.AE=2.求CD的长(请你画出相应图形.并直接写出结果).【答案】(1)=;(2)=(3)3【解答】解:(1)当E为AB的中点时.AE=DB;(2)AE=DB.理由如下.过点E作EF∥BC.交AC于点F.证明:∵△ABC为等边三角形.∴△AEF为等边三角形.∴AE=EF.BE=CF.∵ED=EC.∵∠DEB=60°﹣∠D.∠ECF=60°﹣∠ECD.∴∠DEB=∠ECF.在△DBE和△EFC中..∴△DBE≌△EFC(SAS).∴DB=EF.则AE=DB;(3)点E在AB延长线上时.如图所示.同理可得△DBE≌△EFC.∴DB=EF=2.BC=1.则CD=BC+DB=3.故答案为:(1)=;(2)=1.(2021•赤峰)如图.AB∥CD.点E在线段BC上.CD=CE.若∠ABC=30°.则∠D的度数为()A.85°B.75°C.65°D.30°【答案】B【解答】解:∵AB∥CD.∴∠C=∠ABC=30°.又∵CD=CE.∵∠C+∠D+∠CED=180°.即30°+2∠D=180°.∴∠D=75°.故选:B.2.(2021•青海)已知a.b是等腰三角形的两边长.且a.b满足+(2a+3b﹣13)2=0.则此等腰三角形的周长为()A.8B.6或8C.7D.7或8【答案】D【解答】解:∵+(2a+3b﹣13)2=0.∴.解得:.当b为底时.三角形的三边长为2.2.3.周长为7;当a为底时.三角形的三边长为2.3.3.则周长为8.∴等腰三角形的周长为7或8.故选:D.3.(2021•广西)如图.⊙O的半径OB为4.OC⊥AB于点D.∠BAC=30°.则OD的长是()A.B.C.2D.3【答案】C【解答】解:连接OA.∵OC⊥AB.∴∠ADC=90°.∴∠DAC+∠ACD=90°.∵∠BAC=30°.∴∠ACO=60°.∵OA=OC.∴△AOC为等边三角形.∵OC⊥AB.∴OD=OC=2.故选:C.4.(2020•铜仁市)已知等边三角形一边上的高为2.则它的边长为()A.2B.3C.4D.4【答案】C【解答】解:根据等边三角形:三线合一.设它的边长为x.可得:.解得:x=4.x=﹣4(舍去).故选:C.5.(2021•康巴什一模)如图所示.已知m∥n.等边△ABC的顶点B在直线n上.∠1=25°.则∠2的度数是()A.25°B.35°C.45°D.55°【答案】B【解答】解:过C点作CD∥m.∴∠ACD=∠1=25°.∵m∥n.∴CD∥n.∴∠2=∠DCB.∵∠ACD+∠DCB=∠ACB.∴∠2=∠ACB﹣25°.∵△ABC为等边三角形.∴∠ACB=60°.∴∠2=60°﹣25°=35°.故选:B.6.(2021•荆门一模)如图.△ABC是等边三角形.△BCD是等腰三角形.且BD=CD.过点D作AB的平行线交AC于点E.若AB=8.DE=6.则BD的长为()A.6B.C.D.【答案】B【解答】解:连接AD交BC于点O.取AC中点N.连接ON.如图.∵△ABC是等边三角形.∴AB=AC=BC=8.∠ABC=60°.∵△BCD是等腰三角形.∴BD=DC.∴AD垂直平分BC.∴BO=CO=4.∵AN=CN.∴ON=AB=4.ON∥AB.∵AB∥DE.∴ON∥DE.∴.∴=2.∴OD=AO.∴tan∠ABO=.即.∴AO=4.∴OD=2.在Rt△BOD中.BD==2.故选:B.7.(2021•丹东模拟)如图.△ABC是等边三角形.AD是BC边上的中线.点E在AD上.且DE=BC.则∠AFE=()A.100°B.105°C.110°D.115°【答案】B【解答】解:∵△ABC是等边三角形.∴∠BAC=60°.∵AD是BC边上的中线.∴∠BAD=BAC=30°.AD⊥BC.BD=CD=BC.∴∠CDE=90°.∵DE=BC.∴DE=DC.∴∠DEC=∠DCE=45°.∴∠AEF=∠DEC=45°.∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°.故选:B.8.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的△DEF的周长是.【答案】6【解答】解:∵等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∴EF=2.∵△ABC是等边三角形.∴∠B=∠C=60°.又∵DE∥AB.DF∥AC.∴∠DEF=∠B=60°.∠DFE=∠C=60°.∴△DEF是等边三角形.∴剪下的△DEF的周长是2×3=6.故答案为:6.9.(2019•哈尔滨)如图.在四边形ABCD中.AB=AD.BC=DC.∠A=60°.点E为AD边上一点.连接BD、CE.CE与BD交于点F.且CE∥AB.若AB=8.CE=6.则BC的长为.【答案】2【解答】解:如图.连接AC交BD于点O∵AB=AD.BC=DC.∠A=60°.∴AC垂直平分BD.△ABD是等边三角形∴∠BAO=∠DAO=30°.AB=AD=BD=8.BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°.∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4.OF=OD﹣DF=2∴OC==2∴BC==210.(2021•朝阳)如图.在平面直角坐标系中.点A的坐标为(5.0).点M的坐标为(0.4).过点M作MN∥x轴.点P在射线MN上.若△MAP为等腰三角形.则点P的坐标为.【答案】(.4)或(.4)或(10.4)【解答】解:设点P的坐标为(x.4).分三种情况:①PM=P A.∵点A的坐标为(5.0).点M的坐标为(0.4).∴PM=x.P A=.∵PM=P A.∴x=.解得:x=.∴点P的坐标为(.4);②MP=MA.∵点A的坐标为(5.0).点M的坐标为(0.4).∴MP=x.MA==.∵MP=MA.∴x=.∴点P的坐标为(.4);③AM=AP.∵点A的坐标为(5.0).点M的坐标为(0.4).∴AP=.MA==.∵AM=AP.∴=.解得:x1=10.x2=0(舍去).∴点P的坐标为(10.4);综上.点P的坐标为(.4)或(.4)或(10.4).故答案为:(.4)或(.4)或(10.4).1.(2021•贵港模拟)如图.在△ABC中.AB=BC.∠A=36°.AB的垂直平分线DE交AB于点D.交AC于点E.若AB=10.则CE的长为()A.5B.8C.10D.10【答案】C【解答】解:∵在△ABC中.AB=BC=10.∠A=36°.∴∠C=∠A=36°.∵AB的垂直平分线是DE.∴AE=BE.∴∠ABE=∠A=36°.∴∠EBC=∠ABC﹣∠ABE=108°﹣36°=72°.∵∠BEC=∠A+∠ABE=72°∴∠BEC=∠EBC.∴CE=BC=10.故选:C.2.(2021•西湖区二模)如图.在△ABC中.点D在边BC上.且满足AB=AD=DC.过点D 作DE⊥AD.交AC于点E.设∠BAD=α.∠CAD=β.∠CDE=γ.则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°【答案】D【解答】解:∵AB=AD=DC.∠BAD=α.∴∠B=∠ADB.∠C=∠CAD=β.∵DE⊥AD.∴∠ADE=90°.∴∠CAD+∠AED=90°.∵∠CDE=γ.∠AED=∠C+∠CDE.∴∠AED=γ+β.∴2β+γ=90°.故选:D.3.(2021•陕西模拟)如图.△ABC中.AB=AC.AD⊥BC于点D.DE⊥AB于点E.BF⊥AC 于点F.DE=2.则BF的长为()A.3B.4C.5D.6【答案】B【解答】解:∵△ABC中.AB=AC.AD⊥BC.∴AD是△ABC的中线.∴S△ABC=2S△ABD=2×AB•DE=AB•DE=2AB.∵S△ABC=AC•BF.∴AC•BF=2AB.∵AC=AB.∴BF=2.∴BF=4.故选:B.4.(2021•西陵区模拟)如图.已知Rt△OAB.∠OAB=50°.∠AOB=90°.O点与坐标系原点重合.若点P在x轴上.且△APB是等腰三角形.则点P的坐标可能有()个.A.1个B.2个C.3个D.4个【答案】D【解答】解:如图.在x轴上共有4个这样的P点(图中实心点).故选:D.5.(2021•成都模拟)如图.把一张长方形纸片沿对角线折叠.若△EDF是等腰三角形.则∠BDC=()A.45°B.60°C.67.5°D.75°【解答】解:由翻折可知:△BED≌△BCD.∴∠EBD=∠CBD.∠E=∠C=90°∵△EDF是等腰三角形.∴∠EFD=∠AFB=∠ABF=45°.∴∠CBF=45°.∴∠CBD=∠CBE=22.5°.∴∠BDC=67.5°.故选:C.6.(2021•中山区一模)如图.直线m∥n.点A在直线m上.点B、C在直线n上.AB=CB.∠1=70°.则∠BAC等于()A.40°B.55°C.70°D.110°【答案】C【解答】解:∵m∥n.∴∠ACB=∠1=70°.∵AB=BC.∴∠BAC=∠ACB=70°.故选:C.7.(2021•饶平县校级模拟)如图.在△ABC中.AB=6.AC=4.∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC分别交AB、AC于M、N.则△AMN的周长为()A.12B.10C.8D.不确定【答案】B【解答】解:∵∠ABC和∠ACB的平分线交于点E.∴∠ABE=∠CBE.∠ACE=∠BCE.∴∠CBE=∠BEM.∠BCE=∠CEN.∴∠ABE=∠BEM.∠ACE=∠CEN.∴BM==NE.∴△AMN的周长=AM+ME+AN+NE=AB+AC.∵AB=AC=4.∴△AMN的周长=6+4=10.故选:B.8.(2021•商河县校级模拟)如图.△ABC的面积为8cm2.AP垂直∠B的平分线BP于P.则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解答】解:延长AP交BC于E.∵AP垂直∠B的平分线BP于P.∴∠ABP=∠EBP.∠APB=∠BPE=90°.在△APB和△EPB中.∴△APB≌△EPB(ASA).∴S△APB=S△EPB.AP=PE.∴△APC和△CPE等底同高.∴S△APC=S△PCE.∴S△PBC=S△PBE+S△PCE=S△ABC=4cm2.故选:C.9.(2021•甘谷县一模)如图.已知:∠MON=30°.点A1.A2.A3……在射线ON上.点B1.B2.B3……在射线OM上.△A1B1A2.△A2B2A3.△A3B3A4……均为等边三角形.若OA1=1.则△A7B7A8的边长为()A.64B.32C.16D.128【答案】A【解答】解:∵△A1B1A2是等边三角形.∴∠B1A1A2=60°.∵∠MON=30°.∴∠OB1A1=30°∴A1B1=OA1=1.∴A2B1=1.∵△A2B2A3、△A3B3A4是等边三角形.∴A1B1∥A2B2∥A3B3.B1A2∥B2A3.∴A2B2=2B1A2.B3A3=2B2A3.∴A3B3=4B1A2=4.A4B4=8B1A2=8.A5B5=16B1A2=16.以此类推:△A7B7A8的边长为26=64.故选:A.10.(2021•蔡甸区二模)如图.△ABC中.点D在BC边上.且∠ADB=90°∠CAD.(1)求证:AD=AC;(2)点E在AB边上.连接CE交AD于点F.且∠CFD=∠CAB.AE=BD.①求∠ABC的度数;②若AB=8.DF=2AF.直接写出EF的长.【答案】(1)略(2)EF=.【解答】解:(1)∵∠ADB=∠ACB+∠CAD.∠ADB=90°∠CAD.∴∠ACB=∠ADB﹣∠CAD=90°∠CAD.∵∠ADB+∠CDA=180°.∴∠CDA=180°﹣∠ADB=180°﹣(90°∠CAD)=90°∠CAD.∴∠ACB=∠ADC.∴AD=AC;(2)①过点D作DG∥CE交AB于点G.∵∠CFD=∠CAB.∠CFD=∠CAD+∠ACE.∠CAB=∠CAD+∠DAB.∴∠ACE=∠DAB.又∵∠ACD=∠ADC.∠ECB=∠ACD﹣∠ACE.∠B=∠ADC﹣∠DAB.∴∠ECB=∠B.∴CE=BE.∵DG∥CE.∴∠ECB=∠BDG.∴∠BDG=∠B.∴DG=BG.∵∠AEC=∠DGA.AC=DA.∠ACE=∠DAG.∴△AEC≌△DGA(AAS).∴DG=AE.又∵AE=BD.∴DG=BD=BG.∴△BDG为等边三角形.∴∠ABC=60°;②EF=.过点D作DH∥AB交CE于点H.由①知△EBC和△HDC均为等边三角形.设AE=BD=x.则BE=BC=8﹣x.∴DH=CD=8﹣2x.∵DH∥AB.∴=.即=.∴x=2.∵∠ACE=∠DAB.∵△F AE∽△ACE.∴=.∵AC=AD=3AF.∴=.EF=AE=.。
专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60°的等腰三角形是等边三角形。
知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
等腰三角形专题复习
1. 等腰三角形的定义和性质
- 等腰三角形是指有两条边相等的三角形。
- 等腰三角形的顶角和底角相等。
- 等腰三角形的高线(高)是底边的垂直平分线。
2. 等腰三角形的判定方法和例题
- 判定方法:
- 两边相等(边边边,即SSS判定法)。
- 底角顶角相等(角边角,即AAS判定法)。
- 两边夹角相等(边角边,即SAS判定法)。
- 例题:
- 已知三角形的两边分别为5cm和5cm,夹角为60°,判断该三角形是否为等腰三角形。
3. 等腰三角形的性质
- 顶角和底角相等,即∠A = ∠B。
- 等腰三角形的高线是底边的垂直平分线,即AD = DB。
- 等腰三角形的两底角相等,即∠C = ∠D。
4. 等腰三角形的面积和周长计算公式
- 面积公式:S = (底边长 ×高)/ 2。
- 周长公式:P = 2 ×底边长 + 斜边长。
5. 等腰三角形的应用举例
- 塔尖角:一根高塔边向下俯视角为60°,根据观察图可以判定塔尖为等腰三角形。
- 喷泉造型:喷泉的喷水口为等腰三角形,设计中需要计算出三角形的高来确定喷水的高度。
以上是关于等腰三角形的专题复习内容。
希望能帮助你更好地理解等腰三角形的定义、性质和应用。
如有疑问,请随时提问。
专题1 二次函数与等腰三角形问题数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠.图1 图2 图3代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.222222222()(y ),()(y ),()(y )A B A B A C A C B C B C AB x x y AC x x y BC x x y =-+-=-+-=-+-,然后根据分类:AB=AC,BA=BC,CA=CB列方程进行计算.【例1】(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【例2】(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y 轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF =m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【例4】(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图1,若点P在BC上方的抛物线上运动(不与B、C重合),过点P作x轴的垂线,垂足为E,交BC于点D,过点P作BC的垂线,垂足为Q,若△PQD≌△BED,求m的值;(3)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m 的值;若不存在,请说明理由.3.(2022•淮阴区校级一模)如图,抛物线y=2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.4.(2022•仁寿县模拟)如图,直线y=kx+n(k≠0)与x轴、y轴分别交于A、B两点,过A,B两点的抛物线y=ax2+bx+4与x轴交于点C,且C(﹣1,0),A(4,0).(1)求抛物线和直线AB的解析式;(2)若M点为x轴上一动点,当△MAB是以AB为腰的等腰三角形时,求点M的坐标.(3)若点P是抛物线上A,B两点之间的一个动点(不与A,B重合),则是否存在一点P,使△P AB的面积最大?若存在求出△P AB的最大面积;若不存在,试说明理由.5.(2022•徐汇区模拟)如图1,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0),点P为线段AB上的点,且点P的横坐标为m.(1)求抛物线的解析式和直线AB的解析式;(2)过P作y轴的平行线交抛物线于M,当△PBM是MP为腰的等腰三角形时,求点P的坐标;(3)若顶点D在以PM、PB为邻边的平行四边形的形内(不含边界),求m的取值范围.6.(2022•沭阳县模拟)如图1,在平面直角坐标系xOy中,抛物线y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)如图2,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO、AD,记△ADC的面积为S1,△AEO的面积为S2,求S1﹣S2的最大值及此时点D的坐标;(3)如图3,连接CB,并将抛物线沿射线CB方向平移2个单位长度得到新抛物线,动点N在原抛物线的对称轴上,点M为新抛物线与y轴的交点,当△AMN为以AM为腰的等腰三角形时,请直接写出点N的坐标.7.(2022春•北碚区校级期末)如图,已知点(0,)在抛物线C1:y=x2+bx+c上,且该抛物线与x轴正半轴有且只有一个交点A,与y轴交于点B,点O为坐标原点.(1)求抛物线C1的解析式;(2)抛物线C1沿射线BA的方向平移个单位得到抛物线C2,如图2,抛物线C2与x轴交于C,D 两点,与y轴交于点E,点M在抛物线C2上,且在线段ED的下方,作MN∥y轴交线段DE于点N,连接ON,记△EMD的面积为S1,△EON的面积为S2,求S1+2S2的最大值;(3)如图3,在(2)的条件下,抛物线C2的对称轴与x轴交于点F,连接EF,点P在抛物线C2上且在对称轴的右侧,满足∠PEC=∠EFO.①直接写出P点坐标;②是否在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,若存在,请直接写出H点的坐标;若不存在请说明理由.8.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x轴于点D,直线y =﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)点M(t,0)是x轴上的一个动点,点N是抛物线对称轴上的一个动点,当DN=2t,△MNB的面积为时,求出点M与点N的坐标;(3)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.9.(2022•沈阳模拟)如图1,抛物线y=﹣x2+bx+3与y轴交于B点,与x轴交于A,C两点,直线BC 的解析式为y=﹣x+m.(1)求m与b的值;(2)P是直线BC上方抛物线上一动点(不与点B,C重合),连接AP交BC于点E,交OB于点F.①是否存在最大值?若存在,求出的最大值.并直接写出此时点E的坐标;若不存在,说明理由.②当△BEF为等腰三角形时,直接写出点P的坐标.10.(2022•永昌县一模)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,C是抛物线与y轴的交点,P是该抛物线上一动点.(1)求该抛物线的解析式;(2)在(1)中抛物线的对称轴上求一点M,使得△MAC是以AM为底的等腰三角形;求出点M的坐标.(3)设(1)中的抛物线顶点为D,对称轴与直线BC交于点E,过抛物线上的动点P作x轴的垂线交线段BC于点Q,使得D、E、P、Q四点组成的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,请说明理由.11.(2021•无为市三模)在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A、B两点(点A在点B的左侧),其顶点为C.(1)求抛物线的对称轴;(2)当△ABC为等边三角形时,求a的值;(3)直线l:y=kx+b经过点A,并与抛物线交于另一点D(4,3),点P为直线l下方抛物线上一点,过点P分别作PM∥y轴交直线l于点M,PN∥x轴交直线l于点N,记W=PM+PN,求W的最大值.12.(2021•广东模拟)如图,抛物线y=x2+bx﹣1与x轴交于点A,B(点A在点B的左侧),交y轴于点C,顶点为D,对称轴为直线x=﹣,连接AC,BC.(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上是否存在点E,使得△CDE为等腰三角形?如果存在,请直接写出点E的坐标,如果不存在,请说明理由.13.(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.14.(2021•重庆模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,直线AC与y轴交于点C,与抛物线交于点D,OA=OC.(1)求该抛物线与直线AC的解析式;(2)若点E是x轴下方抛物线上一动点,连接AE、CE.求△ACE面积的最大值及此时点E的坐标;(3)将原抛物线沿射线AD方向平移2个单位长度,得到新抛物线:y1=a1x2+b1x+c1(a≠0),新抛物线与原抛物线交于点F,在直线AD上是否存在点P,使以点P、D、F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.x115.(2021•玄武区二模)已知二次函数y=x2﹣(2m+2)x+m2+2m(m是常数).(1)求证:不论m为何值,该二次函数图象与x轴总有两个公共点;(2)二次函数的图象与y轴交于点A,顶点为B,将二次函数的图象沿y轴翻折,所得图象的顶点为B1,若△ABB1是等边三角形,求m的值.16.(2021•朝阳)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.17.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y 轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H (点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.18.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在P A的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH 为等腰三角形时,求线段PH的长.19.(2021•怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.20.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.。
2020-2021中考专题复习:等腰三角形一、选择题1. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定2.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N,则MN 等于( )A. 65B. 95C. 125D. 1654. (2020·毕节)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A .13B .17C .13或17D .13或105. (2020·烟台)量角器测角度时摆放的位置如图所示,在△AOB 中,射线OC 交边AB 于点D ,则∠ADC 的度数为( )A .60°B .70°C .80°D .85°6. 一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C 在海岛在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A.15海里B.20海里C. 30海里D.60海里7. (2019•梧州)如图,DE 是ABC △的边AB 的垂直平分线,D 为垂足,DE 交AC于点E ,且85AC BC ==,,则BEC △的周长是A .12B .13C .14D .158.如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则( )A. x -y 2=3 B. 2x -y 2=9 C. 3x -y 2=15 D. 4x -y 2=21二、填空题9. 已知等腰三角形的底角是30°,腰长为2,则它的周长是 .10. 如图,将△ABC 绕点A 逆时针旋转150°,得到△ADE ,这时点B ,C ,D 恰好在同一直线上,则∠B 的度数为 .11. 如图,△ABC 是等腰三角形,AB=AC ,∠BAC=45°,点D 在AC 边上,将△ABD绕点A 逆时针旋转45°得到△ACD',且点D',D ,B 在同一直线上,则∠ABD 的度数是 .12. 定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰三角形ABC 中,∠A=80°,则它的特征值k= .13.如图,在△ABC 中,AB =AC ,E 为BC 的中点,BD ⊥AC ,垂足为D .若∠EAD =20°,则∠ABD =________°.14. 如图,等边三角形ABC 内有一点P ,分别连接AP ,BP ,CP ,若AP=6,BP=8,CP=10,则S △ABP +S △BPC = .15. (2019•哈尔滨)在ABC △中,50A ∠=︒,30B ∠=︒,点D 在AB 边上,连接CD ,若ACD △为直角三角形,则BCD ∠的度数为__________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题17.已知:如图,B ,E ,F ,C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C.求证:OA =OD .18. (2020·广东)如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.FECABD19. 如图,在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE. (1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.20.如图,在四边形ABCD 中,∠DAB =∠ABC =90°,AB =BC ,E 是AB 的中点,CE ⊥BD ,连接AC 交DE 于点M . (1)求证:AD =BE ;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.21. (2020·荆门)如图,△ABC中,AB=AC,∠B的平分线交AC于D,AE∥BC 交BD的延长线于点E,AF⊥AB交BE于点F.(1)若∠BAC=40°,求∠AFE的度数;(2)若AD=DC=2,求AF的长.22. (12分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.FDECAB2020-2021中考专题复习:等腰三角形-答案一、选择题1. 【答案】[解析] A 因为75=5 3,18=32.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.2. 【答案】D【解析】根据三角形内角和定理和等腰三角形的等边对等角且AB AC=,40A∠=,可得:70ABC ACB∠=∠=;然后根据两直线平行内错角相等且//CD AB可得:70BCD ABC∠=∠=,所以选D.3. 【答案】C 【解析】此题应首先连接AM,则AM⊥BC.∴AM=AC2-CM2=4,然后由三角形面积:S△ACM=12AM×CM.S△ACM=12AC×MN.得:AM×CM=AC×MN.∴MN=125.也可以利用△ACM∽△MCN.得:AC CM=AMMN.∴MN=AM×CMAC=125.4. 【答案】B,【解析】本题考查等腰三角形的三边关系.解:分两种情况讨论:若3为底边,腰长为7,则此等腰三角形的周长为3+7+7=17;若7为底边,腰长为3,则此等腰三角形不存在,因为3+3<7,不符合三角形的三边关系,故选B.5. 【答案】∵OA=OB,∠AOB=140°,∴∠A=∠B(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.6. 【答案】C【解析】根据题意画图,如图,∠A=42°,∠DBC=84°,AB=15×2=30(海里),∴∠C=∠DBC-∠A=42°,∴BC=BA=30(海里).7. 【答案】B【解析】∵DE是ABC△的边AB的垂直平分线,∴AE BE=,∵85AC BC==,,∴BEC△的周长是:13BE EC BC AE EC BC AC BC++=++=+=.故选B.8. 【答案】B 【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵A B=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=1 2CF=3,∵在Rt△CEG中,tan C=EGCG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△E GD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.二、填空题9. 【答案】6+4[解析]过等腰三角形的顶点作底边的垂线,设底边为2a,那么cos30°=,所以a=3,所以周长=6+4.10. 【答案】15°[解析]∵△ABC绕点A逆时针旋转150°得到△ADE,∴∠BAD=150°,△ABC≌△ADE,AB=AD,∴△BAD是等腰三角形,∴∠B=∠ADB=(180°-∠BAD)=15°.11. 【答案】22.5°[解析]根据题意可知△ABD≌△ACD',∴∠BAC=∠CAD'=45°,AD'=AD ,∴∠ADD'=∠AD'D==67.5°.∵D',D ,B 三点在同一直线上, ∴∠ABD=∠ADD'-∠BAC=22.5°.12. 【答案】或 [解析]①当∠A 为顶角时,等腰三角形两底角的度数为:=50°,∴特征值k==;②当∠A 为底角时,顶角的度数为:180°-80°-80°=20°,∴特征值k==. 故答案为或.13. 【答案】50[解析] ∵AB =AC ,E 为BC 的中点,∴∠BAE =∠EAD =20°.∴∠BAD =40°,又∵BD ⊥AC ,∴∠ABD =90°-∠BAD =90°-40°=50°.14. 【答案】16+24 [解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接PP',所以P'C=P A=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16,因为PC=10,所以PP'2+P'C 2=PC 2, 所以△PP'C是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =16+24.15. 【答案】60︒或10︒【解析】分两种情况: ①如图1,当90ADC ∠=︒时,∵30B ∠=︒,∴903060BCD ∠=︒-︒=︒; ②如图2,当90ACD ∠=︒时,∵50A ∠=︒,30B ∠=︒,∴1803050100ACB ∠=︒-︒-︒=︒, ∴1009010BCD ∠=︒-︒=︒,综上,则BCD ∠的度数为60︒或10︒.故答案为:60︒或10︒.16.【答案】6 [解析]已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题17. 【答案】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE. 在△ABF 和△DCE 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE.∴AF =DE ,∠AFB =∠DEC. ∴OF =OE.∴AF -OF =DE -OE ,即OA =OD.18. 【答案】证明:在△BFD 和△CFE 中,∠ABE=∠ACD ,∠DFB=∠CFE ,BD=CE , ∴△BFD ≌△CFE (AAS ).∴∠DBF=∠ECF.∵∠ABE=∠ACD ∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴ AB=AC.∴ △ ABC 是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF ,再根据等式的性质,加上相等角得到∠ABC=∠ACB ,等角对等边,得到AB=AC.根据等腰三角形定义得到△ ABC 是等腰三角形.19. 【答案】解:(1)证明:∵线段CD 绕点C 按逆时针方向旋转90°得到线段CE , ∴∠DCE=90°,CD=CE.又∵∠ACB=90°,∴∠ACB=∠DCE , ∴∠ACD=∠BCE. 在△ACD 和△BCE 中,∵∴△ACD ≌△BCE.(2)∵∠ACB=90°,AC=BC , ∴∠A=45°, ∵△ACD ≌△BCE , ∴AD=BE ,∠CBE=∠A=45°. 又AD=BF ,∴BE=BF , ∴∠BEF=∠BFE==67.5°.20. 【答案】解:(1)证明:∵∠ABC =90°, ∴∠ABD +∠DBC =90°. ∵CE ⊥BD ,∴∠BCE +∠DBC =90°. ∴∠ABD =∠BCE. 在△DAB 和△EBC 中, ⎩⎪⎨⎪⎧∠ABD =∠BCE ,AB =BC ,∠DAB =∠EBC =90°,∴△DAB ≌△EBC(ASA).∴AD =BE.(2)证明:∵E 是AB 的中点,∴AE =BE.∵BE =AD ,∴AE =AD.∴点A 在线段ED 的垂直平分线上.∵AB =BC ,∠ABC =90°,∴∠BAC =∠BCA =45°.∵∠BAD =90°,∴∠BAC =∠DAC =45°.在△EAC 和△DAC 中,⎩⎪⎨⎪⎧AE =AD ,∠EAC =∠DAC ,AC =AC ,∴△EAC ≌△DAC(SAS).∴CE =CD.∴点C 在线段ED 的垂直平分线上.∴AC 是线段ED 的垂直平分线.(3)△DBC 是等腰三角形.理由:由(1)知△DAB ≌△EBC ,∴BD =CE.由(2)知CE =CD.∴BD =CD.∴△DBC 是等腰三角形.21. 【答案】解:(1)∵AB =AC ,∠BAC =40°,∴∠ABC =12×(180°-40°)=70°. ∵BD 平分∠ABC ,∴∠ABD =∠DBC =12×70°=35°. ∵AF ⊥AB ,∴∠BAF =90°.∴∠AFE =∠BAF +∠ABD =90°+35°=125°.(2)∵BD 平分∠ABC ,BD =BD ,AD =CD ,∴△BDA ≌△BDC .∴AB =BC .又AB =AC ,∴AB =BC =AC .∴△ABC为等边三角形.∴∠ABC=60°,∠ABD=30°.∵AD=DC=2,∴AB=4.在R t△ABF中,AF=AB·tan30°=4×33=433.说明:此题中的条件AE∥BC是多余的.【解析】(1)由“等边对等角”求出∠ABC,由角平分线的定义求出∠ABD,∠AFE 是△ABF的外角,因此∠AFE=∠BAF+∠ABD;(2)由BD既是△ABC的角平分线又是中线可知AB=BC,从而推出△ABC是边长为2的等边三角形.在R t△ABF中可解出AF.22. 【答案】【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC =CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD ≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.。
E D C BA 等腰三角形中角与边的专题复习一、填空题:1、等腰三角形的底角是72°,则顶角是 度。
2、等腰三角形的顶角是72°,则底角是 度。
3、等腰三角形的一个内角是72°,则另两个内角的度数是 。
4、等腰三角形的一个外角是72°,则底角是 度,若外角是100°,则顶角是 度。
5、若在△ABC 中AB=AC ,∠B=40°,则∠A= 度。
6、在△DEF 中,DF=EF ,∠F=80°,则∠D= 度。
7、等腰三角形一腰上的高与底边的夹角是70°,则底角是 度,顶角是 度。
8、等腰三角形一腰上的高与另一腰的夹角是40°,则顶角是 度。
9、三角形的三个内角度数之比为,1∶2∶1,则最小角为 度,这是一个 三角形。
10、等腰三角形的两个内角的度数分别为°(420)x +和°250)x +(,则顶角为 度。
11、在下列各组边围成的① 3cm 、4cm 、5cm ② 3cm 、3cm 、6cm ③ 3cm 、3cm 、7cm ④ 1cm 、2cm能围成等腰三角形的是 。
(填序号)12、等腰三角形的底边长为6cm ,腰长为5cm 则它的周长是 。
13、若等腰三角形的两边长分别为3和5,则它的周长是 。
14、若等腰三角形的周长为24,其中一条边是6,则另外两条边长是 。
15、等腰三角形的两边长分别为2x+2和x+6,周长为24 ,则腰长为 。
16、等腰三角形一腰上的中线把周长分成6和8两部分,则腰长是 。
二、解答题剖析:1、在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角是50°,则∠B 等于几度?2、在△ABC 中,AB=AC ,BC=BD ,AD=DE=EB ,则∠A 的度数是多少?C BD C B 3、在△ABC 中,AB=AC ,AD=AE ,∠BAD=20°,求∠EDC 的度数。
2019-2020年中考数学备考专题复习等腰三角形含解析一、单选题(共12题;共24分)1、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°2、如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A、25B、30C、45D、603、如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。
则A,B,C,D的面积的和等于 ()A、B、C、D、4、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为( )A、2B、2.4C、2.6D、35、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A、15 dmB、20dmC、25dmD、30dm6、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB 的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A、B、C、3D、47、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A、B、C、D、8、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD是()A、1B、2C、3D、49、在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A、②③B、③④C、①②④D、②③④10、(xx•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(xx•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、412、(xx•黔东南州)xx年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A、13B、19C、25D、169二、填空题(共5题;共6分)13、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是________,对角线的长是________.14、如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.15、(xx•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=________.16、(xx•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为________.17、(xx•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm .三、解答题(共2题;共10分)18、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B 的度数.19、如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E,D分别为边AB,AC上的点,且满足OE⊥OD,求证:OE=OD.四、综合题(共5题;共65分)20、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.21、(xx•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n 的值.22、(xx•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23、(xx•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B 逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)24、(xx•义乌)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q 是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).答案解析部分一、单选题【答案】A【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形【解析】【解答】此题有两种情况,一种是该高线在等腰三角形内部,另外一种是在等腰三角形外部。
等腰三角形的性质习题课一、热身练习:1.(1)已知△ABC 是等腰三角形,AB =5,AC =8,那么边BC= ; (2)已知△ABC 是等腰三角形,AB =4,AC =8,则该三角形的周长是 ;2.已知等腰三角形的顶角为40°,那么这个等腰三角形的底角是 度;3.已知等腰三角形的一个内角为50°,那么这个等腰三角形的底角为 度;4.等腰三角形一腰上的高与底边所成的夹角是50°,该三角形底角是 度;5.等腰三角形是 图形,它的对称轴是 ;6.如图,在△ABC 中,AD ⊥BC ,且BC =10,∠DAB =20°,则BD = ; ∠BAC = 度;7.如图,∠ACD 是△ABC 的一个外角,且CB =AC ,如果∠B =40°,那么∠ACD 的度数是 度;二、典型例题分析:例题1 如果等腰三角形一腰上的高与另一腰所成的夹角是50°,该三角形的底角是 度;例题2 如图,在△ABC 中,AB =AC ,AD =BD=BC ,求∠A例题3 如图,∠ACD 是△ABC 的一个外角,且CB =AC ,如果AB ∥CE ,试说明CE 平分∠ACD变式思考:如图,∠ACD 是△ABC 的一个外角,且CB =AC ,如果CE 平分∠ACD ,试说明AB ∥CE .三、小结:四、巩固作业:1.已知等腰三角形的一个内角为50°,那么这个等腰三角形的底角为 度;2.如果等腰三角形一腰上的高与另一腰所成的夹角是40°,该三角形的底角 是 度;3. 如图,在△ABC 中,∠A =35°,AD =BD=BC求∠ABC 的度数?4.如图,在△ABC 中,AC=BC ,点D 是AB CA 平分∠BAE ,∠E =90°,试说明AB=2AE .。
等腰三角形专题复习
一、等腰三角形中的分类讨论
1、等腰三角形的周长为50,一条边长是12,则另两边分别是__________
2、若等腰三角形的一个内角为64,则底角的度数为__________________
3、已知等腰三角形一腰上的高与另一腰的夹角为50,则此三角形的三个内角度数分别为________________.
4、如图,在RT △ABC 中,∠ACB=90,AB=2BC ,在直线BC 或AC 上取一点P , 使得△PAB 为等腰三角形,则符合条件的点P 共有 个。
5、已知0为等边△ABD 边BD 的中点,AB=4,E 、F 分别为射线AB 、DA 上一动点,且∠EOF=120,若AF=1,求BE 的长_____________。
二、构造等腰三角形解题——截长补短法
6、如图,在 △ABC 中,AD 为角平分线,且AC=AB+BD,求证2B
C .
7、如图,已知120MAN
,AC 平分∠MAN ,180ABC ADC ,求证:.AB AD AC
8、如图,△ABC 为等腰三角形,EC=ED, P 为BD 的中点,求证:AE=2PE.
三、构造等腰三角形解题——引平行线
9、如图,已知△ABC是等边三角形,延长BC到D,延长BA到E,使AE=BD,求证:EC=ED.
10、已知△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.
11、△ABC为等边三角形,D为BC上任意一点,∠ADE=600,边ED与∠ACB外角的平分线交于点E.
(1)求证:AD=DE.
(2)若点D在CB的延长线上,(1)的结论是否依然成立?请画出图形,若成立,请给出证明,若不成立,请说明理由。
12、如图,BD平分∠ABC交AC于点D,E为CD上一点,且AD=DE,EF∥BC交BD于F,求证:AB=EF.
四、等腰三角形中的“三线合一”
(一)利用等腰三角形的“三线合一”证题
13、如图,AD是△ABC的角平分线,且AE=AC,EF∥BC交AC于点F,求证:EC平分∠DEF.
14、如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE 和AB的位置关系并给出证明。
(二)、利用“三线合一”添加辅助线
15、如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC。
求证:EB⊥AB.
16、如图,点D、E分别在BA、AC的延长线上,且AB=AC,AD=AE,求证:DE⊥BC.
17、已知△ABC中,∠A=900,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由。
五、利用30角构造直角三角形
18、如图,△ABC中,AB=AC,∠BAC=1200,D为BC的中点,DE⊥AC于E,AE=2,求CE的长。
19、如图,四边形ABCD中,AD=4,BC=1,∠A=30O, ∠B=90O, ∠ADC=1200,求CD的长。
20、如图,在△ABC中,∠A=900,D为△ABC内一点,且AB=AC=BD,∠ABD=300,求证:AD=CD.
六、共顶点的等腰三角形
方法技巧:共顶点的等腰(边)三角形中隐含全等三角形(即旋转变换得到的全等三角形)21.如图,点C为线段AB上一点,△ACM和△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).。