等腰三角形专题复习
- 格式:ppt
- 大小:970.50 KB
- 文档页数:30
中考数学专题复习:等腰三角形一、选择题1. 下列命题中,属于假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60∘2. 如图,在△ABC中,∠B=∠C, AB=5,则AC的长为()A.2B.3C.4D.53. 如图:等腰直角△ABC中,若∠ACB=90∘,CD=DE=CE,则∠DAB的度数为()A.60∘B.30∘C.45∘D.15∘4. 等腰三角形的一腰上的高与另一腰的夹角是48∘,它的一个底角的度数是()A.48∘B.21∘或69∘C.21∘D.48∘或69∘5. 已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝6. 等腰直角三角形的底边长为5,则它的面积是()A.25B.12.5C.10D.6.257. 如图,△ABC中,∠ABC=90∘,∠C=30∘,AD是角平分线,DE⊥AC于E,AD、BE相交于点F,则图中的等腰三角形有()A.2个B.3个C.4个D.5个8. 一个角是60∘的等腰三角形是()A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确9. 以下关于等边三角形的判定:①三条边相等的三角形是等边三角形;①有一个角是60∘的等腰三角形是等边三角形;①有两个角为60∘的三角形是等边三角形①三个角相等的三角形是等边三角形其中正确的是()A.只有①①①B.只有①①①C.只有①①①D.①①①①10. 如图,在△ABC中,∠B=60∘,AB=9,BP=3,AP=AC,则BC的长为()A.8B.7C.6D.511. 等腰三角形一腰上的高等于该三角形另一边长的一半.则其顶角等于()A.30∘B.30∘或150∘C.120∘或150∘D.120∘、30∘或150∘12. 等腰三角形的一个角比另一个角的2倍少20度,等腰三角形顶角的度数是( )A.140∘B.20∘或80∘C.44∘或80∘D.140∘或44∘或80∘二、填空题13. 等腰三角形一腰的高等于腰长的一半,则其顶角的度数为________.14. 如图,△ABC是边长为8的等边三角形,点D在BC的延长线上,做DF⊥AB,垂足为F,若CD=6,则AF的长等于________.15. 如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm,则直角三角形(4)的斜边长为________.16. 如图等边三角形ABC中,AB=3,D、E是BC上的两点,AD、AE把△ABC分割成周长相等的三个三角形,则CD=________.17. 如图,在△ABC中,∠ABC=∠C,∠A=100∘,BD平分∠ABC交AC于点D,点E是BC上一个动点.若△DEC是直角三角形,则∠BDE的度数是________.三、解答题18. 从①∠B=∠C;①∠BAD=∠CDA;①AB=DC;①BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).已知:________(只填序号),求证:△AED是等腰三角形.19. 如图,BD//AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.20. 如图所示,在矩形ABCD中,DE⊥CE,∠ADE=30∘,DE=4,求这个矩形的周长.21. 如图,在△ABC中,∠ACB−∠B=90∘,∠BAC的平分线交BC于点E,∠BAC的外角∠CAD 的平分线交BC的延长线于点F,试判断△AEF的形状.22. (1)如图①,△ABC是等边三角形,△ABC所在平面上有一点P,使△PAB,△PBC,△PAC都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来. 25.(2)如图①,正方形ABCD所在的平面上有一点P,使△PAB,△PBC,△PCD,△PDA都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来.参考答案13.【答案】30∘或150∘14.【答案】115.【答案】416.【答案】−3+3√331617.【答案】30∘或70∘18.证明:选择的条件是:①∠B=∠C①∠BAD=∠CDA(或①①,①①,①①);证明:在△BAD和△CDA中,① {∠B=∠C,∠BAD=∠CDA,AD=DA,① △BAD≅△CDA(AAS),① ∠ADB=∠DAC,即在△AED中∠ADE=∠DAE,① AE=DE,△AED为等腰三角形.19.证明:∵BD//AC,① ∠EBD=∠C,BD=BC,BE=AC,① △EDB≅ABC(SAS),① ∠D=∠ABC20.解:① 四边形ABCD是矩形,① ∠A=∠B=90∘,AD=BC.在Rt△ADE中,① ∠A=90∘,∠ADE=30∘,DE=4,① AE=12DE=2,AD=√3AE=2√3.① DE⊥CE,∠A=90∘,① ∠BEC=∠ADE=90∘−∠AED=30∘.在Rt△BEC中,① ∠B=90∘,∠BEC=30∘,BC=AD=2√3, ① BE=√3BC=6,① AB=AE+BE=2+6=8,① 矩形ABCD的周长=2(AB+AD)=2(8+2√3)=16+4√3.21.解:△AEF是等腰直角三角形;理由如下:如图所示:① AE平分∠BAC,AF平分∠CAD,① ∠EAC=12∠BAC,∠FAC=12∠CAD,① ∠BAC+∠CAD=180∘,① ∠EAC+∠FAC=12(∠BAC+∠CAD)=90∘,即∠EAF=90∘,① ∠ACB−∠B=90∘,① ∠ACB=90∘+∠B,① ∠1=90∘−∠B=∠B+∠BAC,① ∠B=12(90∘−∠BAC),① ∠4=∠B+∠AEF,① AE平分∠DAC,① ∠3=∠4=∠B+∠AEF,① ∠BAC+∠3+∠4=180∘,① 2(∠B+∠AEF)+∠BAC=2[12(90∘−∠BAC)+∠AEF]+∠BAC=180∘,① ∠AEF=45∘,① ∠AFE=45∘,① △AEF是等腰直角三角形.22.【解答】(1)10个,如解图①,当点P在△ABC内部时,P是边AB.BC.CA的垂直平分线的交点:当点P在△ABC外部时,P是以三角形各顶点为圆心,边长为半径的圆与三条垂直平分线的交点每条垂直平分线上得3个交点,故具有这样性质的点P共有10个.(2)9个,如解图①.两条对角线的交点是1个,以正方形各顶点为圆心,边长为半径画圆,在正方形里面和外面的交点一共有8个,故具有这样性质的点P共有9个.。
1、如图,在平面直角坐标系中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.
2、如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C 移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动当P点或Q点到达终点时停止运动,在P、Q两点移动过程中,当△PQC为等腰三角形时,求时间t的值.
3、如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一动点,直线PQ 与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标。
5、如图,已知四边形ABCD是矩形,AB=16,BC=12,点E在射线BC上,点F在线段 BD上,且∠DEF=∠ADB.设BE=x,当△DEF为等腰三角形时,求x的值.
x的图象上运动(不与O重合), 7、如图所示,在平面直角坐标系中,已知A(0,2),动点P在y=√3
3
连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.
(1)求线段AP长度的取值范围.
(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由。
(3)当△OPQ为等腰三角形时,求点Q的坐标.。
初中数学专题复习等腰三角形与直角三角形在初中数学的学习中,等腰三角形和直角三角形是两个非常重要的几何图形。
它们具有独特的性质和定理,在解决数学问题时经常会用到。
下面我们就来对这两个图形进行一次系统的复习。
一、等腰三角形1、定义有两边相等的三角形叫做等腰三角形。
相等的两条边称为腰,另一边称为底边。
两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
2、性质(1)等腰三角形的两个底角相等(简写成“等边对等角”)。
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
3、判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(2)有两条边相等的三角形是等腰三角形。
4、等腰三角形中的常见计算(1)已知等腰三角形的顶角,求底角:底角=(180°顶角)÷ 2 。
(2)已知等腰三角形的底角,求顶角:顶角= 180° 2×底角。
5、等腰三角形的周长和面积(1)周长:等腰三角形的周长=腰长× 2 +底边。
(2)面积:通常可以通过作底边的高,将等腰三角形分成两个直角三角形,然后利用三角形面积公式 S = 1/2×底×高来计算。
二、直角三角形1、定义有一个角为 90°的三角形叫做直角三角形。
2、性质(1)直角三角形的两个锐角互余。
(2)直角三角形斜边上的中线等于斜边的一半。
(3)在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。
(4)勾股定理:直角三角形两直角边的平方和等于斜边的平方。
3、判定(1)如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。
(2)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
4、直角三角形中的常见计算(1)已知直角三角形的两条直角边 a、b,求斜边 c:c =√(a²+b²) 。
专题复习——等腰三角形中的分类讨论例1. 已知等腰△ABC中,有一个内角为40o,则另两个内角分别为________________.例2. 在△ABC中,∠A的外角等于110°,△ABC是等腰三角形,那么∠B=。
例3.等腰三角形两内角的度数比为2∶1,则顶角为。
例1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是例2. 等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_________.例3. 一等腰三角形的周长是25cm,作某一腰上的中线分得两个三角形的周长一个比另一个长5cm,则腰长是例1. 等腰三角形一腰上的高等于腰长的一半,它的底角为例2. 等腰三角形一腰上的高与另一腰的夹角等于20 ,则等腰三角形的顶角度数为例1. 如图,点B在直线L上,点A在直线L外,在直线L上找点C,使得△ABC为等腰三角形。
(要求保留作图痕迹,写清点C的个数)LB例2.在直角坐标系中,O点为坐标原点,A(2,-4),动点B在坐标轴上。
则满足△OAB为等腰三角形的有B点共有个例3. P为直线1:32l y x A=-上一点,(2,0),求使△PAO为等腰三角形的点P的坐标.等腰三角形中的分类讨论练习姓名:日期:指导老师:侯尧等腰三角形是一种特殊的三角形,它除了具有一般三角形的基本性质以外,还具有许多独特的性质,最主要的体现就是它的两底角相等,两腰相等,正是由于具有这两个相等,所以在解等腰三角形的有关题目时必须全面思考,分类讨论,以防漏解。
下面就常见题型举例说明如下:一、角不确定时需分类讨论1、若等腰三角形的一个角为40°,则其他两个角分别为若等腰三角形的一个角为100°,则其他两个角分别为二、边不确定时需分类讨论2、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是等腰三角形的两边长分别是9cm和4cm,则它的周长是等腰三角形周长是20cm,一边长为8cm,则其他两边长分别是等腰三角形周长是20cm,一边长为4cm,则其他两边长分别是等腰三角形周长是13,其中一边长为3,则该等腰三角形的底边长为三、高不确定时需分类讨论3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角等于顶角的若等腰三角形一腰上的高等于腰长的一半,则底角的度数为四、其它(1)等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,求三角形各边的长(2)等腰三角形一腰上的中线把该三角形的周长分成12cm和21cm两部分,求三角形的三边长(3)一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长5、已知点A和点B,以点A和点B为其中两个点作位置不同的等腰三角形,一共可以作个6、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长7、如图,在等边ΔABC所在的平面内求一点P,使ΔPAB、ΔPBC、ΔPAC都是等腰三角形,你能找到几个这样的点?画图描述他们的位置。
微专题5 方法技巧 等腰三角形的分类讨论类型一 顶角或底角的不确定性在等腰三角形中只要给出角的度数,要分是顶角还是底角进行讨论.【针对训练】1.如果等腰三角形的一个角的度数为80°,那么其余的两个角的度数是 50°,50°或20°,80° .2. 如图,在△ABC 中,AB =AC ,∠B =70°,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连接AP ,则∠BAP 的度数是 15°或75° .类型二 腰和底边的不确定性在等腰三角形中只要给出边长,要分是腰还是底边进行讨论.【针对训练】3.已知实数x ,y 满足|x -4|+(y -8)2=0,则以x ,y 的值为两边长的等腰三角形的周长是(B) A .20或16 B .20C .16D .以上答案均不对4.已知a ,b 是等腰三角形的两边长,且a ,b 满足√2a -3b +5+(2a +3b -13)2=0,求此等腰三角形的周长.【解析】根据题意得:{2a -3b +5=02a +3b -13=0,解得{a =2b =3, 若2是腰长,三角形的三边长为2,2,3,因为2+2>3,能组成三角形,周长=2+2+3=7;若2是底边,三角形的三边长为2,3,3,因为2+3>3,能组成三角形,周长=2+3+3=8,所以该等腰三角形的周长为7或8.类型三 高的位置的不确定性三角形的高的位置随着三角形的形状的改变而改变,因此遇到与三角形的高有关的题型时要讨论是锐角三角形的高、直角三角形的高还是钝角三角形的高.【针对训练】5.已知BD 是等腰△ABC 腰上的高,且∠ABD =40°,求△ABC 的顶角度数.(画出符合题意的图形,直接写出答案即可)【解析】分情况讨论:当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°-40°=50°,或是180°-(90°-40°)×2=80°;当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+40°=130°.故这个等腰三角形顶角的度数为50°或80°或130°.类型四中线分割的不确定性中线分成的两部分周长之差为定值,需分两种情况来讨论.【针对训练】6.如图,已知等腰△ABC一腰上的中线BD把这个三角形的周长分成12和21两部分,求这个等腰三角形的底边BC的长.【解析】AB=AC,BD为腰AC上的中线,设AD=DC=x,BC=y,根据题意得{x+2x=12,y+x=21,或{x+2x=21,y+x=12,解得{x=4,y=17,或{x=7,y=5,当x=4,y=17时,等腰三角形的三边长分别为8,8,17, 显然不符合三角形的三边关系,舍去;当x=7,y=5时,等腰三角形的三边长分别为14,14,5.答:这个等腰三角形的底边BC的长是5.。
专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60°的等腰三角形是等边三角形。
知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
等腰三角形专题复习
1. 等腰三角形的定义和性质
- 等腰三角形是指有两条边相等的三角形。
- 等腰三角形的顶角和底角相等。
- 等腰三角形的高线(高)是底边的垂直平分线。
2. 等腰三角形的判定方法和例题
- 判定方法:
- 两边相等(边边边,即SSS判定法)。
- 底角顶角相等(角边角,即AAS判定法)。
- 两边夹角相等(边角边,即SAS判定法)。
- 例题:
- 已知三角形的两边分别为5cm和5cm,夹角为60°,判断该三角形是否为等腰三角形。
3. 等腰三角形的性质
- 顶角和底角相等,即∠A = ∠B。
- 等腰三角形的高线是底边的垂直平分线,即AD = DB。
- 等腰三角形的两底角相等,即∠C = ∠D。
4. 等腰三角形的面积和周长计算公式
- 面积公式:S = (底边长 ×高)/ 2。
- 周长公式:P = 2 ×底边长 + 斜边长。
5. 等腰三角形的应用举例
- 塔尖角:一根高塔边向下俯视角为60°,根据观察图可以判定塔尖为等腰三角形。
- 喷泉造型:喷泉的喷水口为等腰三角形,设计中需要计算出三角形的高来确定喷水的高度。
以上是关于等腰三角形的专题复习内容。
希望能帮助你更好地理解等腰三角形的定义、性质和应用。
如有疑问,请随时提问。
中考数学专题复习:等腰(边)三角形的判定一、选择题1.在△ABC中,若△A=15°,△B=150°,则△ABC是( )A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形2.下列条件中,不能判定△ABC是等腰三角形的是( )A.a=3,b=3,c=4B.a:b:c=4:5:6C.△B=50°,△C=80°D.△A:△B:△C=1:1:23.如图1所示,已知OC平分△AOB,CD△OB.若OD=3 cm,则CD的长为( )图1A.4 cmB.3 cmC.2 cmD.1.5 cm4.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形5.如图2,△A=36°,△C=72°,BE为△ABC的平分线,DE△BC,则图中等腰三角形的个数有( )图2A.6个B.5个C.4个D.3个6.在如图3所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,那么满足条件的点C有( )图3A.6个B.7个C.8个D.9个二、填空题7.已知△ABC,AB=AC,请补充一个条件:_______________,使△ABC成为等边三角形.8.如图4所示,BD,CE分别是△ABC两个外角的平分线,DE过点A,且DE△BC.若DE=14,BC=7,则△ABC的周长为__________.图49.在一次活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图5所示),由此可知,B,C两地相距__________m.图5三、解答题10.如图6,在等边三角形ABC中,D是AB上一点,DE△BC,垂足为E,EF△AC,垂足为F,FD△AB.求证:△DEF为等边三角形.图611.如图7,AD平分△BAC,AD△BD,垂足为D,DE△AC交AB于点E.求证:△BDE是等腰三角形.图712.如图8所示,在等边三角形ABC中,△ABC与△ACB的平分线相交于点O,且OD△AB 交BC于点D,OE△AC交BC于点E.(1)试判断△ODE的形状,并说明你的理由;(2)线段BD,DE,EC三者有什么关系?并说明理由.图813.如图9所示,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动.设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ能否成为等边三角形?若能,请求出t值;若不能,请说明理由.图914.在△ABC中,CA=CB,△ACB=120°,将一块足够大的三角尺PMN(△M=90°,△MPN=30°)按图10所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角△PCB=α,斜边PN交AC于点D.(1)当PN△BC时,△ACP=________°.(2)当α=15°时,求△ADN的度数.(3)在点P滑动的过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的度数.图10参考答案1.A2.B [解析] 选项A,a=3,b=3,c=4,△a=b,△△ABC是等腰三角形;选项B,△a:b:c=4:5:6,△a≠b≠c,△△ABC不是等腰三角形;选项C,△△B=50°,△C=80°,△△A=180°-△B-△C=50°,则△A=△B,△AC=BC,△△ABC是等腰三角形;选项D,△△A:△B:△C=1:1:2,△△A=△B,△AC=BC,△△ABC是等腰三角形.故选B.3.B [解析] 根据题意,得△AOC=△BOC.因为CD△OB,所以△C=△BOC,所以△C=△AOC,则CD=OD.又因为OD=3 cm,所以CD=3 cm.4.C [解析] △若120°的角为顶角的外角,则顶角为180°-120°=60°,底角为(180°-60°)÷2=60°,三角形为等边三角形;△若120°的角为底角的外角,则底角为180°-120°=60°,顶角为180°-60°×2=60°,所以三角形为等边三角形.综上,该等腰三角形为等边三角形.5.B [解析] △ABC,△ADE,△ABE,△DBE,△BCE是等腰三角形.6.C [解析] 如图,分情况讨论.△AB为等腰三角形ABC的底边时,符合条件的点C有4个;△AB为等腰三角形ABC其中的一条腰时,符合条件的点C有4个.故符合条件的点C共有8个.7.AB=BC或AC=BC或△BAC=60°等(答案不唯一) [解析] 三边相等或有一个角是60°的等腰三角形是等边三角形.8.219.200 [解析] 如图,由已知可得AM△BN,所以△MAC=△ALB=60°.由△ALB=△NBC+△C,△NBC=30°,得△C=30°.又因为△BAC=△MAB-△MAC=30°,所以△C=△BAC,故BC=AB=200 m.10.证明:在等边三角形ABC中,△B=60°.△DE△BC,△△DEB=90°,△△BDE=30°.△FD△AB,△△ADF=90°,△△EDF=60°.同理△DEF=△DFE=60°,△△DEF为等边三角形.11.[解析] 如图,直接利用平行线的性质得出△1=△3,进而利用角平分线的定义结合互余的性质得出△B=△BDE,即可得出答案.证明:如图,△DE△AC,△△1=△3.△AD平分△BAC,△△1=△2,△△2=△3.△AD△BD,△△2+△B=90°,△3+△BDE=90°,△△B=△BDE,△△BDE是等腰三角形.12.[解析] (1)根据平行线的性质及等边三角形的判定定理可得到△ODE是等边三角形; (2)根据角平分线的性质及平行线的性质可得到△DBO=△DOB,根据等角对等边可得到DB=DO,同理可证明EC=EO.因为DE=OD=OE,所以BD=DE=EC.解:(1)△ODE是等边三角形.理由:△△ABC是等边三角形,△△ABC=△ACB=60°.△OD△AB,OE△AC,△△ODE=△ABC=60°,△OED=△ACB=60°,△△ODE是等边三角形.(2)BD=DE=EC.理由:△BO平分△ABC,且△ABC=60°,△△ABO=△OBD=30°.△OD△AB,△△BOD=△ABO=30°,△△DBO=△DOB,△BD=OD.同理EC=OE.△△ODE是等边三角形,△OD=DE=OE,△BD=DE=EC.13.解:(1)当点Q到达点C时,PQ与AB垂直.理由:△AB=AC=BC=6 cm,△当点Q到达点C时,AP=3 cm,△P为AB的中点,△PQ△AB.(2)能.假设在点P与点Q的运动过程中,△BPQ能成为等边三角形,△BP=PQ=BQ.△△B=60°,△BP=BQ时,△BPQ为等边三角形.此时有6-t=2t ,解得t=2.△当t=2时,△BPQ 是等边三角形. 14.[解析] (1)△PN△BC ,△MPN=30°,△△PCB=△MPN=30°. △△ACB=120°,△△ACP=△ACB -△PCB=90°. 解:(1)90(2)△△ACB=120°,△PCB=15°, △△PCD=△ACB -△PCB=105°,△△PDC=180°-△PCD -△MPN=180°-105°-30°=45°, △△ADN=△PDC=45°.(3)△PCD 的形状可以是等腰三角形. 由题意得△PCD=120°-α,△CPD=30°. △当PC=PD 时,△PCD 是等腰三角形,△PCD=12(180°-△CPD)=12×(180°-30°)=75°,即120°-α=75°,解得α=45°;△当PD=CD 时,△PCD 是等腰三角形,△PCD=△CPD=30°, 即120°-α=30°,解得α=90°;△当PC=CD 时,△PCD 是等腰三角形,△PCD=180°-2×30°=120°, 即120°-α=120°,解得α=0°,此时点P 与点B 重合,点D 与点A 重合.综上所述,当△PCD 是等腰三角形时,α的度数是45°或90°或0°.。
在坐标系中构造等腰三角形一、 知识复习:1._____________________的三角形是等腰三角形。
2.等腰三角形的性质:①_____________________________________②_____________________________________③_____________________________________二、 基础准备(一)平面内构造等腰三角形1. 如图1,在射线AC 上寻找一点P ,使得△ABP 是等腰三角形,你能找到几个P 点?2. 如图2,在直线AC 上寻找一点P ,使得△ABP 是等腰三角形,你能找到几个P 点?3. 如图3,已知线段AB ,在平面内找出一点P ,使得△PAB 是等腰直角三角形,找出所有点P.(二)平面直角坐标系中构造等腰三角形1.已知O (0,0)和A(1,2),在坐标轴上求点B,使△OAB 为等腰三角形。
2.O (0,2)和A(2,0): 在坐标轴上求点B,使△OAB 为等腰三角形3. A(-1,1)和B(3,4): 在坐标轴上求点C,使△ABC 为等腰三角形三、例题1. 如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:_____ ___; 结论二:______ ___; 结论三: ________.(2)若∠B=45°,BC=2,当点D 在BC 上运动时(点D 不与B 、C 重合),若△ADE 是等腰三角形,求此时BD 的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)图1 C B A 图2 C B A 图3 B A2.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)当t为何值时,△MNA是一个等腰三角形?3. 如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.四、练习1.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A.7个 B.8个 C.9个 D.10个2. 如图,⊙O的半径为4cm,AB是⊙O的直径,BC切⊙O于点B,且BC=4cm,当点P在⊙O上运动时,是否存在点P,使得△PBC为等腰三角形,若存在,有几个符合条件的点P,并分别求出点P到线段BC的距离;若不存在,请说明理由.C B A 4.已知等边三角形ABC ,如图,请在平面上找一点P ,使△PAB 、△PBC 、△PAC 、同时为等腰三角形,有多少个不同的结果?5. 已知正比例函数图象(记为直线l 1)经过(1,-1)点,现将它沿着y 轴的正方向向上平移1个单位得到直线l 2,(1)求直线l 2的表达式;(2)若直线l 2与x 轴、y 轴的交点分别为A 点、B 点,问:在x 轴上是否存在点P ,使得以P 、A 、B 为顶点的三角形为等腰三角形?若存在,请写出它的坐标;若不存在,说明理由。
等腰三角形分类讨论专题复习等腰三角形分类讨论一、等腰三角形的分类等腰三角形可以按照边、角、外角、高、中线等方式进行分类。
具体分类如下:1.边分类:指等腰三角形两边的长度是否相等,分为等腰三角形和非等腰三角形。
2.角分类:指等腰三角形两个底角是否相等,分为等腰三角形和非等腰三角形。
3.外角分类:指等腰三角形外角的大小是否相等,分为等腰三角形和非等腰三角形。
4.高分类:指等腰三角形的一腰上的高与另一腰的夹角,分为等腰三角形和非等腰三角形。
5.中线分类:指等腰三角形的一腰上的中线分三角形的周长为两部分,分为等腰三角形和非等腰三角形。
6.中垂线分类:指等腰三角形的一腰上的中垂线与另一腰的夹角,分为等腰三角形和非等腰三角形。
思考题:在ABC三边所在的直线上找一点D,使得ABD 为等腰三角形,画图说明点D所在的位置。
二、练1.若一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是多少?2.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于多少?3.已知等腰三角形的一边等于5,周长为12,则一边等于多少?4.已知△ABC的周长为24,AB=AC,AD⊥BC于D,若△ABD的周长为20,则AD的长为多少?5.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长。
6.在等腰三角形中,AB的长是BC的2倍,周长为40,则AB的长为多少?7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为多少?8.等腰三角形中,两条边的长分别为4和9,则它的周长是多少?9.若一个等腰三角形有一个角为100°,则另两个角为多少?10.一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,求这个等腰三角形的底边长。
11.一个等腰三角形的一个内角比另一个内角的2倍少30°,求这个三角形的三个内角的度数。
中考数学备考专题复习等腰三角形含解析(2)一、单选题(共12题;共24分)1、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°2、如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A、25B、30C、45D、603、如图所示,A是斜边长为m的等腰直角三角形,B , C , D都是正方形.则A,B,C,D 的面积的和等于 ( )A、B、C、D、4、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( )A、2B、2.4C、2.6D、35、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A、15 dmB、20dmC、25dmD、30dm6、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A、B、C、3D、47、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD 的长度为( )A、B、C、D、8、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD是()A、1B、2C、3D、49、在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A、②③B、③④C、①②④D、②③④10、(20__•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(20__•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、412、(20__•黔东南州)20__年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A、13B、19C、25D、169二、填空题(共5题;共6分)13、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是________,对角线的长是________.14、如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.15、(20__•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=________.16、(20__•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为________.17、(20__•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm.三、解答题(共2题;共10分)18、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.19、如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E,D分别为边AB,AC上的点,且满足OE⊥OD,求证:OE=OD.四、综合题(共5题;共65分)20、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.21、(20__•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(20__•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23、(20__•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO 绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)24、(20__•义乌)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2_+3,直线l2:y=2_﹣3.(1)分别求直线l1与_轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F 上,Q是坐标平面内的点,且N点的横坐标为_,请直接写出_的取值范围(不用说明理由).答案解析部分一、单选题【答案】A【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形【解析】【解答】此题有两种情况,一种是该高线在等腰三角形内部,另外一种是在等腰三角形外部.当该高线在三角形内部时,那么该三角形的顶角度数为30°,其底角也就是为75°.当高线在三角形外部时,其顶角度数为150°,那么其底角为15°.【分析】此题有一定的难度.考生容易忽视两种情况,只考虑到一种情况.此类型题经常出现在各种试卷上,希望考生能通过此题达到举一反三的效果.【答案】B【考点】等边三角形的判定,直角三角形斜边上的中线,翻折变换(折叠问题)【解析】【解答】△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【答案】A【考点】勾股定理,等腰直角三角形【解析】【解答】等腰直角三角形中斜边长为m,则腰长为, C,D的边长为,∴A的面积为,C,D的面积为,B的面积为m2 ,故A、B、C、D的面积和为.故选 A.【分析】根据等腰直角三角形斜边长为m,即可求得等腰直角三角形腰长,则正方形B、C、D 的面积均可以求出来.【答案】B【考点】垂线段最短,直角三角形斜边上的中线,矩形的判定与性质,相似三角形的判定与性质【解析】【解答】连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴,∴,∴AP最短时,AP=4.8∴当AM最短时,AM==2.4.故选B.【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【答案】C【考点】平面展开-最短路径问题【解析】【解答】依题意知作楼梯平面图.易知AB=.选C.【分析】本题难度较低,主要考查学生对直角三角形勾股定理知识点的掌握.【答案】C【考点】等腰三角形的判定与性质,三角形中位线定理【解析】【解答】∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形.同理△CAD是等腰三角形.∴点Q是AE中点,点P是AD中点(三线合一).∴PQ是△ADE的中位线.∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6.∴PQ=DE=3.故选C.【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.【答案】A【考点】平行线之间的距离,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】如图,分别过点A、B、D作AF⊥l3 ,BE⊥l3 ,DG⊥l3 ,∵△ABC是等腰直角三角形,∴AC=BC.∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF.在△BCE与△ACF中,∵∠EBC=∠ACF,BC=AC,∠BCE=∠CAF,∴△BCE≌△ACF(ASA).∴CF=BE=3,CE=AF=4.在Rt△ACF中,∵AF=4,CF=3,∴.∵AF⊥l3 ,DG⊥l3 ,∴△CDG∽△CAF. ∴,即,解得.在Rt△BCD中,∵, BC=5,∴.故选A.【分析】分别过点A、B、D作AF⊥l3 ,BE⊥l3 ,DG⊥l3 ,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【答案】C【考点】角平分线的定义,等腰三角形的判定,含30度角的直角三角形【解析】【解答】因为△ABC中,∠C=90° ,∠ABC=60° ,所以∠BAC=30°;因为BD平分∠ABC ,所以∠ABD=∠DBC=30° ,所以AD=BD,因为AD=6,所以CD=3,故C项正确.【分析】结合根据角平分线的定义得∠ABD=∠DBC=30°,由含30°角的直角三角形可得CD是BD的一半即可得CD的长度,【答案】D【考点】角平分线的性质,等腰三角形的性质,等边三角形的性质,矩形的性质【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.【答案】D【考点】对顶角、邻补角,三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED= (180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG ,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG ,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.【答案】C【考点】勾股定理的证明【解析】【解答】解:根据题意得:c2=a2+b2=13,4_ ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【分析】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.二、填空题【答案】5;10【考点】等边三角形的判定与性质,矩形的性质【解析】【解答】如下图所示,∠AOB=60°,AB+AC=15;∵在矩形ABCD中,∠AOB=60°,∴△AOB是正三角形,∴AB=OA ,∴AC=2AB ,又∵AB+AC=15,∴AB=5,AC=10即短边的长是5,对角线的长是10.【分析】矩形的性质与两条对角线的夹角为60°相结合得到所需的正三角形.【答案】【考点】等边三角形的判定与性质,菱形的性质,弧长的计算【解析】【解答】∵菱形ABCD中,AB=BC,又∵AC=AB,∴AB=BC=AC,即△ABC是等边三角形.∴∠BAC=60°,∴弧BC的长是: =故答案是:【分析】本题考查了弧长公式,理解B,C两点恰好落在扇形AEF的弧EF上,即B、C在同一个圆上,得到△ABC是等边三角形是关键.【答案】【考点】正方形的性质,解直角三角形,等腰直角三角形【解析】【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD= CE= a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD= a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF= CE= a,在Rt△BEF中,tan∠EBF= = = ,即∠EBC= .故答案为.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE= a,∠DCE=45°,再利用正方形的性质得CB=CD= a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF= CE= a,然后在Rt△BEF中根据正切的定义求解.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.【答案】【考点】勾股定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,∴BD= = ,∵弦AD平分∠BAC,∴ ,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED_AD,∴()2=ED_5,解得DE= .故答案为:.【分析】此题主要考查了相似三角形的判定和性质,以及圆周角定理,解答此题的关键是作辅助线,构造出△ABD∽△BED.连接BD,由勾股定理先求出BD的长,再判定△ABD∽△BED,根据对应边成比例列出比例式,可求得DE的长.【答案】8【考点】勾股定理,矩形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2 ,即(8﹣a)2=42+a2 ,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴ = = = .∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF= C△HAE=8.故答案为:8.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.三、解答题【答案】解:∵DE垂直平分AB,∴∠DAE=∠B,∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=(90°-∠B)=∠B,∴3∠B=90°,∴∠B=30°.【考点】三角形内角和定理,角平分线的性质,线段垂直平分线的性质【解析】【分析】根据DE垂直平分AB,求证∠DAE=∠B,再利用角平分线的性质和三角形内角和定理,即可求得∠B的度数.【答案】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,在△AOD和△BOE中∴△AOD≌△BOE,∴OE=OD.【考点】全等三角形的判定与性质,等腰直角三角形【解析】【分析】连接AO,证明△BEO≌△ADO即可.四、综合题【答案】(1)【解答】证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△A FE和Rt△BCA中∴△AFE≌△BCA(HL),∴AC=EF;(2)【解答】∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【考点】全等三角形的判定与性质,等边三角形的性质,平行四边形的判定【解析】【分析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【答案】(1)证明;∵在矩形ABCD中,∠DCE=90°,F是斜边DE的中点,∴CF= DE=EF,∴∠FEC=∠FCE,∵∠BFC=90°,E为BC中点,∴EF=EC,∴CF=CE,在△BCF和△DEC中,,∴△BCF≌△DEC(ASA)(2)解:设CE=a,由BE=2CE,得:BE=2a,BC=3a,∵CF是Rt△DCE斜边上的中线,∴CF= DE,∵∠FEC=∠FCE,∠BFC=∠DCE=90°,∴△BCF∽△DEC,∴ ,即: = ,解得:ED2=6a2 ,由勾股定理得:DC= = = a,∴ = =(3)解:过C′作C′H⊥AF于点H,连接CC′交EF于M,如图所示:∵CF是Rt△DCE斜边上的中线,∴FC=FE=FD,∴∠FEC=∠FCE,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠ADF=∠CEF,∴∠ADF=∠BCF,在△ADF和△BCF中,,∴△ADF≌△BCF(SAS),∴∠AFD=∠BFC=90°,∵CH⊥AF,C′C⊥EF,∠HFE=∠C′HF=∠C′MF=90°,∴四边形C′MFH是矩形,∴FM=C′H= ,设EM=_,则FC=FE=_+ ,在Rt△EMC和Rt△FMC中,由勾股定理得:CE2﹣EM2=CF2﹣FM2 ,∴12﹣_2=(_+ )2﹣()2 ,解得:_= ,或_=﹣(舍去),∴EM= ,FC=FE= + ;由(2)得:,把CE=1,BE=n代入计算得:CF= ,∴ = +解得:n=4【考点】直角三角形斜边上的中线,勾股定理的应用,平行四边形的判定与性质,相似三角形的判定与性质【解析】【分析】本题是四边形综合题目,考查了矩形的性质与判定、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质等知识;本题综合性强,难度较大,证明三角形全等和三角形相似是解决问题的关键.【答案】(1)解:①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△F AE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为_,则EC=_﹣2,FC=_﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2 ,即(_﹣2)2+(_﹣3)2=25.解得:_=6.∴AB=6.∴AH=6.(2)解:如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2 .∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2 .【考点】全等三角形的判定与性质,勾股定理的应用,正方形的性质,旋转的性质【解析】【分析】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为_,接下来,在Rt△EFC中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明明即可.【答案】(1)解:如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB= =5,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′= BA=5(2)解:作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH= BO′= ,O′H= BH= ,∴OH=OB+BH=3+ = ,∴O′点的坐标为(,)(3)解:∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于_轴的对称点C,连结O′C交_轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于_轴对称,∴C(0,﹣3),设直线O′C的解析式为y=k_+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y= _﹣3,当y=0时, _﹣3=0,解得_= ,则P(,0),∴OP= ,∴O′P′=OP= ,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D= O′P′= ,P′D= O′D= ,∴DH=O′H﹣O′D= ﹣ = ,∴P′点的坐标为(,)【考点】线段的性质:两点之间线段最短,含30度角的直角三角形,旋转的性质,坐标与图形变化-旋转【解析】【分析】本题考查了几何变换综合题:熟练掌握旋转的性质;理解坐标与图形性质;会利用两点之间线段最短解决最短路径问题;记住含30度的直角三角形三边的关系.(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于_轴的对称点C,连结O′C交_轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y= _﹣3,从而得到P(,0),则O′P′=OP= ,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【答案】(1)解:直线l1:当y=0时,2_+3=0,_=﹣则直线l1与_轴坐标为(﹣,0)直线l2:当y=3时,2_﹣3=3,_=3则直线l2与AB的交点坐标为(3,3)(2)解:①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(_,2_﹣3),则MN=_﹣4,∴2_﹣3=4+3﹣(_﹣4),_= ,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(_,2_﹣3),过点M1作M1G1⊥OA,交BC于点H1 ,则Rt△AM1G1≌Rt△PM1H1 ,∴AG1=M1H1=3﹣(2_﹣3),∴_+3﹣(2_﹣3)=4,_=2∴M1(2,1);设M2(_,2_﹣3),同理可得_+2_﹣3﹣3=4,∴_= ,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,)【考点】矩形的性质,等腰直角三角形【解析】【分析】考查了四边形综合题,涉及的知识点有:坐标轴上点的坐标特征,等腰直角三角形的性质,矩形的性质,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.(1)根据坐标轴上点的坐标特征可求直线l1与_轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标_的取值范围.。
专题17 等腰三角形的核心知识点精讲1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.考点1:等腰三角形的性质与判定考点2:等边三角形的性质与判定性质 1. 等腰三角形的两个底角度数相等 2. 等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”) 3. 等腰三角形是轴对称图形,有2条对称轴 判定1. 有两条边相等的三角形的等腰三角形2. 有两个角相等的三角形是等腰三角形 面积公式,其中a 是底边常,hs 是底边上的高 性质 1. 三条边相等 2. 三个内角相等,且每个内角都等于60° 3. 等边三角形是轴对称图形,有3条对称轴 判定 1. 三条边都相等的三角形是等边三角形 2. 三个角相等的三角形是等边三角形 3. 有一个角的是60°的等腰三角形是等边三角形 面积公式 是等边三角形的边长,h 是任意边上的高考点3 :线段垂直平分线(1)线段垂直平分线的作图1. 分别以点 A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于 C 、D 两点; 2. 作直线 CD ,CD 为所求直线(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上【题型1:等腰三角形的性质和判定】【典例1】(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为( )A .25B .22C .19D .181.(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是( )A .70°B .45°C .35°D .50°2.(2023•菏泽)△ABC 的三边长a ,b ,c 满足(a ﹣b )2++|c ﹣3|=0,则△ABC 是( ) A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形3.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.【题型2:等边三角形的性质和判定】【典例2】(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交B C的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°1.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°2.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△B OC的面积之和为()A.B.C.D.3.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.【题型3:线段的垂直平分线】【典例3】(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是.1.(2023•吉林)如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为度.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若A B=4,则DC的长是.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是.一.选择题(共9小题)1.若等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或122.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°3.如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A.AB,AC两边中线的交点处B.AB,AC两边高线的交点处C.∠B与∠C这两个角的角平分线的交点处D.AB,AC两边的垂直平分线的交点处4.在△ABC中,若AB=AC=3,∠B=60°,则BC的值为()A.2B.3C.4D.55.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.226.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.107.如图,在△ABC中,∠A=90°,边AB的垂直平分线交AB于点D,交BC于点E,已知BE=3,则B C长为()A.5B.6C.7D.88.如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点F,若∠BAC=140°,则∠EAF的度数为()A.95°B.100°C.105°D.110°9.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE的度数为()A.20°B.25°C.30°D.35°二.填空题(共6小题)10.如图所示,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交A C于点E,则∠EBC的度数是度.11.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC与点E,∠A=∠ABE.若A C=7,BC=4,则BD的长为.12.如图,在等边三角形ABC中,AD⊥BC,垂足为D,则∠BAD=°.13.如图,在边长为4的等边△ABC中,点P为BC边上任意一点,PE⊥AB于点,PF⊥AC于点F,则P E+PF的长度和为.14.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于点D.若BC=9,AD=5,则△ABD的面积为.15.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.三.解答题(共3小题)16.已知,如图,△ABC是等边三角形,D是边AC的中点,E是BC延长线上的一点,DB=DE.求∠CD E的度数.17.图①中所示的遮阳伞,伞柄垂直于地面,其示意图如图②.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN,CM=CN.(1)求证:PC垂直平分MN;(2)若CN=PN=60cm,当∠CPN=60°时,求AP的值.18.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为20cm,AC=7cm,则DC的长为多少?一.选择题(共5小题)1.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°2.如图,用一张矩形纸片DEFG覆盖等边△ABC,且DG∥BC,若边AB被DG、EF三等分,则△ABC被覆盖(阴影部分)的面积是未被覆盖的面积的()A.B.C.D.3.如图,在等边三角形ABC中,AB=AC=BC=10cm,DC=4cm.如果点M,N都以2cm/s的速度运动,点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动.它们同时出发,当两点运动时间为t秒时,△BMN是一个直角三角形,则t的值为()A.B.C.D.4.如图,在等边△ABC中,AB=5,点D在AB上,且BD=1,点E、F分别是BC、AC上的点,连接DE,EF,如果∠DEF=60°,DE=EF,那么BE的长是()A.3B.3.5C.4D.4.55.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2B.1cm2C.1.2cm2D.不能确定二.填空题(共4小题)6.如图,边长为5cm的正三角形ABC向右平移1cm,得到正三角形A'B'C',此时阴影部分的周长为c m.7.如图,在等边△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在BC延长线上,且EB=EF,若BD=4,BF=8,则线段DE的长为.8.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AB于O,则:①DB=AE;②∠AMC=∠DNC;③△MCE是等腰三角形;④△MCN是等边三角形;⑤∠AOD=60°.其中,正确的有.9.如图,四边形ABCD,AD=1,,BC=3,点E为AB的中点,连接DE、CE,使得∠DEA+∠C EB=60°,则DC的最大值为.三.解答题(共2小题)10.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE D B(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).11.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?1.(2022•大连)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6B.3C.1.5D.12.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.3.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交AC于点E,则∠EBC=.。
中考数学专题复习等腰三角形练习一、选择题1. 如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=( )A .50°B .100°C .120°D .130°2. 已知等腰三角形的一个角等于42°,则它的底角为( )A .42°B .69°C .69°或84°D .42°或69°3. 如图,等边三角形OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(1,) 3C .(,1)D .()33,34.如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°CEF5.如图,在△ABC 中,AB =BC ∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A.B.9C.6D.6.如图,等腰直角三角形ABC 中,∠ABC =90°,BA =BC ,将BC 绕点B 顺时针旋转θ(0°<θ<90°),得到BP ,连结CP ,过点A 作AH ⊥CP 交CP 的延长线于点H ,连结AP ,则∠PAH 的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小7.如图,在中,,观察图中尺规作图的痕迹,可知ABC ∆,40AC BC A =∠=︒的度数为BCG ∠A .B .C .D .40︒45︒50︒60︒8.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm 2的是( )A.B.C.D.二、填空题9. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是 .10.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是 .11.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC 是等边三角形,则∠B=________°.12.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB 的中点.若BC=12,AD=8,则DE的长为.ECB A13.若等腰三角形的一个底角为,则这个等腰三角形的顶角为__________.72 14. 如图,等边三角形ABC 内有一点P ,分别连接AP ,BP ,CP ,若AP=6,BP=8,CP=10,则S △ABP +S △BPC = .15.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为 .MDC BA 16.如图,在直角坐标系中,点A (1,1),B (3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA =CB ,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为.三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.19.如图,△ABC中,AB=AC,∠B的平分线交AC于D,AE∥BC交BD的延长线于点E,AF⊥AB交BE于点F.(1)若∠BAC=40°,求∠AFE的度数;(2)若AD=DC=2,求AF的长.FDEC AB 20. (12分)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .【问题解决】如图1,若点D 在边BC 上,求证:CE +CF =CD ;【类比探究】如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.21. 如图,在△ABC 中,AB =AC =5 cm ,BC =6 cm ,AD 是BC 边上的高.点P 由C 出发沿CA 方向匀速运动.速度为1 cm/s.同时,直线EF 由BC 出发沿DA 方向匀速运动,速度为1 cm/s ,EF //BC ,并且EF 分别交AB 、AD 、AC 于点E ,Q ,F ,连接PQ .若设运动时间为t (s)(0<t <4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.答案一、选择题1. 【答案】B2. 【答案】D [解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】B [解析]过点B作BH⊥AO于点H,∵△OAB是等边三角形,33∴OH=1,BH=,∴点B的坐标为(1,).4. 【答案】B【解析】可利用三角形的外角性质求∠FEC的度数,结合等腰三角形与平行线的性质,可得∠EDC、∠B均与∠C相等.即:∵AB=AC,∴∠B=∠C=65°.∵DF∥AB,∴∠EDC=∠B=65°.∴∠FEC=∠EDC+∠C=65°+65°=130°.5. 【答案】D【解析】∵分别以点A、C为圆心,AC的长为半径作弧,两弧交于点D,∴AD=AC=CD,∴△ACD是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°.∵∠BAC=30°, AB= ∴,AE=,∴AC=3.32在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=,∴∴BD=32=∴四边形ABCD 的面积为:.3333221=⨯⨯6. 【答案】C【解析】本题考查了等腰三角形的性质,三角形的内角和,旋转的性质.由旋转得BC=BP=BA ,∴△BCP 和△ABP 均是等腰三角形.在△BCP 中,∠CBP=θ,BC=BP ,∴∠BPC=90°-θ.在△ABP 中,∠ABP=90°-θ,同理得∠12APB=45°+θ,∴∠APC=∠BPC +∠APB =135°,又∵∠AHC=90°,∴∠12PAH=45°,即其度数是个定值,不变.因此本题选C .7. 【答案】C【解析】由作法得,∵,∴平分,,CG AB ⊥AB AC =CG ACB ∠A B ∠=∠∵,∴.故选C .1804040100ACB ∠=︒-︒-︒=︒1502BCG ACB ∠=∠=︒8. 【答案】最小的等腰直角三角形的面积42=1(cm 2),平行四边形面=18×12×积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .二、填空题9. 【答案】1 [解析]由勾股定理可得,a 2+b 2=13,直角三角形面积=(13-1)÷4=3,即ab=3,所以ab=6,所以(a -b )2=a 2+b 2-2ab=13-12=1. 1210. 【答案】10或11.【解析】分3是腰长与底边长两种情况讨论求解即可.①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.11. 【答案】30°【解析】本题考查了等边三角形和等腰三角形以及垂直平分线的性质.因为FE 垂直平分BC ,∴ FC =FB ∴∠B =∠BCF ∵△ACF 是等边三角形,∴∠AFC =60° ,∴ ∠B =30°12. 【答案】5【解析】∵AB =AC ,∠BAC 的平分线AD 交BC 于点D ,∴AD ⊥BC ,BD =CD =BC =6.在R t △ABD 中,由勾股定理,得AB =10.又∵E 12为AB 的中点,∴DE =AB =5.故答案为5.1213. 【答案】36°【解析】∵等腰三角形的一个底角为,∴等腰三角形的顶角72︒,180727236=︒-︒-︒=︒故答案为:.36︒14. 【答案】16+24 [解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接3PP',所以P'C=PA=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16,3因为PC=10,所以PP'2+P'C 2=PC 2,所以△PP'C 是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =163+24.15. 【答案】-2【解析】延长AD 、BC 交于点P , 作MH ⊥PB 于H .∵AB ∥CD ,∴=,∠ABC =∠DCP =60°.∵AD =BC =CD =4,∴PD =PD AD PC BCPC ,∴△PDC 为等边三角形,∴PD =PC =CD =4,∠P =60°. 由∠AMD =90°,可知点M 在以AD 为直径的⊙E 上,且在四边形ABCD 内的一个动点,根据垂线段最短可知E 、M 、H 三点共线时MH 最小.在R t △PEH 中,EP =6,∠P=60°,∴EH =EP ·sin 60°=∴MH 的最小值=EH -EM =2.16. 【答案】4+25【解析】先求点C 的坐标,再利用最短路径知识确定D 点位置,最后求四边形ACBD 的最小周长即可.由点A 与点C 的纵坐标均为1,可知AC ∥x 轴,又点A ,B 是第一象限角平分线上的两点,∴∠BAC =45°,又∵CA =CB ,∴∠CBA =45°,∴AC ⊥BC ,∴C(3,1),则AC =BC =2.如图,作点A 关于y 轴的对称点E ,连接BE 交y 轴于点D ,此时AD +BD 的值最小,为线段BE 的长.由轴对称性可知AE=2,则EC=4.在R t △BCE 中,根据勾股定理,得BE ===2.∴四边形ACBD 的最小周长为2+2+222EC BC +2242+5=4+2.55三、解答题17. 【答案】解:(1)(方法一):∵AB=AC ,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B -∠C=180°-42°-42°=96°.∵AD ⊥BC ,∴∠BAD=∠BAC=×96°=48°.1212(方法二):∵AB=AC ,∠C=42°,∴∠B=∠C=42°.∵AD ⊥BC 于点D ,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF ∥AC ,∴∠CAF=∠F ,∵AB=AC ,AD ⊥BC ,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AE=FE.18. 【答案】证明:∵AB =AC ,∴∠ABC =∠C ,∵AD 是BC 边上的中线,∴AD ⊥BC ,∴∠BAD +∠ABC =90°,(3分)∵BE ⊥AC,∴∠CBE +∠C =90°,∴∠CBE =∠BAD.(5分)19. 【答案】解:(1)∵AB =AC ,∠BAC =40°,∴∠ABC =×(180°-40°)=70°.12∵BD 平分∠ABC ,∴∠ABD =∠DBC =×70°=35°.12∵AF ⊥AB ,∴∠BAF =90°.∴∠AFE =∠BAF +∠ABD =90°+35°=125°.(2)∵BD 平分∠ABC ,BD =BD ,AD =CD ,∴△BDA ≌△BDC .∴AB =BC .又AB =AC ,∴AB =BC =AC .∴△ABC 为等边三角形.∴∠ABC =60°,∠ABD =30°.∵AD =DC =2,∴AB =4.在R t △ABF 中,AF =AB ·tan 30°=说明:此题中的条件AE ∥BC 是多余的.【解析】(1)由“等边对等角”求出∠ABC ,由角平分线的定义求出∠ABD ,∠AFE 是△ABF 的外角,因此∠AFE =∠BAF +∠ABD ;(2)由BD 既是△ABC 的角平分线又是中线可知AB =BC ,从而推出△ABC 是边长为2的等边三角形.在R t △ABF 中可解出AF .20. 【答案】【问题解决】在CD 上截取CH =CE ,易证△CEH 是等边三角形,得出EH =EC =CH ,证明△DEH ≌△FEC (SAS ),得出DH =CF ,即可得出结论;【类比探究】过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC =∠DGC =60°,得出△GCD 为等边三角形,则DG =CD =CG ,证明△EGD ≌△FCD (SAS ),得出EG =FC ,即可得出FC =CD +CE .【问题解决】证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG =FC ,∴FC =EG =CG +CE =CD +CE .21. 【答案】(1)如解图①,连接DF ,解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中AD ==4,52-32∵EF //BC ,∴△AEF ∽△ABC ,∴=,EF BC AQ AD ∴=,∴EF =(4-t ),EF 64-t 432∵EF //BD ,∴当EF =BD 时,四边形EFDB 是平行四边形,∴(4-t )=3,32∴t =2,∴当t =2s 时,四边形EFDB 是平行四边形;(2)如解图②,作PN ⊥AD 于N ,解图②∵PN //DC ,∴=,PN DC AP AC ∴=,PN 35-t 5∴PN =(5-t ),35∴y =DC ·AD -AQ ·PN 1212=6-(4-t ) ·(5-t )1235=6-(t 2-t +6)3102710=-t 2+t (0<t <4);3102710(3)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .解图③∵当QN 为AP 的垂直平分线时QA =QP ,QN ⊥AP ,∴AN =NP =AP =(5-t ),1212由题意cos ∠CAD ==,AD AC AN AQ∴=,∴t =,12(5-t )4-t 4573∴当t =s 时,点Q 在线段AP 的垂直平分线上.73∵sin ∠FPH ==sin ∠CAD =,∵PA =5-=,AF =AQ ÷=,FH PF 357383452512∴PF =,∴FH =.712720∴点F 到直线PQ 的距离h =(cm). 720。