阴极保护原理讲义.
- 格式:ppt
- 大小:421.00 KB
- 文档页数:75
阴极保护>阴极保护原理:金属—电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位ηa 减小,反应速度减小,因而金属腐蚀速度减小,称为阴极保护>阴极保护效应。
利用阴极保护>阴极保护效应减轻金属设备腐蚀的防护方法叫做阴极保护>阴极保护。
由外电路向金属通入电子,以供去极化剂还原反应所需,从而使金属氧化反应(失电子反应)受到抑制。
当金属氧化反应速度降低到零时,金属表面只发生去极化剂阴极反应。
两种阴极保护>阴极保护法:外加电流阴极保护>阴极保护和牺牲阳极保护。
阴极保护>阴极保护技术有两种:牺牲阳极阴极保护>阴极保护和强制电流(外加电流)阴极保护>阴极保护。
1)牺牲阳极阴极保护>阴极保护技术牺牲阳极阴极保护>阴极保护技术是用一种电位比所要保护的金属还要负的金属或合金与被保护的金属电性连接在一起,依靠电位比较负的金属不断地腐蚀溶解所产生的电流来保护其它金属。
优点: A: 一次投资费用偏低,且在运行过程中基本上不需要支付维护费用 B: 保护电流的利用率较高,不会产生过保护 C: 对邻近的地下金属设施无干扰影响,适用于厂区和无电源的长输管道>管道,以及小规模的分散管道>管道保护 D: 具有接地和保护兼顾的作用 E: 施工技术简单,平时不需要特殊专业维护管理。
缺点: A: 驱动电位低,保护电流调节范围窄,保护范围小 B: 使用范围受土壤电阻率的限制,即土壤电阻率大于50Ω?m时,一般不宜选用牺牲阳极保护法 C: 在存在强烈杂散电流干扰区,尤其受交流干扰时,阳极性能有可能发生逆转 C: 有效阴极保护>阴极保护年限受牺牲阳极寿命的限制,需要定期更换2)强制电流阴极保护>阴极保护技术强制电流阴极保护>阴极保护技术是在回路中串入一个直流电源,借助辅助阳极,将直流电通向被保护的金属,进而使被保护金属变成阴极,实施保护。
阴极保护的原理
给被保护管道外加电流或在被保护的管道上连接一个电位更负的金属或合金作为阳极,从而使被保护的管道阴极极化,从而消除或减轻管道腐蚀速率的方法。
1 牺牲阳极法阴极保护
在土壤等电解质环境中,牺牲阳极因其电极电位比被保护体的更负,当与被保护体电连接后将优先腐蚀溶解,释放出的电子在被保护体表面发生阴极还原反应,抑阻了被保护体的阳极溶解过程,从而对被保护体提供了有效的阴极保护。
2 外加电流法阴极保护
外加电流法阴极保护是利用外部电源对被保护体施加阴极
电流,为其表面上进行的还原反应提供电子,从而抑阻被保护体自身的腐蚀过程。
3 牺牲阳极种类及应用范围
(1)带状牺牲阳极:主要应用于高电阻率土壤、淡水及空间
狭窄局部场合,如套管内。
(2)镁合金牺牲阳极:镁合金牺牲阳极相对密度小,电极电位很负,极化率低,对铁的驱动电压大。
因其具有很负的开路电位等性能,广泛地应用于土壤、海水、海泥及工业水环境中。
(3)锌-铝-镉合金牺牲阳极:锌-铝-镉合金牺牲阳极适用于海水、淡海水介质中的船舶、机
械设备、海洋工程和海港设施以及低电阻率土壤中的管道、电缆等设施金属防腐蚀的阴极保护。
(4)铝-锌-铟系牺牲阳极:铝-锌-铟系合金牺牲阳极适于海水介质中船舶、机械设备、海洋工程和海港设施以及海泥中管道、电缆等设施金属防腐蚀的阴极保护。
(5)镯式牺牲阳极:主要应用于水下和海底管道上,多以锌合金为材料,兼顾防腐蚀、配重和长寿命。
河南汇龙合金材料有限公司刘珍。
冯洪臣的阴极保护讲义第一章绪论一、防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。
通过炼制,被赋予能量,才从离子状态转变成原子状态。
然而,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
金属腐蚀广泛的存在于我们的生活中,国外统计表明,每年由于腐蚀而报废的金属材料,约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失,据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%;英国为国民经济总产值的3.5%;日本为国民经济总值1.8%。
二、防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。
我国埋地油气管道的阴极保护始于1958年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。
第二章阴极保护基本原理一、腐蚀电位或自然电位每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。
相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)金属电位(CSE)高纯镁 -1.75镁合金(6%Al,3%Zn,0.15%Mn) -1.60锌 -1.10铝合金(5%Zn) -1.05纯铝 -0.80低碳钢(表面光亮) -0.50to-0.80低碳钢(表面锈蚀) -0.20to-0.50铸铁 -0.50混凝土中的低碳钢 -0.20铜 -0.20在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。
阴极保护器工作原理一、引言阴极保护器是一种用于防止金属结构物腐蚀的设备,它通过施加电流来抑制金属结构物表面的电化学反应,从而减少或消除腐蚀。
二、基本原理阴极保护器的基本原理是利用电化学反应的特性,将金属结构物表面上发生的阳极反应转化为阴极反应。
在金属结构物表面施加一定电流密度后,阴极反应会占据优势地位,从而抑制或消除阳极反应。
三、电化学反应1. 金属在水中的溶解当金属处于水中时,它会与水发生反应,生成离子和氢气。
例如钢铁在水中会被氧化成铁离子和氢气:Fe + 2H2O → Fe2+ + 2OH- + H2↑2. 阳极反应和阴极反应当金属处于水中时,它会同时发生两种电化学反应:阳极反应和阴极反应。
阳极是指发生氧化还原反应的区域,而阴极则是指接受电子并发生还原反应的区域。
例如钢铁在水中的阳极反应和阴极反应如下:阳极反应:Fe → Fe2+ + 2e-阴极反应:2H2O + 2e- → H2↑ + 2OH-3. 腐蚀当阳极反应和阴极反应同时发生时,就会导致金属结构物的腐蚀。
在钢铁结构物表面,氧化还原反应会导致金属离子逐渐溶解,从而使得结构物逐渐腐蚀。
四、阴极保护器的工作原理1. 防止阳极反应阴极保护器通过施加一定电流密度来抑制或消除阳极反应,从而减少或消除金属结构物的腐蚀。
例如,在钢铁结构物表面施加一定电流密度后,可以将钢铁表面上的阳极区域转化为阴极区域,从而抑制氧化还原反应的发生。
2. 增强阴极反应阴极保护器可以通过增强阴极反应来提高金属结构物的耐腐蚀性能。
例如,在钢铁结构物表面施加一定电流密度后,可以增强钢铁表面上的阴极反应,从而使得结构物表面产生一层保护性的氢氧化铁膜,从而防止金属离子进一步溶解。
3. 阴极保护器的组成阴极保护器主要由电源、阳极、阴极和电缆等部分组成。
电源用于提供电流,阳极用于引导电流进入金属结构物表面,阴极用于接受电流并产生保护性的氢氧化铁膜,而电缆则用于将电流从电源传输到阳极和阴极。
阴极保护工作原理阴极保护基本原理内容:一、腐蚀电位或自然电位每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。
相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)金属电位(CSE)高纯镁 -1.75镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10铝合金(5%Zn) -1.05 纯铝 -0.80低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50混凝土中的低碳钢 -0.20 铜 -0.20在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。
钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。
新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。
同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。
二、参比电极为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。
饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。
不同参比电极之间的电位比较:土壤中或浸水钢铁结构最小阴极保护电位(V)被保护结构相对于不同参比电极的电位饱和硫酸铜氯化银锌饱和甘汞钢铁(土壤或水中) -0.85 -0.75 0.25 -0.778钢铁(硫酸盐还原菌)-0.95 -0.85 0.15 -0.878三、阴极保护阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。
一、.阴极保护的原理:在了解了金属的电化学腐蚀的原理之后,再去了解阴极保护的原理就比较容易了。
传统的金属防腐方法主要是隔离防腐,即将金属与腐蚀介质隔离。
具体措施有涂料、敷层、电镀等。
另一种方法就是选用耐腐蚀金属,如不锈钢、铜、钛等;或在可能的情况下用其它材料如塑料、玻璃钢等。
但是,由于腐蚀环境几乎无处不在,腐蚀的形态也多种多样。
单一的防腐措施往往不能有效地控制金属的腐蚀,尤其是电化学腐蚀。
金属结构一旦有腐蚀电池形成,其阳极区因其区域范围相对比阴极区的区域范围小的多,腐蚀速度也极快。
此时金属表面发生的不是均匀腐蚀,而是孔蚀。
地下的油气管道、储罐、各种存有电解质的容器设备等几乎都是因为孔蚀而发生泄露的。
阴极保护就是利用腐蚀电池的原理,将需要被保护的金属结构作为阴极,通过阳极向阴极不间断地提供电子,首先使结构极化,进而在结构表面富集电子,使其不易产生离子,因而大大地减缓了结构的腐蚀速度。
二.阴极保护的种类:阴极保护大致分为牺牲阳极法(见图1)和外加电流法(见图2)两种。
1.牺牲阳极法是利用电位比被保护金属结构低的金属或合金(如镁合金、锌合金、铝合金等)作为阳极,构成一个腐蚀电池。
在阴极(被保护结构)得到保护的同时,阳极不断地被消耗,故称为牺牲阳极。
2.强制电流法(外加电流法)则是给被保护结构加一阴极电流,而给辅助阳极(一般为高硅铸铁或废钢)加一阳极电流,构成一个腐蚀电池。
以同样的原理使金属结构得到保护。
三.两种阴极保护方法的优缺点:1.牺牲阳极法的优点在于安装施工简便,对临近金属结构的影响极小,运行成本低,可实现零费用维护,一次投资,长期受益。
2.强制电流法在实施大范围野外阴极保护时比较经济。
但对附近金属结构的影响较大,需要有专人管理维护,需要有稳定可靠的不间断电源。
故不适合用于市区内的地下结构的阴极保护。
3.根据实施阴极保护工程的现场条件,有时亦可考虑对同一结构同时采用两种阴极保护法。
图.1图.2。
阴极爱护工作原理阴极爱护基本原理内容:一、腐蚀电位或自然电位每种金属浸在肯定的介质中都有肯定的电位,称之为该金属的腐蚀电位(自然电位)。
腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈简洁失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到爱护。
相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)金属电位(CSE)高纯镁-1.75镁合金(6%Al,3%Zn,0.15%Mn)-1.60锌-1.10铝合金(5%Zn)-1.05纯铝-0.80低碳钢(表面光亮)-0.50to-0.80低碳钢(表面锈蚀)-0.20to-0.50铸铁-0.50混凝土中的低碳钢-0.20铜-0.20在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推动器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推动器,船体受到腐蚀,青铜器得到爱护。
钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。
新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。
同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。
二、参比电极为了对各种金属的电极电位进行比较,必需有一个公共的参比电极。
饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简洁,在阴极爱护领域中得到广泛采纳。
不同参比电极之间的电位比较:土壤中或浸水钢铁结构最小阴极爱护电位(V)被爱护结构相对于不同参比电极的电位饱和硫酸铜氯化银锌饱和甘汞钢铁(土壤或水中)-0.85-0.750.25-0.778钢铁(硫酸盐还原菌)-0.95-0.850.15-0.878三、阴极爱护阴极爱护的原理是给金属补充大量的电子,使被爱护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不简洁失去电子而变成离子溶入溶液。
阴极保护的工作原理是什么
阴极保护原理是什么
一、阴极保护是什么:
首先,阴极保护技术是电化学保护技术的一种, 阴极保护是利用外加直流电源,使金属表面变为阴极而达到保护,其主要原理是向被腐蚀金属结构物表面施加一个外加电流,使得被保护结构物成为阴极,继而让金属腐蚀发生的电子迁移得到抑制,避免或减弱了腐蚀的发生. 其次,就目前阴极保护技术而言利用阴极保护效应减轻金属设备腐蚀的防护方法叫做阴极保护。
由外电路向金属通入电子,以供去极化剂还原反应所需。
二、阴极保护原理:
阴极保护原理是使金属构件作为阴极,对其施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,该金属表面的电化学不均匀性得到消除,腐蚀的阴极溶解过程得到有效抑制,达到保护的目的.简单来说,就是使金属表面电子达到饱和的一种电化学技术.
原理是向被腐蚀金属结构物表面施加一个外加电流,被保护结构物成为阴极,从而使得金属腐蚀发生的电子迁移得到抑制,避免或减弱腐蚀的发生。
三、阴极保护效应
金属—电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位ηa 减小,反应速度减小,因而金属腐蚀速度减小,称为阴极保护效应。
从而使金属氧化反应(失电子反应)受到抑制。
当金属氧化反应速度降低到零时,金属表面只发生去极化剂阴极反应。