一元二次方程7
- 格式:doc
- 大小:52.00 KB
- 文档页数:3
一元二次方程式解法公式一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知数,且a≠0。
解一元二次方程的一种常用方法是使用解法公式,也称为求根公式。
解法公式可以直接计算出方程的解,进而求解方程。
一元二次方程的解法公式可以分为两种情况讨论:当方程有实数根时,以及当方程有复数根时。
1. 当方程有实数根时:一元二次方程的解法公式为:x = (-b ± √(b^2 - 4ac)) / (2a)公式中的±表示两个解,一个为加号前面的解,另一个为减号前面的解。
在解法公式中,根号下的部分被称为判别式,用Δ表示,即Δ = b^2 - 4ac。
判别式Δ的值决定了方程的根的性质:- 当Δ > 0时,方程有两个不相等的实数根;- 当Δ = 0时,方程有两个相等的实数根,即重根;- 当Δ < 0时,方程没有实数根,但有两个复数根。
2. 当方程有复数根时:一元二次方程的解法公式为:x = (-b ± i√(4ac - b^2)) / (2a)公式中的±表示两个解,一个为加号前面的解,另一个为减号前面的解。
在解法公式中,复数根的虚部用i表示,即i = √(-1)。
与实数根的情况相比,复数根的判别式为4ac - b^2。
当判别式4ac - b^2 > 0时,方程有两个共轭复数根;当判别式4ac - b^2 = 0时,方程有两个相等的复数根,即重根;当判别式4ac - b^2 < 0时,方程没有实数根,但有两个复数根。
通过解法公式,可以直接计算出一元二次方程的解。
根据公式中的系数a、b、c的不同取值,可以得到方程的不同解的情况。
需要注意的是,解法公式只适用于一元二次方程,对于其他类型的方程不适用。
此外,解法公式的使用还需要注意以下几点:1. 在计算解时,需要先计算出判别式的值,然后根据判别式的值来确定方程的根的性质。
2. 当判别式的值为0时,仍然需要进行计算,并且在计算过程中需要注意虚部的表示方式。
一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。
3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。
4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。
4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是()A。
(x+1)^3=2(x+1)B。
2√x+1-11=0C。
ax^2+bx+c=0D。
x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。
例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。
例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。
例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。
例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。
第十六期:一元二次方程一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。
题型多样,一般分值在6-9分左右。
知识点1:一元二次方程及其解法例1:方程0232=+-x x 的解是( )A .11=x ,22=xB .11-=x ,22-=xC .11=x ,22-=xD .11-=x ,22=x思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法.此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x -1)(x -2)=0,所以x -1=0或x -2=0,解得x 1=1,x 2=2.故此题选A.例2:若220x x --= )A .3B .3C D 3思路点拨:本题考查整体思想,即由题意知x 2-x=2, 所以原式=3323123222=+-+,选A. 练习:1.关于x 的一元二次方程2x 2-3x -a 2+1=0的一个根为2,则a 的值是( )A .1BC .D .2.如果1-是一元二次方程230x bx +-=的一个根,求它的另一根. 3.用配方法解一元二次方程:x 2-2x -2=0. 答案:1.D. 2.解:1-是230x bx +-=的一个根,2(1)(1)30b ∴-+--=.解方程得2b =-. ∴原方程为2230x x --=分解因式,得(1)(3)0x x +-=11x ∴=-,23x =.3.移项,得x 2-2x=2. 配方x 2-2x+12=2+12, (x -1)2=3. 由此可得x -1=±3, x 1=1+3,x 2=1-3. 最新考题1.(2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.(2009年山西省)请你写出一个有一根为1的一元二次方程: .3.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=答案:1.1; 2.答案不唯一,如21x = 3. B 知识点2:一元二次方程的根与系数的关系例1:如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为:(A )-1 (B )2 (C )21- (D )21+ 思路点拨:本题考查一元二次方程02=++c bx ax 的根与系数关系即韦达定理,两根之和是a b -, 两根之积是ac,易求出两根之和是2。
第七周 一元二次方程的应用(一)增长率问题【要点整理】 基本量:(1)原有量a (2)最终量b (3)增长率x 基本关系式:(1) 一次增长b x a =+)1( (2) 二次增长b x a =+2)1(【经典范例】1.本商店积压了100件某种商品,为使这批货物尽快出售,该商店采取了如下销售方案,先将价格提高到原来的2.5降价30%,标出“破产价”,第三次又降价30%,标出“跳楼价”,三次降价处理销售情况如右表。
问: (1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利,请通过计算加以说明2.云南省是我国花卉产业大省,一年四季都有大量鲜花销往全国各地,花卉产业已成为我省许多地区经济发展的重要项目.近年来某乡的花卉产值不断增加,2009年花卉的产值是640万元,2011年产值达到l000万元.(l )求2010年、2011年花卉产值的年平均增长率是多少?(2)若2012年花卉产值继续稳步增长(即年增长率与前两年的年增长率相同).那么请你估计2012年这个乡的花卉产值将达到多少万元?3.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2009年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2011年的利用率提高到60%,求每年的增长率。
( 1.41)(二)商品利润问题【要点整理】基本量:(1)进价(2)售价(3) 利润基本关系式:(1)每件利润=售价-进价(2)总利润=每件利润×销售件数【经典范例】1.合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少?2.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?4.大宇商场在一种待处理的衣服共20件,每件原价为50元,因季节关系的影响,决定进行降价销售。
一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
初中数学一元二次方程的应用题型分类——商品销售问题7(附答案)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A.5元B.10元C.20元D.10元或20元2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为抢占市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.5 C.2 D.2.53.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现要在尽量优惠顾客情况下,同时获利6120元,每件商品应降价()元.A.3B.2.5C.2D.2或34.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件;现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使每星期利润为6125元,设每件商品应降价x元,则可列方程为()A.(20+x)(300+20x)=6125 B.(20-x)(300-20x)=6125C.(20-x)(300+20x)=6125 D.(20+x)(300-20x)=61255.融侨半岛某文具店购入一批笔袋进行销售,进价为每个20元,当售价为每个50元时,每星期可以卖出100个,现需降价处理:售价每降价3元,每星期可以多卖出15个,店里每星期笔袋的利润要达到3125元.若设店主把每个笔袋售价降低x元,则可列方程为()A.(30+x)(100-15x)=3125 B.(30﹣x)(100+15x)=3125C.(30+x)(100-5x)=3125 D.(30﹣x)(100+5x)=31256.一件原价为100元的牛仔裤,先提价10%,再降价10%,现价是( )元A.100 B.99 C.907.某种药品原价为35元/盒,经过连续两次降价后售价为26元/盒,设平均每次降价的百分率为x,根据题意所列方程正确的是()A.35(1﹣x)2=35﹣26 B.35(1﹣2x)=26C.35(1﹣x)2=26 D.35(1﹣x2)=268.某花圃用花盆培育某种花卉,经过试验现,每盆花的盈利与每盆株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元,要使每盆的盈利为10元,设每盆增加x 株花苗,则( ) A .()()330.510x x +-=B .()()330.510x x -+=C .()()330.510x x --=D .()()330.510x x ++=9.某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•则该商店卖出这种商品的盈亏情况是( ).A .不亏不赚B .亏4元C .赚6元D .亏24元10.一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_____%.11.一超市销售某种品牌的牛奶,进价为每盒1.5元,售价为每盒2.2元时,每天可售5000盒,经过调查发现,若每盒降价0.1元,则可多卖2000盒。
解一元二次方程的四种方法的利弊随着数学的发展,解一元二次方程是数学学习中的基本内容之一。
为了解决一元二次方程,人们提出了各种各样的方法。
本文将介绍解一元二次方程的四种常见方法,并分析它们的利弊。
方法一:因式分解法原理因式分解法是一种将一元二次方程转化为多个一次方程的方法,通过因式分解将二次项分解成两个一次项的乘积,进而求出方程的解。
优点1.简单直观:因式分解法不需要过多的计算步骤,对于简单的一元二次方程求解任务非常有效。
2.适用范围广:因式分解法适用于多种形式的一元二次方程,如完全平方式、含有一次项的方式等。
缺点1.局限性:因式分解法仅适用于可以进行因式分解的一元二次方程,对于难以因式分解的方程则无法使用此方法。
2.计算复杂度高:对于具有复杂因式分解形式的方程,计算量较大,容易出现计算错误。
3.解的个数限制:因式分解法只能求解出方程的实数解,无法求解出复数解。
方法二:配方法原理配方法是通过将一元二次方程的二次项与一次项相乘,构造出一个完全平方式,然后通过转化求解方程的解。
优点1.适用广泛:配方法适用于多种类型的一元二次方程,可以应对一些无法使用因式分解法解决的方程。
2.可求解复数解:配方法可以求解出一元二次方程的复数解,能够提供更全面的解决方案。
缺点1.计算复杂:配方法需要进行一系列的代数运算和变换,计算过程相对复杂,易出错。
2.限制:对于一些特殊形式的一元二次方程,配方法无法处理,需要采取其他方法解决。
方法三:公式法原理公式法是通过一元二次方程的一般公式解来求解方程的根。
一元二次方程的一般公式解为:x = (-b±√(b²-4ac))/(2a)。
优点1.通用性强:公式法是一种通用的求解一元二次方程的方法,适用于所有的一元二次方程。
2.快速准确:通过代入方程参数直接计算公式,可以迅速而准确地求解方程的解。
缺点1.存在限制:公式法仅适用于解可求得实数解的一元二次方程,无法求解复数解。
文案大全一元二次方程1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x abx x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ a c = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ a c >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.文案大全ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数. 8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: .0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x B sin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如文案大全AB C cba.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=c b =斜对;tanA=ba=邻对; cotA=a b =对邻.2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ; cotA=tanB. 3. 同角三角函数关系:sin 2A+cos 2A =1; tanA ·cotA =1. ※ tanA=A cos A sin ※ cotA=Asin Acos 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数 值,要熟练记忆它们.K3 KKKK2 K230°45°60°ABC ABC文案大全※ 6. 函数值的取值范围: 在0° 90°时.正弦函数值范围:0 1; 余弦函数值范围: 1 0; 正切函数值范围:0 无穷大; 余切函数值范围:无穷大 0.7.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.※ 8. 关于直角三角形的两个公式: Rt △ABC 中: 若∠C=90°, .:m :R :r .m 2cR 2c b a r c c 斜边上中线外接圆半径,内切圆半径,;==-+=9.坡度: i = 1:m = h/l = tan α; 坡角: α.10. 方位角:11.仰角与俯角:12.解斜三角形:已知“SAS ” “SSS ” “ASA ” “AAS ” 条件的任意三角形都可以经过“斜化直”求出其余的边和角.※ 13.解符合“SSA ”条件的三角形:若三角形存在且符合“SSA ”条件,则可分三种情况:(1)∠A ≥90°,图形唯一可解; (2) ∠A <90°,∠A 的对边大于或等于它的已知邻边,图形唯一可解;(3)∠A <90°,∠A 的对边小于它的已知邻边,图形分两类可解. 14.解三角形的基本思路:(1)“斜化直,一般化特殊” ------- 加辅助线的依据;(2)合理设“辅助元k ”,并利用k 进一步转化是分析三角形问题的常用方法-------转化思想; (3)三角函数的定义,几何定理,公式,相似形等都存在着大量的相等关系,利用其列方程(或方程组)是解决数学问题的常用方法---------方程思想.北东北偏西30南偏东70仰角俯角水平线铅垂线lha i=1:m文案大全函数及其图象一 函数基本概念1.函数定义:设在某个变化过程中,有两个变量x,、y, 如对x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的函数,x 是自变量.※ 2.相同函数三个条件:(1)自变量范围相同;(2)函数值范围相同;(3)相同的自变量值所对应的函数值也相同.※3. 函数的确定:对于 y=kx 2(k ≠0), 如x 是自变量,这个函数是二次函数;如x 2是自变量,这个函数是一次函数中的正比例函数. 4.平面直角坐标系:(1)平面上点的坐标是一对有序实数,表示为: M (x,y ),x 叫横坐标,y 叫纵坐标; (2)一点,两轴,(四半轴),四象限,象限中点的坐标符号规律如右图:(3) x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 即“x 轴上的点纵为0,y 轴上的点横为0”;反之也 成立;(4)象限角平分线上点M(x,y) 的坐标特征:x=y <=> M 在一三象限角平分线上; x=-y <=> M在二四象限角平分线上. (5)对称两点M(x 1,y 1), N(x 2,y 2) 的坐标特征:关于y 轴对称的两点 <=> 横相反,纵相同; 关于x 轴对称的两点 <=> 纵相反,横相同; 关于原点对称的两点 <=> 横、纵都相反. 5.坐标系中常用的距离几个公式 -------“点求距”(1)如图,轴上两点M 、N 之间的距离:MN=|x 1-x 2|=x 大-x 小 , PQ=|y 1-y 2|=y 大-y 小 . (2)如图, 象限上的点M (x,y ):到y 轴距离:d y =|x|; 到x 轴距离: d x =|y|;22y x r +=到原点的距离:.(3)如图,轴上的点M (0,y )、N (x,0)到原点的距离: MO=|y|; NO=|x|.※(4)如图,平面上任意两点M (x 2,y 2)、N (x 2,y 2)之间的距离: .)y y ()x x (d 221221-+-=xyo + +_ _-- ++ -xyoM(x,y )r xyo M(x,y )N(x,y )C文案大全※ 6. 几个直线方程 :y 轴 <=> 直线 x=0 ; x 轴 <=> 直线 y=0 ; 与y 轴平行,距离为∣a ∣的直线 <=> 直线 x=a ; 与x 轴平行,距离为∣b ∣的直线 <=> 直线 y=b. 7. 函数的图象:(1) 把自变量x 的一个值作为点的横坐标,把与它对应的函数值y 作为点的纵坐标,组成一对有序实数对,在平面坐标系中找出点的位置,这样取得的所有的点组成的图形叫函数的图象;(2) 图象上的点都适合函数解析式,适合函数解析式的点都在函数图象上;由此可得“图象上的点就能代入”-------重要代入!(3) 坐标平面上,横轴叫自变量轴,纵轴叫函数轴;利用已知的图象,可由自变量值查出函数值,也可由函数值查出自变量值;可由自变量取值范围查出对应函数值取值范围,也可由函数值取值范围查出对应自变量取值范围;(4) 函数的图象由左至右如果是上坡,那么y 随x 增大而增大(叫递增函数);函数的图象由左至右如果是下坡,那么y 随x 增大而减小(叫递减函数). 8. 自变量取值范围与函数取值范围:一次函数1. 一次函数的一般形式:y=kx+b . (k ≠0)2. 关于一次函数的几个概念:y=kx+b (k ≠0)的图象是一条直线,所以也叫直线y=kx+b,图象必过y 轴上的点( 0,b )和x 轴上的点( -b/k,0 );注意:如图,这两个点也是画直线图象时应取的两个点. b 叫直线y=kx+b (k ≠0)在y 轴上的截距,b 的本质是直线与y轴交点的纵坐标,知道截距即知道解析式中b 的值.x y (x,y)00(0,b)(-b/k, 0)b -b/k, 即取点对角 03.y=kx+b (k≠0) 中,k,b符号与图象位置的关系:yxok>0, b>0k>0, b<0图象过一二三象限,图象上坡.图象过一三四象限,图象上坡.图象过一二四象限,图象下坡.图象过二三四象限,图象下坡.4. 两直线平行:两直线平行 <=> k1=k2※两直线垂直<=> k1k2=-1.5. 直线的平移:若m>0,n>0, 那么一次函数y=kx+b图象向上平移m个单位长度得y=kx+b+m;向下平移n 个单位长度得y=kx+b-n (直线平移时,k值不变).6.函数习题的四个基本功:(1) 式求点:已知某直线的具体解析式,设y=0,可求出直线与x轴的交点坐标(x0 ,0);设x=0,可求出直线与y轴的交点坐标(0,y0);已知两条直线的具体解析式,可通过列二元一次方程组求出两直线的交点坐标(x0 ,y0);交点坐标的本质是一个方程组的公共解;(2) 点求式:已知一次函数图象上的两个点,可设这个函数为y=kx+b,然后代入这两个点的坐标,得到关于k、b的两个方程,通过解方程组求出k、b,从而求出解析式 ------ 待定系数法;(3) 距求点:已知点M(x0 ,y0)到x轴,y轴的距离和所在象限,可求出点M的坐标;已知坐标轴上的点P到原点的距离和所在半轴,可求出点P的坐标;(4) 点求距:函数题经常和几何相结合,利用点的坐标与它所在的象限或半轴特征可求有关线段的长,从而使得函数问题几何化.正比例函数1.正比例函数的一般形式:y=kx (k≠0);属于一次函数的特殊情况;(即b=0的一次函数)它的图象是一条过原点的直线;也叫直线y=kx.2.画正比例函数的图象:正比例函数y=kx (k≠0)的图象必过(0,0)点和(1,k)点,注意:如图,这两个点也是画正比例函数图象时应取的两个点,即列表如右:xy(x, y)1K(0,0)(1,K)文案大全文案大全3.y=kx (k ≠0)中,k 的符号与图象位置的关系:k>0k<0.象限,图象下坡.4. 求正比例函数解析式:已知正比例函数图象上的一点,可设这个正比例函数为y=kx,把已知点的坐标代入后, 可求k, 从而求出具体的函数解析式------ 待定系数法.二次函数1. 二次函数的一般形式:y=ax 2+bx+c.(a ≠0)2. 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax 2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.3. y=ax 2(a ≠0)的特性:当y=ax 2+bx+c (a ≠0)中的b=0且c=0时二次函数为y=ax 2 (a ≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y 轴对称;(2)顶点(0,0);(3)y=ax 2(a ≠0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax 2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0). 4. 二次函数y=ax 2+bx+c (a ≠0)的图象及几个重要点的公式:5. 二次函数y=ax 2+bx+c (a ≠0)中,a 、b 、c 与Δ的符号与图象的关系: (1) a >0 <=> 抛物线开口向上; a <0 <=> 抛物线开口向下; (2) c >0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过;文案大全c <0 <=> 抛物线从原点下方通过;(3) a, b 异号 <=> 对称轴在y 轴的右侧; a, b 同号 <=> 对称轴在y 轴的左侧;b=0 <=> 对称轴是y 轴;(4) Δ>0 <=> 抛物线与x 轴有两个交点;Δ=0 <=> 抛物线与x 轴有一个交点(即相切); Δ<0 <=> 抛物线与x 轴无交点.6.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax 2+bx+c ,并把这三点的坐标代入,解关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值, 从而求出解析式-------待定系数法. 8.二次函数的顶点式: y=a(x-h)2+k (a ≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k ),对称轴方程 x=h 和函数的最值 y 最值= k.9.求二次函数的解析式:已知二次函数的顶点坐标(x 0,y 0)和图象上的另一点的坐标,可设解析式为y=a(x-x 0)2+ y 0,再代入另一点的坐标求a ,从而求出解析式.(注意:习题无特殊说明,最后结果要求化为一般式)10. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k 的值, a 值不变,具体规律如下: k 值增大 <=> 图象向上平移; k 值减小 <=> 图象向下平移; (x-h )值增大 <=> 图象向左平移; (x-h)值减小 <=> 图象向右平移.11. 二次函数的双根式:(即交点式) y=a(x-x 1)(x-x 2) (a ≠0);由双根式直接可得二次函数图象与x 轴的交点(x 1,0),(x 2,0).12. 求二次函数的解析式:已知二次函数图象与x 轴的交点坐标(x 1,0),(x 2,0)和图象上的另一点的坐标,可设解析式为y= a(x-x 1)(x-x 2),再代入另一点的坐标求a ,从而求出解析式. (注意:习题最后结果要求化为一般式)13.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.反比例函数1. 反比例函数的一般形式:);0k (kx y xk y 1≠==-或图象叫双曲线.※ 2. 关于反比例函数图象的性质: 反比例函数y=kx -1中自变量x 不能取0, 故函数图象与y 轴无交点; 函数值y 也不会是0, 故图象与x 轴也不相交.3. 反比例函数中K的符号与图象所在象限的关系:图象过二四象限,图象上坡.图象过一三象限,图象下坡.k>0k<04. 求反比例函数的解析式:已知反比例函数图象上的一点,即可设解析式y=kx-1, 代入这一点可求k 值,从而求出解析式.函数综合题1.数学思想在函数问题中的应用:数学思想经常在函数问题中得到体现,例如:分析函数习题常常需要先估画符合题意的图象,利用数形结合降低难度;而点求式、式求点、点求距、距求点等基本操作则是转化思想在函数中应用;当函数问题与几何问题相结合时,方程思想则成为解决问题的基本思路;函数习题中,当图象与图形不唯一、点位置不唯一、可知条件不唯一时,往往造成函数问题的分类.2.数学方法在函数问题中的应用:建立坐标系、建立新函数、函数问题几何化、挖掘隐含条件、分类讨论、相等关系找方程、不等关系找不等式、等量代换、配方、换元、待定系数法、等各种数学方法在函数中经常得到应用,了解这些数学方法是十分必要的.3.函数与方程的关系:正比例函数y=kx (k≠0)、一次函数y=kx+b (k≠0)都可以看作二元一次方程,而二次函数y=ax2+bx+c (a≠0)可以看作二元二次方程,反比例函数)0k(xky≠-=可以看作分式方程,这些函数图象之间的交点,就是把它们联立为方程组时的公共解.4.二次函数与一元二次方程的关系:(1)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交,函数值y=0,此时, 二次函数转化为一元二次方程ax2+bx+c=0 (a≠0),这个方程的两个根x1 、x2是二次函数y=ax2+bx+c与x轴相交两点的横坐标,交点坐标为(x1 ,0)(x2 ,0);(2)当研究二次函数的图象与x轴相交时的有关问题时,应立即把函数转化为它所对应的一元二次方程,此时,一元二次方程的求根公式,Δ值,根系关系等都可用于这个二次函数.(3)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交于两点A(x1 ,0),B(x2 ,0)有重要关系式: OA=|x1|, OB=|x2|,若需要去掉绝对值符号,则必须据题意做进一步判断;同样,图象与y轴交点C(0,c),也有关系式: OC=|c|.5.二元二次方程组解的判断:一个二元一次方程和一个二元二次方程组成的方程组,若消去一个未知数,则转化为一元二次方程,此时的Δ值将决定原方程组解的情况,即:Δ>0 <=> 方程组有两个解;Δ=0 <=>方程组有一个解;Δ<0 <=>方程组无实解.文案大全初三数学应知应会的知识点 ( 圆 )几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文案大全文案大全几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高文案大全文案大全三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:文案大全文案大全文案大全。
一元二次方程6种解法
一元二次方程没有6种解法,一元二次方程4种解法:
一、直接开平方法。
形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。
方程无实数根。
二、配方法。
1、二次项系数化为1。
2、移项,左边为二次项和一次项,右边为常数项。
3、配方,两边都加上一次项系数一半的平方,化成
(x=a)^2=b的形式。
4、利用直接开平方法求出方程的解。
三、公式法。
现将方程整理成:ax^2+bx+c=0的一般形式。
再将abc 代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。
四、因式分解法。
如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是
一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数。
③未知数项的最高次数是2。
一元二次方程一、一元二次方程的概念:1、定义:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 补充关于初中常见代数式:2、一元二次方程的一般式:例1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.举一反三:【变式】若方程2(2)310m m x mx --=是关于x 的一元二次方程,求m 的值.3、一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.的两根求,,的两根分别为为常数方程已知关于0)2(1-2)0,,,(0)(22=+++≠=++b m x a a m b a b m x a xb a b b ax x x --=++求有一个非零根的一元二次方程关于,,02二、一元二次方程的解法1、基本思想:一元二次方程−−−→降次一元一次方程 2、常见解法:直接开平方法:模型)0(2≥=p p x因式分解理论基础:(1)提公因式法解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).(2)运用公式完全平方公式:222()2a b a ab b ±=±+ 平方差公式:22()()a b a b a b +-=-三数和平方公式:2222()2()a b c a b c ab bc ac ++=+++++224(3)25(2)0x x ---= 22)25(96x x x -=+- 01442=++x x(3)十字相乘:化成标准形式之后“看两端,凑中间”模型一: (1)=0 (2)21016x x -+=0; (3)2310x x --=0模型二:(1) 21252x x --=0 (2) 22568x xy y +-=0配方法:0362=+-x x 01242=+-x x公式法:步骤:0322=+-x x 0962=+-x x 0242=+-x x关于四种方法比较3、思想补充:换元思想0913424=+-x x 2(21)4(21)40x x ++++=的值。
第7讲 一元二次方程1. (2021,河北)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a ,…第一步 x 2+b a x +⎝⎛⎭⎫b 2a 2=-c a+⎝⎛⎭⎫b 2a 2,…第二步 ⎝⎛⎭⎫x +b 2a 2=b 2-4ac 4a 2,…第三步 x +b 2a =b 2-4ac 4a(b 2-4ac >0),…第四步 x =-b +b 2-4ac 2a.…第五步 (1)嘉淇的解法从第 四 步开始出现错误;事实上,当b 2-4ac >0时,方程ax 2+bx +c=0(a ≠0)的求根公式是( x =-b ±b 2-4ac 2a); (2)用配方法解方程:x 2-2x -24=0.【思路分析】 本题考查了用配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型.第一步,移项,把常数项移到方程右边;第二步,配方,左、右两边加上一次项系数一半的平方;第三步,左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型.方程两边同时除以二次项系数,即化成x 2+px +q =0型,然后配方.解:(1)四 x =-b ±b 2-4ac 2a(2)移项,得x 2-2x =24.配方,得x 2-2x +1=24+1,即(x -1)2=25.开方,得x -1=±5.∴x 1=6,x 2=-4.2. (2021,河北)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是(B)A. a <1B. a >1C. a ≤1D. a ≥1【解析】 ∵关于x 的方程x 2+2x +a =0不存在实数根,∴b 2-4ac =22-4×1×a <0.解得a >1.3. (2021,河北)a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 有一根为0【解析】 由(a -c )2>a 2+c 2得出-2ac >0,∴Δ=b 2-4ac >0.∴方程有两个不相等的实数根.一元二次方程的概念及解法例1 解下列方程:(1)x 2-2x -1=0;(2)x 2-1=2(x +1);(3)x 2+3x =-14. 【思路分析】 根据所给方程的形式,选择合适的方法解方程. 解:(1)a =1,b =-2,c =-1.Δ=b 2-4ac =4+4=8>0.∴方程有两个不相等的实数根.∴x =-b ±b 2-4ac 2a =2±222=1±2, 即x 1=1+2,x 2=1- 2.(2)移项,得x 2-1-2(x +1)=0,(x +1)(x -1)-2(x +1)=0,因式分解,得(x +1)(x -1-2)=0,于是,得x +1=0或x -3=0.∴x 1=-1,x 2=3.(3)配方,得x 2+3x +⎝⎛⎭⎫322=-14+⎝⎛⎭⎫322, ⎝⎛⎭⎫x +322=2. 由此可得x +32=±2. ∴x 1=-32+2,x 2=-32- 2. 针对训练1(2021,邯郸一模) 用配方法解一元二次方程2x 2-4x -2=1的过程中,变形正确的是(C)A. 2(x -1)2=1B. 2(x -2)2=5C. (x -1)2=52D. (x -2)2=52 【解析】 2x 2-4x -2=1,2x 2-4x =3,x 2-2x =32,x 2-2x +1=32+1,(x -1)2=52.也可以把各选项中的方程展开化为一般形式,和题干中的方程做对比.一元二次方程根的判别式例2 (2021,扬州)如果关于x 的方程mx 2-2x +3=0有两个不相等的实数根,那么m 的取值范围是( m <13且m ≠0 ). 【解析】 ∵方程有两个不相等的实数根,∴4-12m >0.解得m <13.但当m =0时,原方程不是一元二次方程,所以m ≠0.针对训练2(2021,石家庄桥西区一模)常数a ,b ,c 在数轴上的位置如图所示,则关于x 的一元二次方程ax 2+bx +c =0根的情况是(B)训练2题图A. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 无法确定【解析】 从数轴上可知,a ,c 异号,则b 2-4ac >0,所以方程有两个不相等的实数根. 针对训练3 (2021,张家口桥东区模拟)若关于x 的一元二次方程34x 2+3x +tan α=0有两个相等的实数根,则锐角α等于(D)A. 15°B. 30°C. 45°D. 60°【解析】 ∵方程有两个相等的实数根,∴Δ=(3)2-4×34×tan α=0.解得tan α= 3.∴α=60°.一元二次方程的实际应用例3 (2021,宜昌,导学号5892921)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理.若江水污染指数记为Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q 值都以平均值n 计算,第一年有40家工厂用乙方案治理,共使Q 值降低了12.经过三年治理,境内长江水质明显改善.(1)求n 的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m ,三年来用乙方案治理的工厂数量共190家,求m 的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q 值比上一年都增加一个相同的数值a .在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q 值与当年用甲方案治理降低的Q 值相等.第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值.【思路分析】 (1)平均数×数量=总数.(2)按相同增长率,第一年40家,第二年40(1+m )家,第三年40(1+m )2家,三年总和等于190家列方程求解即可.(3)先求出第二年用甲方案治理降低的Q 值,再根据第三年用甲方案使Q 值降低了39.5,列方程组求解即可.解:(1)∵40n =12,∴n =0.3.(2)根据题意,得40+40(1+m )+40(1+m )2=190.解得m 1=12,m 2=-72(舍去). ∴m =50%.∴第二年用乙方案新治理的工厂数量为40(1+m )=40×(1+50%)=60(家).(3)设第一年用甲方案治理降低的Q 值为x .第二年Q 值用乙方案治理降低了100n =100×0.3=30.根据题意,得⎩⎪⎨⎪⎧x +a =30,x +2a =39.5. 解得⎩⎪⎨⎪⎧x =20.5,a =9.5.针对训练4(2021,白银)如图,某小区计划在一块长为32 m 、宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是(A)训练4题图A. (32-2x )(20-x )=570B. 32x +2×20x =32×20-570C. (32-x )(20-x )=32×20-570D. 32x +2×20x -2x 2=570【解析】 设道路的宽为x m .根据题意,得(32-2x )(20-x )=570.针对训练5 (2021,眉山)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕产品每件利润为14元,此批次蛋糕产品属第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?【思路分析】 (1)利润增加的量除以2即为档次提高的量.(2)设生产的是第x 档次产品,则相应的产量是76-4(x -1),每件利润是10+2(x -1);等量关系是:每件利润×产量=总利润.解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕产品属第三档次产品.(2)设该烘焙店生产的是第x 档次的产品.根据题意,得[76-4(x -1)][10+2(x -1)]=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.一、 选择题1. 已知关于x 的方程x 2-mx +3=0的一个解为x =-1,则m 的值为(A)A. -4B. 4C. -2D. 2【解析】 把x =-1代入原方程,得m =-4.2. (2021,石家庄28中质检)若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为(B)A. -6B. 6C. 18D. 30【解析】 已知条件转化为x 2+4x =4,原式=-3x 2-12x +18=-3(x 2+4x )+18=6.3. (2021,石家庄40中二模)用配方法解方程x 2+x -1=0,配方后所得方程是(C)A. ⎝⎛⎭⎫x -122=34B. ⎝⎛⎭⎫x +122=34C. ⎝⎛⎭⎫x +122=54D. ⎝⎛⎭⎫x -122=54 【解析】 配方过程x 2+x =1,x 2+x +⎝⎛⎭⎫122=1+⎝⎛⎭⎫122,⎝⎛⎭⎫x +122=54. 4. (2021,唐山路南区一模)已知关于x 的方程x 2+mx -1=0的根的判别式的值为5,则m 的值为(D)A. ±3B. 3C. 1D. ±1【解析】 根据题意,得Δ=m 2+4=5.解得m =±1.5. (2021,唐山丰南区一模)现定义运算“★”,对于任意实数a ,b ,都有a ★b =a 2-a ·b +b .如:3★5=32-3×5+5.若x ★2=10,则实数x 的值为(C)A. -4或-1B. 4或-1C. 4或-2D. -4或2【解析】 根据题意,得x ★2=x 2-2x +2.∴x 2-2x +2=10.解得x 1=4,x 2=-2.6. (2021,唐山路南区二模)下列方程中,没有实数根的是(D)A. x 2-2x =0B. x 2-2x -1=0C. x 2-2x +1=0D. x 2-2x +2=0【解析】 选项A ,Δ=4>0;选项B ,Δ=8>0;选项C ,Δ=0;选项D ,Δ=-4<0.7. (2021,娄底)关于x 的一元二次方程x 2-(k +3)x +k =0的根的情况是(A)A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定【解析】 ∵Δ=[]-(k +3)2-4k =k 2+2k +9=(k +1)2+8>0,∴方程有两个不相等的实数根.8. (2021,定西)关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范围是(C)A. k ≤-4B. k <-4C. k ≤4D. k <4 【解析】 因为方程有实数根,所以Δ=16-4k ≥0.解得k ≤4.9. (2021,桂林)已知关于x 的一元二次方程2x 2-kx +3=0有两个相等的实数根,则k 的值为(A)A. ±2 6B. ± 6C. 2或3D. 2或 3【解析】 因为方程有两个相等的实数根,所以Δ=k 2-24=0.解得k =±2 6.10. (2021,秦皇岛海港区模拟)某城市2021年底已有绿化面积300 hm 2,经过两年绿化,绿化面积逐年增加,到2021年底已达到363 hm 2.设绿化面积的年平均增长率为x .根据题意,所列方程正确的是(B)A. 300(1+x )=363B. 300(1+x )2=363C. 300(1+2x )=363D. 363(1-x )2=300【解析】 2021年底的绿化面积是300(1+x ) hm 2,2021年底的绿化面积是300(1+x )2 hm 2,可得方程.11. (2021,绵阳)在一次酒会上,每两人都只碰一次杯.若一共碰杯55次,则参加酒会的有(C)A. 9人B. 10人C. 11人D. 12人【解析】 设参加酒会的有x 人,则每人碰杯(x -1)次.因为每两人都只碰一次杯,所以共碰杯x (x -1)2次,得方程x (x -1)2=55,取正根x =11. 二、 填空题12. (2021,淮安)一元二次方程x 2-x =0的根是 x 1=0,x 2=1 .【解析】 x (x -1)=0,得x 1=0,x 2=1.13. (2021,秦皇岛海港区模拟)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为 1 .【解析】 把x =1代入方程,得m +n =-1,则m 2+2mn +n 2=(m +n )2=1.14. (2021,南充)若2n (n ≠0)是关于x 的方程x 2-2mx +2n =0的根,则m -n 的值为( 12). 【解析】 把x =2n 代入方程,得(2n )2-2m ·2n +2n =0, 变形为2n (2n -2m +1)=0,∵2n ≠0,∴2n -2m +1=0.∴m -n =12. 15. (2021,邵阳)已知关于x 的方程x 2 +3x -m =0的一个解为x =-3,则它的另一个解是 x =0 .【解析】 把x =-3代入方程解得m =0,则原方程为x 2 +3x =0,可求出另一个解是x =0.16. (2021,唐山丰南区一模)若关于x 的方程x 2-6x +c =0有两个相等的实数根,则c 的值为 9 .【解析】 因为方程有两个相等的实数根,所以Δ=36-4c =0.解得c =9.17. (2021,威海)关于x 的一元二次方程(m -5)x 2+2x +2=0有实数根,则m 的最大整数值是 4 .【解析】 因为方程有实数根, 所以Δ=4-8(m -5)≥0.解得 m ≤112.又因为m ≠5,所以m 的最大整数值是4.三、 解答题18. 解下列方程:(1)x 2-3x +1=0;(2)x 2-2x =6-3x ;(3)(2x +3)2=8.【思路分析】 针对各个方程的特点,选择适当的解法.(1)用公式法.(2)用因式分解法.(3)用直接开平方法.解:(1)这里a =1,b =-3,c =1.∵b 2-4ac =(-3)2-4×1×1=5>0,∴x =3±52,即x 1=3+52,x 2=3-52. (2)原方程可化为x (x -2)=-3(x -2).移项,因式分解,得(x -2)(x +3)=0.于是,得x -2=0或x +3=0.x 1=2,x 2=-3. (3)2x +3=±22,2x =±22-3,x 1=-3+222,x 2=-3-222. 19. (2021,北京)关于x 的一元二次方程ax 2+bx +1=0.(1)当b =a +2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【思路分析】 (1)把b =a +2代入根的判别式,判断出正负即可.(2)由Δ=0得出a ,b 之间的关系,任取一组符合条件的值,再解方程.解:(1)Δ=b 2-4a =(a +2)2-4a =a 2+4>0,所以方程有两个不相等的实数根.(2)∵方程有两个相等的实数根,∴Δ=b 2-4a =0.令b =2,a =1,此时方程为x 2+2x +1=0,∴x 1=x 2=-1.20. 【发现思考】已知等腰三角形ABC 的两边长分别是方程x 2-7x +10=0的两个根,求等腰三角形ABC 三条边的长各是多少?如图所示的是涵涵的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.【探究应用】请解答以下问题:已知等腰三角形ABC 的两边长是关于x 的方程x 2-mx +m 2-14=0的两个实数根. (1)当m =2时,求等腰三角形ABC 的周长;(2)当△ABC 为等边三角形时,求m 的值.涵涵的作业解:x 2-7x +10=0.a =1,b =-7,c =10.∵b 2-4ac =9>0,∴x =-b ±b 2-4ac 2a =7±32. ∴x 1=5,x 2=2.∴当腰为5,底为2时,等腰三角形的三条边长分别为5,5,2.当腰为2,底为5时,等腰三角形的三条边长分别为2,2,5.【思路分析】 一要检查解方程的过程和结果,二要考虑方程的解是三角形的边,需满足任意两边之和大于第三边.解:【发现思考】错误之处:当腰为2,底为5时,等腰三角形的三条边长分别为2,2,5.错误原因:此时不能构成三角形(或不符合三角形的三边关系).【探究应用】(1)当m =2时,方程为x 2-2x +34=0. 解得x 1=12,x 2=32. 当12为腰时,因为12+12<32,所以不能构成三角形. 当32为腰时,等腰三角形的三边长分别为32,32,12.此时周长为32+32+12=72. (2)若△ABC 为等边三角形,则方程有两个相等的实数根.∴Δ=m 2-4⎝⎛⎭⎫m 2-14=m 2-2m +1=0.∴m 1=m 2=1,即m 的值为1.21. (2021,盐城)一商店销售某种商品,平均每天可售出20件,每件赢利40元.为了扩大销售、增加赢利,该店采取了降价措施,在每件赢利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天可售出 26 件;(2)当每件商品降价多少元时,该商店每天的销售利润为1 200元?【思路分析】 (1)20+3×2=26.(2)设降价x 元,则销量为(20+2x )件,每件赢利(40-x )元.等量关系是每件赢利×销量=总赢利.最后要选择符合条件的解.解:(1)26(2)设每件商品降价x 元时,该商店每天的销售利润为1 200元,则平均每天售出(20+2x )件,每件赢利(40-x )元,且40-x ≥25,即x ≤15.根据题意,得(40-x )(20+2x )=1 200.整理,得x 2-30x +200=0.解得x 1=10,x 2=20(舍去).答:当每件商品降价10元时,该商店每天的销售利润为1 200元.22. (2021,德州)为积极响应新旧动能转换,提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备的成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 之间的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元.如果该公司想获得10 000万元的年利润,那么该设备的销售单价应定为多少万元?【思路分析】 (1)用待定系数法求一次函数关系式.(2)等量关系是:每台利润×销量=总利润.根据条件决定方程的根的取舍.解:(1)设年销售量y 与销售单价x 之间的函数关系式为y =kx +b (k ≠0).将(40,600),(45,550)代入y =kx +b ,得⎩⎪⎨⎪⎧40k +b =600,45k +b =550. 解得⎩⎪⎨⎪⎧k =-10,b =1 000. ∴年销售量y 与销售单价x 之间的函数关系式为y =-10x +1 000.(2)设该设备的销售单价应定为x 万元,则每台设备的利润为(x -30)万元,销售量为(-10x +1 000)台.根据题意,得(x -30)(-10x +1 000)=10 000.整理,得x 2-130x +4 000=0.解得x 1=50,x 2=80.∵此设备的销售单价不得高于70万元,∴x =50.答:该设备的销售单价应定为50万元.1. (2021,福建A ,导学号5892921)已知一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,则下列判断正确的是(D)A. 1一定不是关于x 的方程x 2+bx +a =0的根B. 0一定不是关于x 的方程x 2+bx +a =0的根C. 1和-1都是关于x 的方程x 2+bx +a =0的根D. 1和-1不都是关于x 的方程x 2+bx +a =0的根【解析】 方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,则有(2b )2-4(a +1)2=0,且a +1≠0.解得b =a +1或b =-(a +1),且a +1≠0.若b =a +1,则-1是方程x 2+bx +a =0的根;若b =-(a +1),则1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠-(a +1).故1和-1不会同时是方程x 2+bx +a =0的根.2. (2021,舟山)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a 2.则该方程的一个正根是(B) 第2题图 A. AC 的长B. AD 的长C. BC 的长D. CD 的长【解析】 用配方法解方程x 2+ax =b 2,易得正根x =b 2+a 24-a 2.据勾股定理知AB =b 2+a 24.∵AD =AB -BD =b 2+a 24-a 2,∴AD 的长是方程的正根. 3. (2021,河北,导学号5892921)对于实数p ,q ,我们用符号min{p ,q }表示p ,q 两数中较小的数,如min{1,2}=1.因此,min{-2,-3}= -3 ;若min{(x -1)2,x 2}=1,则x = 2或-1 .【解析】 min{-2,-3}=- 3.∵min{(x -1)2,x 2}=1,∴当(x -1)2<x 2时,(x -1)2=1.解得x 1=2,x 2=0(不合题意,舍去).当(x -1)2≥x 2时,x 2=1.解得x 1=1(不合题意,舍去),x 2=-1.4. (2021,内江B ,导学号5892921)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为 1 .【解析】 把(x +1)看作一个整体,据已知条件可得x +1=1或x +1=2,所以x 1=0,x 2=1.所以和为1.。
一元2次方程公式法公式一元二次方程公式法是求解一元二次方程的一种常用方法。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c是已知实数,且a≠0。
我们可以利用一元二次方程公式来求解方程的根,即方程的解。
一元二次方程公式的表达式为x = (-b ± √(b^2 - 4ac)) / (2a)。
其中,±表示两个根的取正负号,√表示开平方,^表示乘方。
我们可以发现,一元二次方程的解一般可以有两个根(即两个解),因此在公式中会有±的形式。
公式中的√(b^2 - 4ac)表示方程的判别式,用来判断方程有几个实根。
当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根,只有复数根。
公式中的2a表示方程中二次项的系数的两倍,可以看作是方程的"系数倍数"。
这个系数倍数的存在是为了保证公式的正确性。
通过一元二次方程公式法,我们可以轻松求解一元二次方程的根。
下面我们通过一个例子来说明一下具体的步骤。
假设有一个一元二次方程为2x^2 + 5x - 3 = 0,我们要求解该方程的根。
根据方程的系数,我们可以得到a=2,b=5,c=-3。
然后,代入一元二次方程公式x = (-b ± √(b^2 - 4ac)) / (2a)中的变量,进行计算。
计算过程如下:判别式D = b^2 - 4ac = 5^2 - 4 * 2 * (-3) = 25 + 24 = 49根据判别式的值,我们可以判断方程有两个不相等的实根。
根的计算公式为x = (-b ± √D) / (2a)将a、b、D代入可以得到x = (-5 ± √49) / (2 * 2)化简得到x = (-5 ± 7) / 4因此,方程的两个解分别为x1 = (-5 + 7) / 4 = 1/2 和 x2 = (-5 - 7) / 4 = -3。
是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
ax2+bx+c=0 (a≠0)1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2一、关于一元二次方程概念的题目(一)选择题1.下列方程中有()是一元二次方程(1)(2)(3)(4)(5)(6)(A)(1)(5)(6)(B)(1)(4)(5)(C)(1)(3)(4)(D)(2)(4)(5)2.若方程是关于的一元二次方程,则的取值范围是()(A)(B)(C)或(D)且(二)填空题已知关于的方程当时,方程为一元二次方程,当时,方程为一元一次方程。
一、填空题:(每空3分,共30分)
1、方程(x–1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .
2、关于x的方程是(m2–1)x2+(m–1)x–2=0,那么当m 时,方程为一元二次方程;
当m 时,方程为一元一次方程.
3、若方程12x12xm5有增根,则增根x=__________,m= .
4、(2003贵阳)已知方程04222cosxx有两个相等的实数根,则锐角
=___________.
5、若方程kx2–6x+1=0有两个实数根.....,则k的取值范围是 .
6、设x1、x2是方程3x2+4x–5=0的两根,则2111xx .x12+x22= .
7、关于x的方程2x2+(m2–9)x+m+1=0,当m= 时,两根互为倒数;
当m= 时,两根互为相反数.
8、若x1 =23是二次方程x2+ax+1=0的一个根,则a= ,
该方程的另一个根x2 = .
9、方程x2+2x+a–1=0有两个负根,则a的取值范围是 .
10、若p2–3p–5=0,q2-3q–5=0,且p≠q,则pq11 .
二、细心填一填(每题3分,共24分)
9、关于x的一元二次方程423xx的一般形式是 3x2-6x-4=0 。
10.当x=_-1或3_ 时,代数式3- x 和-x2 + 3x 的值互为相反数
11、已知方程x2+kx+3=0 的一个根是 - 1,则k= 4 , 另一根为 -3 。
12.如果(a+b-1)(a+b-2)=2,那么a+b的值为___0或3__.
13.若方程x2-4x+m=0有两个相等的实数根,则m的值是4
14.两个连续自然数的平方和比它们的和的平方小112,那么这两个自然数是____7和
8_________
15.把一根长度为14cm的铁丝折成一个矩形,这个矩形的面积为12cm2,则这个矩形的对角
线长是_____5__cm.
16、如图,折叠直角梯形纸片的上底AD,点D落在底边BC上点F处,已知DC=8㎝,FC = 4
㎝,则EC长 3 ㎝
三、用心解一解(52分)
17.解下列方程(每小题4分,共16分)
(1) 0432xx(用配方法) (2) x2 +2x-99=0 (因式分解法)
(1)x1=-4,x2=1 (2)x1=-11 x2=9
(3) x2 + x -3 = 0(公式法) (4) 9)12(2x(直接开平方法)
(3)x1,2=1132 (4)x1=2 x2=-1
18、(10)某电脑销售商试销某一品牌电脑(出厂为3000元/台)以4000元/台销售时,平
均每月可销售100台,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的
基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元。已知电脑价
格每台下降100元,月销售量将上升10台
(1)求1月份到3月份销售额的月平均增长率;
(2)求3月份时该电脑的销售价格。
(1)20% (2)3200元
19.(8)用一块长方形的铁片, 把它的四角各剪去一个边长为4cm的小方块, 然后把四边折
起来, 做成一个没有盖的盒子, 已知铁片的长是宽的2 倍, 做成盒子的容积是 1536
cm3, 求这块铁片的长和宽.
(长40米 宽20米 )
20.(10分)如图,东西和南北两条街道交于O点,甲沿东西道由西向东走,速度是4m/s; 乙
沿着南北道由南向北走,速度是3m/s,当乙通过 O 点又继续前进50m 时,甲刚好通
过O 点,求这两人在通过O 点之后相距85m 时两个人的位置.
(甲在距点036米处,乙在距点077米处)
21.(8分) 若规定两数a, b 通过“※”运算, 得到4ab, 即 a※b = 4ab , 例如 2※6 = 4
×2×6 = 48.
(1) 求 3※5的值.
(2) 求x ※x + 2 ※x -2※4 = 0 中x 的值.
(3) 若无论x 是什么数, 总有a ※ x = x , 求a 的值.
(1)60
(2)x1=-4,x2=2 (3)a=14