带电粒子磁场中的受力及运动
- 格式:doc
- 大小:433.10 KB
- 文档页数:23
带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
带电粒子在电磁场中的运动规律带电粒子是指在其内部带有电荷的基本粒子。
它们在电磁场中的运动规律是一项重要的物理研究领域。
本文将对带电粒子在电磁场中的运动规律进行探究,并解释其在实际应用中的重要性。
一、带电粒子在磁场中的运动规律在磁场中,带电粒子将受到磁力的作用力。
根据洛伦兹力公式F=q(v×B),其中q是电荷,v是粒子的速度,B是磁场,F是磁力。
这个公式告诉我们,带电粒子在磁场中的运动规律是旋转。
也就是说,当一个带电粒子进入磁场时,它将被强制旋转。
这个现象被称为磁漩涡效应。
带电粒子绕磁场线运动的方向取决于粒子的电荷和速度的正负。
如果带电粒子具有正电荷,并且其速度是朝向磁场线的,那么它将绕着磁场线顺时针旋转;如果带电粒子具有负电荷,并且其速度是朝向磁场线的,那么它将绕着磁场线逆时针旋转。
二、带电粒子在电场中的运动规律在电场中,带电粒子同样将受到作用力。
这个力被称为电场力。
根据库仑定律F=k(q1q2)/r^2,其中k是库仑常数,q1和q2是两个电荷的大小,r是它们之间的距离,F是作用力。
这个公式告诉我们,带电粒子在电场中的运动规律是直线运动。
当一个带电粒子进入电场时,它将被电场力强制加速或减速。
如果带电粒子具有正电荷,并且是向着电场线行动的,它将会受到电场力的阻碍,经过一段时间后速度会变慢。
反之,如果带电粒子具有负电荷,并且是向着电场线行动的,它将会受到电场力的推动,经过一段时间后速度会变快。
三、带电粒子在交叉电磁场中的运动规律带电粒子在电场和磁场共存的环境中运动时,其运动规律将更为复杂。
如果磁场和电场的方向相互垂直,并且两者的强度相等,那么带电粒子将沿着垂直于磁场和电场的方向运动。
如果它们的强度不同,粒子将绕磁场线和电场线交汇的轨迹运动,也就是形成螺旋线。
四、带电粒子在实际应用中的重要性研究带电粒子在电磁场中的运动规律对于很多领域来说都具有重要意义。
在医学上,通过研究电磁场对人体内带电粒子的影响,可以设计出更安全、更有效的医疗仪器。
1、如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。
一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a。
求:(1)该带电粒子的电性;(2)该带电粒子的比荷。
2、如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x 轴的各个交点中,任意两个相邻交点间的距离.3、如图A-6所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50V/m,方向向左,磁场方向垂直于纸面向外.一个电荷量为q=4.0×10-2C、质量m=0.40kg 的光滑小球从斜面顶点由静止开始滚下,经过3s后飞离斜面,求磁感应强度B.(g取10m/s2)4、(10分)一个负离子,质量为m,电量大小为q,垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图所示磁场的方向与离子的运动方向垂直,并垂直于纸面向里,其磁感应强度为B。
如果离子进入磁场后经过时间t到达位置P,试推导直线OP与离子入射方向之间的夹角跟时间t的关系式。
6、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。
求:(1)粒子做圆周运动的半径(2)匀强磁场的磁感应强度B7、在如图所示的空间区域里,y轴左方有一匀强电场,场强方向跟y轴正方向成60°,大小为;y轴右方有一垂直纸面向里的匀强磁场,磁感应强度B=0.20T.有一质子以速度v=2.0×m/s,由x轴上的A点(10cm,0)沿与x轴正方向成30°斜向上射入磁场,在磁场中运动一段时间后射入电场,后又回到磁场,经磁场作用后又射入电场.已知质子质量近似为m=1.6×kg,电荷q=1.6×C,质子重力不计.求:(计算结果保留3位有效数字)(1)质子在磁场中做圆周运动的半径.(2)质子从开始运动到第二次到达y轴所经历的时间.(3)质子第三次到达y轴的位置坐标.8、如图所示,坐标平面第Ⅰ象限内存在大小为E=4×105N/C、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为=4×10-10 kg/C的带正电粒子从x轴上的A点以初速度v0=2×107 m/s垂直x轴射入电场,OA=0.2 m,不计重力.求:(1)粒子经过y轴时的位置到原点O的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B的取值范围(不考虑粒子第二次进入电场后的运动情况.)9、在如图所示,xoy坐标系第一象限的三角形区域(坐标如图中所标注)内有垂直于纸面向外的匀强磁场,在x 轴下方有沿+y方向的匀强电场,电场强度为E。
将一个质量为m、带电量为+q的粒子(重力不计)从P(0,-a)点由静止释放。
由于x轴上存在一种特殊物质,使粒子每经过一次x轴速度大小变为穿过前的倍。
(1)欲使粒子能够再次经过x轴,磁场的磁感应强度B0最小是多少?(2)在磁感应强度等于第(1)问中B0的情况下,求粒子在磁场中的运动时间;(3)若磁场的磁感应强度变为第(1)问中B0的2倍,求粒子运动的总路程。
10、如图所示,两平行金属板P1和P2之间的距离为d、电压为U,板间存在磁感应强度为B1的匀强磁场.一个带正电的粒子在两板间沿虚线所示路径做匀速直线运动.粒子通过两平行板后从O点进入另一磁感应强度为B2的匀强磁场中,在洛伦兹力的作用下,粒子做匀速圆周运动,经过半个圆周后打在挡板MN上的A点.已知粒子的质量为m,电荷量为q.不计粒子重力.求:(1)粒子做匀速直线运动的速度v.(2)O、A两点间的距离x.11、如图所示,一质量为m,带电量为﹣q,不计重力的粒子,从x轴上的P(a,0)点以速度大小为v,沿与x轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限.求:(1)匀强磁场的磁感应强度B;(2)穿过第一象限的时间t.12、如图所示,圆形区域存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场,一个电荷量为q,质量为m的粒子沿平行于直径AC的方向射入磁场,射入点到直径AC的距离为磁场区域半径的一半,粒子从D点射出磁场时的速率为,不计粒子的重力.求(1)粒子在磁场中加速度的大小;(2)粒子在磁场中运动的时间;(3)粒子以的速率射入,在磁场中发生位移的大小.13、如图所示,一根水平光滑的绝缘直槽轨连接一个竖直放置的半径为R=0.50m的绝缘光滑槽轨。
槽轨处在垂直纸面向外的匀强磁场中,磁感应强度B=0.50T。
有一个质量m=0.10g、带电量为q=+1.6×10-3C的小球在水平轨道上向右运动。
若小球恰好能通过最高点,重力加速度g=10m/s2。
求:(1)小球在最高点所受的洛伦兹力F;(2)小球的初速度v0。
14、如图所示,圆形区域存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场,一个电荷量为q,质量为m的粒子沿平行于直径AC的方向射入磁场,射入点到直径AC的距离为磁场区域半径的一半,粒子从D点射出磁场时的速率为,不计粒子的重力.求(1)粒子在磁场中加速度的大小;(2)粒子在磁场中运动的时间;(3)粒子以的速率射入,在磁场中发生位移的大小.15、(10分)如图13,一束电子(电量为e)以速度v0垂直射入磁感应强度为B,宽为d的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求:(1)电子的质量是多少?(2)穿过磁场的时间是多少?(3)若改变初速度,使电子刚好不能从A边射出,则此时速度v是多少?16、(10分)如图所示,一束电子(电荷量为e)以速度v垂直边界射入磁感应强度为B,宽为d的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角为300,求:(1)电子的质量;(2)电子穿过磁场所用的时间。
17、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xoy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O点射入磁场,入射方向在xoy平面内,与x轴正向的夹角为θ。
若粒子射出磁场的位置与O点的距离为l,求该粒子的电量和质量之比q/m及带点粒子在磁场中的运动时间。
18、如图所示,在空间有一坐标系xoy,直线OP与x轴正方向的夹角为,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是他们的边界,OP上方区域Ⅰ中磁场的磁感应强度为B。
一质量为m,电荷量为q 的质子(不计重力)以速度v从O点沿与OP成角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x轴上的Q点(图中未画出),则:A.质子在区域Ⅰ中运动的时间为B.质子在区域Ⅰ中运动的时间为C.质子在区域Ⅱ中运动的时间为D.质子在区域Ⅱ中运动的时间为19、在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示。
已知离子P+在磁场中转过θ=30°后从磁场右边界射出。
在电场和磁场中运动时,离子P+和P3+( )A.在电场中的加速度之比为1∶1B.在磁场中运动的半径之比为∶1C.在磁场中转过的角度之比为1∶2D.离开电场区域时的动能之比为1∶320、质量为m、电荷量为e的电子以速度v垂直射入磁感应强度为B的匀强磁场。
电子做匀速圆周运动的轨道半径和周期分别为A., B., C., D.,21、如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。
一质量为m、电荷量为e的电子从a点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度的方向与x轴正方向的夹角为60°.下列说法正确的是()A.电子在磁场中运动的时间为B.电子在磁场中运动的时间为C.磁场区域的圆心坐标为(,)D.电子在磁场中做圆周运动的圆心坐标为(0,-2L)22、如下图甲所示,以MN为界的两匀强磁场B1=2B2,一带电+q、质量m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下通过O点(不计粒子重力)( )A.2πm/qB1 B.2πm/qB2C.2πm/(B1+B2)q D.πm/(B1+B2)q23、如图所示,在边界PQ上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O点沿与PQ成θ角的方向以相同的速度v射入磁场中,则关于正、负电子,下列说法不正确的是A. 在磁场中运动的时间相同B. 在磁场中运动的轨道半径相同C. 出边界时两者的速度相同D. 出边界点到O点处的距离相等参考答案一、计算题1、(1)据题意,粒子的运动轨迹如图所示。
据左手定则知粒子带负电荷(3分)(2)由几何关系:(4分)洛伦兹力提供向心力:(3分)则粒子的比荷为:(2分)2、(1) 由d =at2a =x=v0t得:t = x= v(2) 在y方向上运动具有对称性,得:T=4t =4 (3)S X=2x=2 v3、见试题分析【试题分析】小球从斜面顶点由静止开始滚下,球沿斜面向下运动受重力mg、电场力qE、斜面支持力F N和洛伦兹力F作用,开始时小球做匀加速直线运动,建立直角坐标系如图1所示.沿x轴有mgsinα+qEcosα=ma故a==10m/s2,方向沿斜面向下. 3s时小球的速度v=at=10×3m/s=30m/s此时沿y轴有qvB+qEsinα+F N=mgcosα因小球此时飞离斜面,则F N=0解得B==1.67T4、当离子到位置P时,圆心角如图所示,则①因为②评分说明:①②各5分5、设半径为R,则由洛伦兹力公式和牛顿第二定律,有因粒子从平板上的狭缝O处垂直射入磁场,故OP是圆周直径得6、解:由射入、射出点的半径可找到圆心O/,(1)据几何关系有--6分(2)据洛仑兹力提供向心力--6分7、(1)质子在磁场中受洛伦兹力做匀速圆周运动,根据牛顿第二定律,得质子做匀速圆周运动的半径为;(2)由于质子的初速度方向与x轴正方向夹角为30°,且半径恰好等于OA,因此,质子将在磁场中做半个圆周到达y轴上的C点,如答图所示.根据圆周运动的规律,质子做圆周运动周期为,质子从出发运动到第一次到达y轴的时间为,质子进入电场时的速度方向与电场的方向相同,在电场中先做匀减速直线运动,速度减为零后反向做匀加速直线运动,设质子在电场中运动的时间,根据牛顿第二定律,,得.因此,质子从开始运动到第二次到达y轴的时间t为.(3)质子再次进入磁场时,速度的方向与电场的方向相同,在洛伦兹力的作用下做匀速圆周运动,到达y轴的D点.根据几何关系,可以得出C点到D点的距离为;则质子第二次到达y轴的位置为.即质子第三次到达y轴的坐标为(0,34.6cm).8、(1)设粒子在电场中运动的时间为t,粒子经过y轴时的位置与原点O的距离为y,则:s OA=at2 (1分)a= (1分)E= (1分)y=v0t (2分)联立解得a=1.0×1015 m/s2t=2.0×10-8 s y=0.4 m (1分)(2)粒子经过y轴时在电场方向的分速度为:v x=at=2×107 m/s粒子经过y轴时的速度大小为:v==2×107 m/s (1分)与y轴正方向的夹角为θ,θ=arctan =45° (1分)要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周运动的轨道半径为R,则:R+R≤y (2分)qvB=m (1分)联立解得B≥(2+2)×10-2 T. (1分)9、(1)设粒子到O点时的速度为v0,由动能定理有解得(1分)粒子经过O点后,速度为v1,(1分)如图甲所示,粒子进入磁场后的轨迹圆与磁场边界相切时,磁感应强度最小为B0。