X射线荧光光谱分析法
- 格式:ppt
- 大小:274.50 KB
- 文档页数:47
X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种非破坏性的分析方法,可以用于确定样品中的元素成分和浓度。
这种方法是通过样品中原子受到入射的X射线激发,产生特定能量的荧光X射线,然后测量荧光X射线的强度和能谱来确定元素的类型和浓度。
X射线荧光光谱分析法通常包括两个主要步骤:样品的激发和荧光X射线的检测。
在激发过程中,样品被置于X射线源的束斑中,经过激发后,样品中的原子会发射出特定能量的荧光X射线。
荧光X射线经过一系列的激发、透射和转换后,最终被探测器测量和记录下来。
测量得到的荧光X射线强度和能谱可以通过专门的软件进行分析和解析,从而确定样品中元素的类型和浓度。
XRF分析技术具有许多优点,使其成为一种常用的分析方法。
首先,它是一种非破坏性的分析方法,样品在测试过程中完整保留,不需要额外的处理,可以用作进一步的测试或保存。
其次,XRF方法具有广泛的元素适用范围,可以准确测定周期表中从钍(原子序数90)到氢(原子序数1)的所有元素。
同时,该方法还适用于各种不同的样品类型,包括固体、液体和粉末等。
另外,XRF分析速度快,具有高灵敏度和准确性,可以同时进行多元素分析。
然而,X射线荧光光谱分析法也存在一些局限性。
首先,由于荧光X射线的能量范围有限,该方法无法测定低原子序数的元素,比如锂(原子序数3)以下的元素。
其次,对于高原子序数的元素,如铀和钍,荧光X射线的强度相对较弱,需要较长的测量时间来获取准确的结果。
另外,XRF方法对于样品的准备要求较高,包括取样、研磨和制备等步骤,对样品的形状和尺寸也有一定的要求。
总的来说,X射线荧光光谱分析法是一种广泛应用于材料科学、地质学、环境科学、金属冶金等领域的有效分析方法。
在实际应用中,为了获得准确的结果,需要根据具体的测试要求对仪器进行校准,并对样品进行合理的处理和制备。
此外,随着技术的不断进步,XRF方法也在不断改进,如开发更高分辨率的能谱仪和软件等,以提高分析的灵敏度和准确性。
X射线荧光光谱分析法利用原级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。
简史20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录和探测仪器水平的限制,无法实现。
40年代末,随着核物理探测器的改进,各种计数器相继应用在X射线的探测上,此法的实际应用才成为现实。
1948年H.弗里德曼和L.S.伯克斯制成了一台波长色散的X射线荧光分析仪,此法才开始发展起来。
此后,随着X射线荧光分析理论和方法的逐渐开拓和完善、仪器的自动化和计算机水平的迅速提高,60年代本法在常规分析上的重要性已充分显示出来。
70年代以后,又按激发、色散和探测方法的不同,发展成为X射线光谱法(波长色散)和X 射线能谱法(能量色散)两大分支,两者的应用现已遍及各产业和科研部门。
仪器X射线荧光分析仪(见彩图)主要由激发、色散(波长和能量色散)、探测、记录和测量以及数据处理等部分组成。
X射线光谱仪与X射线能谱仪两类分析仪器有其相似之处,但在色散和探测方法上却完全不同。
在激发源和测量装置的要求上,两类仪器也有显著的区别。
X射线荧光分析仪按其性能和应用范围,可分为实验室用的X射线荧光光谱仪和能谱仪、小型便携式X射线荧光分析仪及工业上的专用仪器。
X射线荧光光谱仪实验室用的X射线荧光光谱仪的结构见图1 。
由X射线管发射出来的原级X射线经过滤光片投射到样品上,样品随即产生荧光X射线,并和原级X射线在样品上的散射线一起,通过光阑、吸收器(可对任何波长的X射线按整数比限制进入初级准直器的X射线量)和初级准直器(索勒狭缝),然后以平行光束投射到分析晶体上。
入射的荧光X射线在分析晶体上按布喇格定律衍射,衍射线和晶体的散射线一起,通过次级准直器(索勒狭缝)进入探测器,在探测器中进行光电转换,所产生的电脉冲经过放大器和脉冲幅度分析器后,即可供测量和进行数据处理用。
x-射线荧光光谱法
X射线荧光光谱法(XRF)是一种基于测量由初级X射线激发的原子内层电子产生特征次级X射线的分析方法。
XRF可应用于液体、粉末及固体材料的定性、定量分析。
以下是关于X射线荧光光谱法的更详细的解释:
X射线照射到供试品上时,供试品中的各元素被激发而辐射出各自的荧光X 射线。
这些荧光X射线通过准直器经分光晶体分光,按照布拉格定律产生衍射,使不同波长的荧光X射线按照波长顺序排列成光谱,不同波长的谱线由探测器在不同的衍射角上接收。
根据测得谱线的波长可以识别元素种类,根据元素特征谱线的强度与元素含量间的关系,可以计算获得供试品中每种元素含量百分数。
供试品的制备方法包括液体供试品可以直接进样分析,固体供试品可以直接压片或与适当的辅剂混合处理后压片进样分析。
在仪器的使用过程中,使用国家标准物质或样品进行校准和验证,确保仪器性能正常和准确测量结果。
XRF技术广泛应用于各种领域,如地质调查、环境监测、材料科学、化学分析等。
通过使用XRF技术,可以快速、准确地测定样品中元素的种类和含量,为科学研究、工业生产、质量控制等提供重要的技术支持。
X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种利用样品被X射线辐照后发出的荧光光谱进行化学元素定性和定量分析的方法。
它是一种非破坏性的分析技术,适用于固体、液体和气体样品。
X射线荧光光谱分析法基于X射线与物质相互作用的原理。
当样品受到X射线辐照后,其内部的原子会吸收部分X射线能量,随后再以荧光的形式发射出来。
这些发出的荧光光谱可以通过光谱仪进行检测和分析。
不同元素的荧光光谱特征不同,因此可以根据光谱特征来确定样品中的元素成分。
在X射线荧光光谱分析法中,首先需要制备样品,将其制备成均匀的固体、液体或气体形态。
为了提高分析的精确度,还可以选择加入一定的荧光剂,以增加荧光光谱的信号强度。
接下来,样品将被放置于X射线辐照源下,如X射线管,发射出的X 射线将通过样品,并激发样品中的原子产生荧光。
这些荧光将被荧光仪器所记录下来,并转换成一个荧光光谱。
荧光光谱中的特征峰可以通过对样品中各元素的荧光峰进行定性和定量分析。
对于定性分析,可以通过比对荧光峰的位置和强度与已知标准峰进行比较来确定样品中的元素成分。
对于定量分析,可以通过测量荧光峰的强度,并使用已知浓度的标准样品制备的校准曲线进行计算。
X射线荧光光谱分析法具有许多优点。
首先,它是一种非破坏性的分析方法,不需要对样品进行破坏性的处理,可以重复使用。
其次,它具有高分析速度和较高的灵敏度,可以在较短的时间内分析大量的样品,并且可以检测到低至ppm级别的元素含量。
此外,X射线荧光光谱分析法还具有广泛的适用性,可以用于各种类型的样品,包括金属、岩石、矿石、玻璃、陶瓷、塑料等。
尽管X射线荧光光谱分析法具有上述的优点,但也存在一些局限性。
首先,X射线荧光光谱分析法对于一些轻元素,如氢、碳、氮等,不敏感。
其次,由于X射线荧光光谱分析法使用的是非单一元素的基线和互作用效应,因而分析结果可能受到谱线重叠和基线的干扰。