第7章 典型的液压传动系统
- 格式:ppt
- 大小:1.27 MB
- 文档页数:34
液压传动的基本工作原理
液压传动的基本工作原理是利用液体的压力来传递力量和能量。
液压传动系统由液压泵、液压缸、液压控制阀和液压油箱等组成。
工作原理如下:
1. 液压泵负责将油液从液压油箱中抽取,并通过压力产生器产生高压油。
2. 高压油经过液压控制阀进入液压缸,使液压缸的活塞运动。
3. 活塞运动时,液压缸内的液体受到压力作用,将力量传递到执行器上,完成相应的工作,如举升重物或推动机械设备的运动。
4. 油液经过液压控制阀调节流量和压力,并流回液压油箱中,准备再次循环使用。
液压传动的优点是传递力量平稳可靠,并且可以在远距离传递力量。
此外,液压传动还可以根据需要调整液压泵的流量和压力,实现力量的调节和控制。
总结起来,液压传动利用液体的压力来传递力量和能量,通过液压泵、液压缸、液压控制阀和液压油箱等组件的配合工作,实现机械设备的运动控制。
第七章液压传动本章重点掌握液压传动的原理及系统的组成与功用;掌握柱塞泵、齿轮泵、叶片泵的组成、工作原理、应用特点及泵的图形符号;掌握活塞式液压缸的结构、工作原理及有关计算和应用特点以及密封、缓冲和排气;掌握单向阀、换向阀、溢流阀的工作原理,会识别其图形符号;会识别减压阀、顺序阀、节流阀、调速阀的图形符号;掌握液压基本回路的工作原理。
本章内容提要(一) 1、液压传动特点与机械传动,电气传动等传动相比,液压传动具有结构紧凑、传动力大、定位精确、运动平稳、易于实现自动控制,机件润滑良好,寿命长等优点,因此,液压传动广泛应用于机械工业、冶金工业、石油工业、工程建筑,船舶、航空、军事、宇航等工业部门。
其不足之处在于传动效率较低,不宜作远距离传递,不宜于高温或低温条件下工作,以及液压元件精度要求高,成本高等缺点。
(二)液压传动的工作原理及液压系统的组成1、液压系统的组成任何一个简单而完整的液压系统,均由以下四个部分组成:(1)动力元件(油泵):其作用是向液压系统提供压力油,是系统的动力源。
(2)执行元件(油缸或马达):其作用是在压力油的作用下,完成对外作功。
(3)控制元件:如溢流阀、节流阀、换向阀等,分别控制系统的压力、流量和流向,以满足执行元件对力,速度和运动方向的要求。
(4)辅助元件:如油箱、油管、管接头、滤油器、蓄能器等。
2、液压传动的基本原理:液压传动是以油液为工作介质,通过密封容积的变化来传递运动,通过油液内部的压力来传递动力的一种传动方式3、液压传动的应用特点1) 易于获得很大的力和力矩2) 调速范围大,易实现无级调速3) 质量轻,体积小,动作灵敏4) 传动平稳,易于频繁换向5) 易于实现过载保护6) 便于采用电液联合控制以实现自动化7) 液压元件能够自动润滑,元件的使用寿命长8) 液压元件易于实现系列化、标准化、通用化9) 传动效率较低10) 液压系统产生故障时,不易找到原因,维修困难11) 为减少泄漏,液压元件的制造精度要求较高5、静压传递原理(帕斯卡原理):静止油液中任意一点所受到的各个方向的压力都相等,这个压力称为静压力,油液静压力的作用方向总是垂直指向承压表面。
液压传动工作原理
液压传动是利用液体传递能量的一种传动方式,它通过液压油在封闭的管路中传递压力,从而实现机械运动。
液压传动具有结构简单、传动平稳、传动效率高等优点,因此在工程机械、冶金设备、船舶、航空航天等领域得到广泛应用。
液压传动的工作原理主要包括液压油的压力传递、液压缸的工作原理和液压泵的工作原理。
首先,液压传动的工作原理是基于液压油的压力传递。
当液压泵启动时,液压油被抽入油箱,形成一定的压力。
通过管道连接,液压油的压力可以传递到需要进行动力传递的液压执行元件上,从而驱动液压缸或液压马达进行工作。
其次,液压缸是液压传动中的重要执行元件,它的工作原理是利用液压油的压力来推动活塞进行直线运动。
当液压油进入液压缸的一侧时,液压缸的活塞受到液压油的压力作用而向另一侧运动,从而驱动相关机械装置进行工作。
最后,液压泵作为液压传动系统中的动力源,其工作原理是通过机械装置将液压油从油箱中抽入,并形成一定的压力,然后将压力传递到液压系统中。
液压泵的工作原理决定了液压传动系统的工作效率和稳定性。
总的来说,液压传动工作原理是基于液压油的压力传递和液压执行元件的工作原理,通过液压泵将液压油的压力传递到需要进行动力传递的元件上,从而实现机械运动。
液压传动系统的工作原理决定了其在工程机械、冶金设备、船舶、航空航天等领域的广泛应用,具有重要的意义和价值。
液压与气压传动一、课程介绍《液压与气压传动》是材料成型及控制工程专业本科学生的一门学科基础选修课。
液压装置广泛的使用在工业与农业生产的各个领域,它们是使用压力油为传递能量的载体来实现传动与控制的,随着自动化技术的开展,应用越来越广泛。
课程的任务是使学生掌握液压与气压传动的基础知识,掌握各种液压、气动元件的工作原理、特点、应用和选用方法,熟悉各类液压与气动基本问路的功用、组成和应用场合,了解国内外先进技术成果在机械设备中的应用。
本课程教学内容分液压传动和气压传动两局部。
液压传动局部主要介绍液压流体力学基础知识,液压动力元件、执行元件、控制元件和辅助元件,液压传动基本回路、典型液压传动系统和液压系统的设计计算。
气压传动局部介绍气压传动基础知识、气源装置及气动元件和气动基本回路与常用回路,气动逻辑系统设计和气动传动系统实例。
本课程所讲述的内容有:液压流体力学基础、液压泵、液压马达与液压缸、液压控制阀、液压辅件、液压基本回路、典型液压系统、液压系统的设计计算、气压传动基础知识、气源装置及气动元件、气动基本回路与常用回路、气动逻辑系统设计、气动传动系统实例等共11章,教学局部共包含理论24学时,末考试形式为开卷笔试。
Introduction“Hydraulic and pneumatic transmission^ is a mechanical professional students a compulsory technical courses. Hydraulic device widely used in various fields of industrial and agricultural production, which is the use of pressurized oi1 to pass energy carriers to realize transmission and control, along with the development of automation technology, more and more widely.Task course is to enable students to master the basics of hydraulic and pneumatictransmission, master a variety of hydraulic, pneumatic components working principle, characteristics, application and selection methods familiar basic functions of various types of hydraulic and pneumatic circuits, composition and applications, understanding advanced technical achievements in mechanical devices.This course content hydraulic and pneumatic transmission of two parts. Hydraulic transmission section introduces the basics of hydraulic fluid mechanics, hydraulics components, actuators, control components , auxiliary components, the basic hydraulic transmission circuit, a typical hydraulic system and hydraulic system design calculations. Pneumatic transmission section describes the basics of pneumatic transmission, gas source device, pneumatic components, basic and common pneumatic circuits , logic system design and examples of pneumatic transmission.The contents of this course are: hydraul ic fluid mechanics, hydraul ic pump, hydraulic motor and hydraulic cylinder, hydraulic control valve, hydraulic accessories, hydraulic basic circuit, typical hydraulic system, hydraulic system design calculation, pneumatic transmission basic knowledge, gas Source device and pneumatic components, pneumatic basic circuit and common circuit, pneumatic logic system design, pneumatic transmission system examples, etc., a total of 11 chapters, the teaching part contains a total of 24 hours of theory.课程基本信息1、教学目的“液压与气压传动”是非机械专业本科生的一门专业基础课程。
第7章液压基本回路不论机械设备的液压传动系统如何复杂,都是由一些液压基本回路组成的。
所谓基本回路,就是由有关的液压元件组成,用来完成特定功能的典型油路。
按其在液压系统中的功用,基本回路可分为:压力控制回路——控制整个系统或局部油路的工作压力;速度控制回路——控制和调节执行元件的速度;方向控制回路——控制执行元件运动方向的变换和锁停;多执行元件控制回路——控制多个执行元件相互间的动作。
本章讨论的是最常见的液压基本回路,熟悉和掌握它们的组成、工作原理及其应用,是分析、设计和使用液压系统的基础。
7.1 压力控制回路压力控制回路是利用压力控制阀来控制系统中液体的压力,以满足执行元件对力或转矩的要求。
这类回路包括调压、减压、卸荷、保压、平衡、增压等回路。
7.1.1调压回路调压回路的功能在于调定或限制液压系统的最高工作压力,或者使执行机构在工作过程的不同阶段实现多级压力变换。
一般是由溢流阀来实现这一功能的。
1.单级调压回路图7.1所示为单级调压回路,这是液压系统中最为常见的回路。
调速阀调节进入液压缸的流量,定量泵提供的多余的油经溢流阀流回油箱,溢流阀起溢流恒压作用,保持系统压力稳定,且不受负载变化的影响。
调节溢流阀可调整系统的工作压力。
当取消系统中的调速阀时,系统压力随液压缸所受负载而变,溢流阀起安全阀作用,限定系统的最高工作压力。
系统过载时,安全阀开启,定量泵泵出的压力油经安全阀流回油箱。
2.多级调压回路图7.2所示为二级调压回路。
先导式溢流阀1的外控口串接二位二通换向阀2和远程调压阀3,构成二级调压回路。
当两个压力阀的调定压力为p3<p1时,系统可通过图7.1单级调压回路换向阀的左位和右位分别获得p3和p1两种压力。
如果在溢流阀的外控口,通过多位换向阀的不同通油口,并联多个调压阀,即可构成多级调压回路。
图7.3为三级调压回路。
主溢流阀1的遥控口通过三位四通换向阀4分别接具有不同调定压力的远程调压阀2和3,当换向阀左位时,压力由阀2调定;换向阀右位时,压力由阀3调定;换向阀中位时,由主溢流阀1来调定系统最高的压力。
第7章液压基本回路•液压基本回路是为了实现特定的功能把有关的液压元件组合起来的典型油路结构;•液压基本回路是组成液压系统的基础。
液压基本回路包括:*压力控制回路*速度控制回路*方向控制回路*多执行元件回路7.1 压力控制回路功能:控制液压系统整体或局部的压力,主要包括:▪调压回路▪减压回路▪增压回路▪卸荷回路▪平衡回路▪保压回路1、调压回路•功能:调定和限制液压系统的压力恒定或不超过某个数值。
•一般用溢流阀来实现这一功能。
•调压回路的分类:•单级调压回路•多级调压回路•无级调压回路先导式溢流阀电液比例溢流阀2、减压回路•功能:使液压系统中某一部分油路的压力低于主油路的压力设定值。
•一般用减压阀来实现这一功能。
•减压回路的分类:•单级减压回路•多级减压回路•无级减压回路3、增压回路•功能:提高系统中局部油路中的压力,使局部压力远高于系统油源的压力。
•单作用增压回路:只能间歇增压。
4、卸荷回路•功能:在执行元件短时间不工作时,不需要频繁启、停原动机,而是使泵源在很小的输出功率下运转。
•卸荷的实质:使液压泵的输出流量或者压力接近于零,分别称为流量卸荷与压力卸荷。
•卸荷方式:•用换向阀中位机能的卸荷回路(压力卸荷)•用先导型溢流阀的卸荷回路(压力卸荷)•限压式变量泵的卸荷回路(流量卸荷)•采用蓄能器的保压卸荷回路换向阀M、H、K型中位机能均可实现压力卸荷限压式变量泵可实现保压卸荷用先导型溢流阀实现的压力卸荷卸荷时采用蓄能器补充泄漏保持液压缸大腔的压力限压式变量泵工作原理及特性曲线5、平衡回路•功能:使承受重力作用的执行元件的回油路保持一定背压,以防止运动部件在悬空停止期间因自重而自行下落,或因自重而超速失控。
采用单向顺序阀不可长时间定位采用液控单向阀定位可靠单向节流阀用于平稳下行6、保压回路•功能:使系统在执行元件不动或仅有微小位移的工况下保持稳定的压力。
•保压性能有两个指标:保压时间和压力稳定性。
电接触式压力表4监视预设压力的上下限值,控制换向阀2动作,液控单向阀3实现保压蓄能器保压卸荷回路7.2 速度控制回路控制与调节液压执行元件的速度。
液压传动系统工作原理
液压传动系统是一种利用液体(通常是油)来传递力量和控制运动的机械系统。
它的工作原理基于压力传递和流体的不可压缩性。
液压传动系统主要由以下几个组成部分组成:液压泵、液压缸、液压马达、液压阀以及油箱。
当液压泵启动时,它会将油液从油箱中吸入,并施加压力,使其被输送到需要进行工作的部位。
液压泵产生的压力使得油液推动液压缸或液压马达的活塞运动。
液压泵产生的能量通过液体的不可压缩性传递到液压缸或液压马达,从而产生力量和运动。
液压泵通过液压阀调节液压系统中的流量和压力。
液压阀可以打开或关闭流体通路,控制液体的流动方向和流量大小。
通过对液压阀的控制,可以实现对液压传动系统的精确控制和调节。
液压传动系统在各种机械设备中广泛应用,因为它具有很多优点。
首先,液压传动系统可以传递大量的力量,适用于重型工作。
其次,液压传动系统在传递力量和控制运动的过程中减少了摩擦,提高了效率。
此外,液压传动系统具有灵活性和可靠性,可以在不同工况下实现多种功能。
总体而言,液压传动系统的工作原理是利用液体传递力量和控制运动,通过压力和流体的不可压缩性来实现。
它是一种高效、灵活和可靠的机械传动方式,被广泛应用于各类机械设备中。
液压传动原理
液压传动是利用液体作为传动介质的一种传动方式。
其基本原理是利用液体在封闭的管路中传递和传递压力,实现动力的传输和控制。
液压传动的基本组成包括液压泵、液压马达(或液压缸)、液压控制阀、油箱和管路等。
液压泵通过正反转运动,将液体从油箱抽入和压入液压系统,形成压力。
液压控制阀负责控制液体的流动和压力,从而实现各种运动要求。
液压马达或液压缸作为执行元件,将液压能转化为机械能,实现物体的运动或执行各种工作。
液压传动的工作原理是基于压力传递和力平衡原理的。
当液压泵施加压力并推动液体进入管路时,液体通过管路传递压力,到达液压马达(或液压缸)。
根据巴斯卡定律,液体传递的压力在密闭的液压系统中是均匀分布的。
液压马达(或液压缸)接收到液体的压力后,将其转化为相应的机械能,实现物体的运动或执行工作任务。
液压传动的优点有很多。
首先,液压传动可以传递很大的力和扭矩,适用于大功率传动和高负载工作。
其次,液压传动具有较高的传动效率和精确的控制性能,可以实现平稳、连续和精确的运动控制。
此外,液压传动还具有较大的自动化程度和灵活性,可以通过电气或电子装置进行远程控制和集中控制。
总的来说,液压传动是一种高效、可靠且灵活的传动方式,广
泛应用于工程机械、冶金、船舶、航空航天等领域,成为现代工业中不可或缺的重要技术。
《液压与气动技术》课程标准教学单位:制订人:审定人:2017年 9 月 1 日一、课程基本情况1 课程信息表2.课程标准制定人员二、制订课程标准的依据1、根据专业人才培养方案规定本课程任务,确定课程的性质、定位和目标要求。
2、依据职业分析与教学分析,以提升职业能力为出发点,找准职业岗位的工种、工序、工艺等技术核心能力;通过教学分析,确定本课程内容和评价建议。
3、参照相关的专业资格标准,改革课程教学内容,建立突出职业能力培养的课程标准,规范教学的基本要求,实行课程考核与职业技能鉴定相结合的评价办法。
三、课程的性质本课程是高等职业院校数控技术专业必修的一门专业方向课程。
其任务是:在学习《高等数学》《机械制图》课程、具备数学计算能力、读图能力的基础上,开设的一门理论+实践课程,其功能是对接专业人才目标,面向数控工艺员、数控编程员、数控操作工等工作岗位,培养学生对液压与气压传动的基本原理的掌握与应用,使学生具备本专业必需的液压与气动的基本知识和基本技能,初步具备机床等液压与气动系统的安装调整、使用维护、故障诊断和排除的职业能力,为今后解决生产实际问题及继续学习《数控机床故障诊断与维修》《数控加工实训》等课程打下基础。
四、依托与服务的课程五、课程的教育目标(一)知识目标1.了解液压与气动的基本概念和基本知识;2.理解常用液压与气动元件的工作原理,掌握其结构、性能特点和图形符号;3.掌握液压与气动系统的基本分析方法。
(二)能力目标1.能正确选用液压油;2.能正确选择、使用和维护液压与气动元件;3.能参照说明书正确阅读和分析各类机床、液压机及工程机械等液压与气动系统图;4.具有分析、诊断和排除各类常用机床、液压机及工程机械的液压与气动系统常见故障的能力。
(三)素质目标1.初步具备辩证逻辑思维的能力;2.具有严谨求实、刻苦钻研的学风3.具有吃苦耐劳的劳动观念和勇于创新的精神;4.树立职业道德观念。
5.培养学生的信息技术应用能力、创新创业能力、实践动手能力内容。
液压与气压传动平时作业平时作业一第一章概述1.液压传动系统由哪几部分组成各个组成部分的作用是什么答:1能源装置:将原动机所提供的机械能转变成液压能的装置,通常称液压泵;2执行元件:将液压泵所提供的液压能转变称机械能的元件;3控制元件:控制或调节液压系统中液压油的压力、流量和液压油的流动方向元件;4辅助元件:上述三部分以外的其他元件,例如油箱、油管、管接头、蓄能器、滤油器、冷却器、加热器及各种检测仪表等,它们的功能各不相同,但对保证系统正常工作有重要作用;5工作介质:油液或液压液,是液压传动中能量传递的载体;2.液压传动的主要优缺点是什么答:优点:1与机械传动、电力传动同功率相比较时,液压传动的体积小、重量轻、结构紧凑;2工作平稳、反应快、冲击小、能高速启动、制动、能够频繁换向;3可实现大范围的无级调速,能在运行过程中进行调速,调速范围可达2000:1;4控制方便,易于实现自动化,对压力、流量、方向易于进行调节或控制;5易于实现过载保护;6液压元件已经标准化、系列化和通用化,在液压系统的设计和使用中都比较方便;7有自润滑和吸振性能;缺点:1不能保证严格的传动比;2损失大,有利于远距离传输;3系统工作性能易受温度影响,因此不易在很高或很低的温度条件下工作;4液压元件的制造精度要求高,所以元件价格贵;5液压诉故障不易查找;6工作介质的净化要求高;第二章液压油与液压流体力学基础1.试解释下列概念1恒定流动:液体流动时,若液体中任何一点的压力、流速和密度都不随时间而变化,这种流动就称为恒定流动;2非恒定流动:流动时压力、流速和密度中任何一个参数会随时间变化,则称为非恒定流动也称非定常流动;3通流截面:液体在管道中流动时,垂直于流动方向的截面称为通流截面;4流量:单位时间内,流过通流截面的液体体积为体积流量,简称流量;5平均流速:液压缸工作时,活塞的运动速度就等于缸内液体的平均流速;6密度:单位体积液体的质量称为该液体的密度;2.什么叫液体的粘性常用的粘度表示方法有哪几种他们之间如何换算答:液体在外力作用下流动时,分子间的内聚力阻碍分子间的相对运动,而产生内摩擦力的性质称为粘性;常用的粘度有三种,即动力粘度、运动粘度和相对粘度;3.什么是压力压力有哪几种表示方法液压系统的工作压力与负载有什么关系答:1液体单位面积上所受的法向力称为压力;2压力有两种表示方法:绝对压力和相对压力;以绝对真空作为基准进行度量的压力,称为绝对压力;以当地大气压力为基准进行度量的压力,称为相对压力;3P=F/A液压系统的工作压力由负载决定;4.伯努利方程的物理意义是什么该方程的理论式与实际式有什么区别5.管路中的压力损失有哪几种分别受哪些因素影响压力损失分为沿程压力损失和局部压力损失;沿程压力损失:局部压力损失:6.选用液压油时应满足哪些要求答:1粘温性好;在使用温度范围内,温度的变化愈小愈好;2润滑性能好;在规定的范围内有足够的油膜强度,以免产生干摩擦;3化学稳定性好;在贮存和工作过程中不易氧化变质,以防胶质深淀物影响系统正常工作;防止油液变酸,腐蚀金属表面;4质地纯净、抗泡沫性好;油液中含有机械杂质易堵塞油路,若含有易挥发性物质,则会使油液中产生气泡,影响运动平稳性;5闪点要高,凝固点要低;油液用于高温场合时,为了防火安全,闪点要求高;在温度低的环境下工作时,凝固点要求低;一般液压系统中,所用的液压油的闪点约为130~150℃,凝固点约为10~-15℃;7.产生液压冲击的原因有哪些答:1当管道路内的液体运动时,如在某一瞬时将液流通路迅速切断如阀门迅速关闭,则液体的流速鼗突然降为零;2液压系统中的高速运动部件突然制动时,也可引起液压冲击;3当液压系统中的某些元件反应不灵敏时,也可能造成液压冲击;8.说明液压冲击的危害;答:液压系统中产生液压冲击时,瞬时压力峰值有时比正常压力要大好几倍,这就容易引起液压设备振动,导致密封装置、管道和元件的损坏;有时还会使压力继电器、顺序阀等液压元件产生误动作,影响系统的正常工作;因此,在液压系统设计和使用中,必须设法防止或减小液压冲击;9.要减小液压冲击的危害应采取哪些措施答:液压冲击危害极大,根据其产生的原因,可以采取适当措施来减小液压冲击; 1关闭阀门的速度不能过快;2在液压冲击源附近设置蓄能器;3限制管中流速;4在液压冲击源前装安全阀;10.为了防止产生气穴现象和气蚀可采取哪些措施答:1减小液流在小孔或间隙处的压力降;2正确确定液压泵管径,对流速要加以限制,降低吸油高度;3整个系统的管道应尽可能做到平直,避免急弯和局部窄缝,密封要好,配置要合理;4提高零件抗气蚀能力;如提高零件的机械强度、采用抗腐蚀能力强的金属材料,减小零件加工的表面粗糙度等;第三章液压泵1.液压泵是如何吸油和排油的它的出口压力是如何建立起来的泵的工作压力与额定压力有何区别出口压力是液压泵克服负载阻力所建立起来的 ;1额定压力液压泵在正常工作条件下,按试难标准规定能连续运转的最高压力称为泵的额定压力;液压泵的工作压力超过额定压力时,泵就会过载;2工作压力是指液压泵工作时输出油液的压力值;液压泵的工作压力取决于外界负载,外负载增大,泵的工作压力也随升高;反之,则工作压力降低;如果液压泵出口压力直通油箱,其出口压力公克服回油管的阻力,近似为零;2.什么是齿轮泵的困油现象有什么危害如何解决危害:闭死容积由大变小时油液受掠夺,导致压务冲击和油液发热,闭死容积由小变大时,会引起气蚀和噪声;解决:在前后盖板或浮动同套上开卸荷槽;3.减小齿轮泵径向力的措施有哪些答:1缩小齿轮泵压油口;为了减小径向不平衡力,压油腔的包角越小越好,使压力油仅作用在一个齿到两个齿的范围内;2适当增大径向间隙,使齿顶不和泵体接触;3开设平衡槽;在过渡区开设两个平衡槽,分别与高压腔、低压腔相通,这种结构大大减小了作用在轴承上的径向力,但增加内泄漏,使容积效率下降;4.什么叫液压泵的流量脉动对工作部件有何影响哪种液压泵的流量脉动最小液压在排油过程中,瞬时流量是不均匀的,随时间而变化,但是在液压泵连续转动时,每转中各瞬时的流量却按同一规律重复变化,这种现象称为液压泵的流量脉动;影响:液压泵的流量脉动会引起压力脉动,从而使管道、阀待元件产生振动和噪声,而且由于流量脉动致使泵的输出 流量不稳定,影响工作部件的运动平稳性,尤其是对精密的液压传动系统更为不利;通常螺杆泵的流量脉动最小,双作用叶片泵次之,齿轮泵和柱塞泵的流量脉动最大;5.为什么叶片泵的叶片槽根部必须通油6.斜轴式轴向柱塞泵与斜盘式轴向柱塞泵在结构及工作原理上有什么异同 结构上:斜盘式指传动轴轴线与缸体轴线一致,与圆盘轴线倾斜;斜轴式指传动轴轴线与圆盘轴线一致,与缸体轴线倾斜;7.齿轮泵具有哪些优缺点8.提高双作用叶片泵工作压力的主要措施有哪些2改变叶片结构9.某轴向柱塞泵直径d=22mm,分度圆直径D=68mm,柱塞数z=7,当斜盘倾角为γ=22°30′,转速m in r 960n =,输出压力p=10Mpa,容积效率v η=,机械效率m η=时,试求:①泵的理论流量;②泵的实际流量;③所需电机功率; 10.已知泵的流量m m L 80q =,油液粘度s m 103026-⨯=ν,油液密度3m kg 900=ρ,吸油管长l=1m,当吸油管内经为d=16mm 时,液压泵无法吸油;请分析原因; 11.某液压泵的输出油压p=10Mpa,转速m in r 1450n =,排量r L 2.46V =,容积效率v η=,总效率η=;液压泵的输出功率和驱动泵的电动机功率各为多少 12.某叶片泵转速为m in r 1500n =,在输出压力为时,输出流量为m m L 53,这时实测泵消耗功率为7kW ;当空载卸荷运转时,输出流量为m m L 56,试求该泵的容积效率v η和总效率η;平时作业二第四章 液压缸与液压马达1.在供油流量q 不变的情况下,要使单杆活塞式液压缸的活塞杆伸出速度和回程速度相等,油路应该怎样连接,并计算活塞杆的直径d 与活塞直径D 之间的关系;答:应该采用差动联接回路,如图所示,而且为使活塞杆的伸出和回程速度相等,活塞的直径D 和活塞杆的直径d 应有如下的关系: =V ()22244d D q d q-=ππ简化与整理后得:D=d 22.现有一个单活塞杆双作用活塞式气缸和一个双活塞杆双作用活塞式液压缸,两者应如何连接,以及需要用哪些液压元件组成回路,使它们组成一个正、反向运动都能独立调节的气——液阻尼缸绘图并说明所用元件的名称及作用;答:两缸的连结方式和液压回路如图所示;其中,单向阀2和节流阀3供气缸活塞右移调速用,单向阀1和节流阀4供气缸活塞左移调速用;单向阀5和6可以从油杯7吸油,分别用以补充油缸左腔或右腔的泄漏损失;3.液压马达与液压泵在结构上有何异同液压马达和液压泵在工作原理上互逆的,当向泵输入压力油时,其轴输出转速和转矩就成为马达;但由于二者任务和要求有所不同,故在实际结构上也存在区别;液压泵在结构上需保证具有自吸能力,而马达就没有这一要求 题图液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求;从具体机构细节来看:齿轮泵的吸油口大,排油口小,而齿轮液压马达的吸、排油口大小相同;齿轮马达的齿数比齿轮泵的齿数多;叶片泵的叶片须斜置安装,而叶片马达的叶片径向安装;叶片马达的叶片式依靠根部的燕式弹簧,使其压紧在定子表面,而叶片泵的叶片式依靠根部的压力油和离心力作用压紧在定子表面上;4.对某一液压马达,若想改变其输出转速,应如何办如何实现马达的反转 可以通过改变注入流量来实现,也可以改变排量来实现;当改变变油流方向时,便可改变马达的旋转方向,如将配流盘旋转180度装配也可实现马达反转;5.液压马达的性能指标主要有哪几个方面1几何排量,2平均转速和理论流量,3实际流量q 和容积效率,4实际输入功率、实际输出功率;6.马达的输出扭矩与哪些参数有关即电动机的输出,为电动机的基本参数之一;单位为牛.米;电机输出的扭矩与电动机的转速和功率有关;W=AM 功率=转速7.什么是液压马达的排量它与泵的流量、系统的压力是否有关8.如何确定液压缸结构的参数1.液压缸工作压力的确定,2.液压缸内径的确定,3.液压缸行程,4.液压缸长度的确定,5.液压缸缸体壁厚,6.活塞杆长度的确定;9.已知单杆液压缸缸筒直径D=100mm,活塞杆直径d=50mm,工作压力2MPa p 1=,流量m in L 10q =,回油背压力0.5MPa p 2=,试求活塞往复运动时的推力和运动速度;10.已知单杆液压缸缸筒直径D=50mm,活塞杆直径d=35mm,液压泵供油流量m in L 10q =,试求:1液压缸差动连接时的运动速度;2若液压缸在差动阶段所能克服的外负载F=3000N,求缸内油液的压力不计管内压力损失;11.一柱塞式液压缸柱塞固定,缸筒运动,压力油从空心柱赛中通入,压力为p,流量为q,缸筒直径为D,柱塞外径为d,内孔直径为0d ,试求柱赛式液压缸所产生的推理和运动速度;解:柱塞缸产生的推动力为柱塞缸的速度为12.设计一单杆活塞式液压缸,要求快进时为差动连接,快进和快退有杆控进油时的速度均为6min m ;工进时无杆腔进油,非差动连接,可驱动的负载F=25000N,回油背压力25MPa ,采用额定压力为6.3MPa ,额定流量为m in L 25液压泵;试确定:1缸筒内径和活塞杆直径;2缸筒壁厚缸筒材料选用无缝钢管; 解:1根据油缸差动连接且油缸快进和快退时速度相等得d D d D d d D d 2)(4422222212=-=-=υπυππ而 ==21υυ 6 m/min,快进时有:22107.310d --==⨯mD 0.103== m根据缸筒缸杆尺寸系列取D = m,d = m;根据工进时的力平衡关系得:=3310599 Pa缸筒壁厚][21σδDp ≥ 材料选45钢 600=b σMPa1205600][===n bσσMPa633105990.10.001379212010δ⨯≥=⨯⨯m根据冷拔精密无缝钢管系列,选取内径为100mm,壁厚为=的无缝钢管;第五章 液压控制阀1.什么是液压控制阀按机能分为哪几类按连接方式分为哪几类控制油液流动方向、流量的大小和系统压力的元件叫做液压系统中的液压控制阀;按机能分为:开关或定值控制阀、电液比例阀、伺服阀、数字控制阀; 按连接方式分:管式连接,板式及斤斗式连接,叠加式连接;2.什么叫单向阀其工作原理是什么开启压力有哪些要求若做背压阀时应采取何种措施它是一种只允许油液正向流动,反向关闭的阀,故又称为逆止阀或止回阀;开启压力要求: 3.液控单向阀为什么要有内泄式和外泄式之分什么情况下采用外泄式 因控制活塞泄油方式的不同而有内泄式和外泄式的两种,当A 口压力较大时宜采用外泄式的液控单向阀;4.什么是换向阀的“位”与“通”图形符号应如何表达换向阀是利用阀芯在阀体中的相对运动,使阀体上的油路口的液流通路接通、关断、变换液体的流动方向,从而使执行元件启动、停止或停留、变换运动方向,这种控制阀芯在阀体内所处的工作位置称为“位”,将阀体上的油路口称为“通”;5.换向阀的操纵、定位和复位方式有哪些电液换向阀有什么特点1手动换向阀,2机动换向阀,3电磁换向阀,4液动换向阀,5电液换向阀,6多路换向阀电液换向阀主要用在流量超过电磁换向阀额定流量的液压系统中,从而用较小的电磁铁就能控制较大的流量;6.什么是换向阀的中位机能选用时应考虑哪几点中位机能:是指换向阀里的滑阀处在中间位置或原始位置时阀中各油口的连通形式,体现了换向阀的控制机能;7.溢流阀的作用是什么其工作原理是什么若进、出油口接反了会出现什么情况作用:通过阀口的溢流,使被控制系统或回路的压力维持恒定,实现稳压、调压或限压作用;工作原理:溢流阀工作时,是利用弹簧的压力来调节、控制液压油的压力大小;从图3-50中可以看到:当液压油的压力小于工作需要压力时,阀芯被弹簧压在液压油的流入口,当液压油的压力超过其工作允许压力即大于弹簧压力时,阀芯被液压油顶起,液压油流入;一般溢流阀接反了不起溢流作用,系统压力不断升高,超过规定压力,损坏终端液压元件;8.先导式溢流阀的阻尼孔有什么作用是否可将它堵死或随意加大所谓的阻尼就是在油液流动的时候起到压力衰减的作用让上下腔有一定的压力差来控制阀的开启先导式溢流阀阻尼孔有两个,一个是在进油口通先导阀的油路上,防止先导阀阀芯突然开启和关闭,另一个是在先导阀主阀芯的中心孔里面,控制主阀芯的启闭;不可以,主阀芯阻尼孔被堵塞后,上腔无压力油,主阀芯在很低油压力下抬起溢流,使进油口压力无法调高;10.减压阀的作用是什么其工作原理如何其进、出油口可否接反减压阀主要用于降低系统某一支路的油液压力,使其获得一个较主系统的稳定的工作压力;工作原理:把减压阀的进、出油口反接,会发生先导阀打开,主阀口关小,最终关死,使输出流量为零;12.顺序阀的控制与泄油的组合方式有哪些简述其用途;内控外泄式顺序阀的,外控内汇式顺序阀,内控外汇式先导式顺序阀1控制多个执行元件的顺序动作;2与单向阀组成平衡阀,保持垂直放置的液压缸不因自重而下落;3用外控顺序阀使双泵系统的大流量泵卸荷;4用内控顺序阀接在液压缸回油路上,增大背压,以使活塞的运动速度稳定;13.现有一溢流阀和一减压阀,铭牌不清,在不拆开阀的情况下如何区分1溢流阀口常闭,减压阀口常开,吹一口气,通气者为减压阀,不通气者为溢流阀;2减压阀有外泄油口,溢流阀则没有;3若阀是在管路上安装着,由a.减压阀和所控制的油路成串联,溢流阀则成并联;b.减压阀进出油口均为压力油,其出油口与系统相通,溢流阀出口不是压力油,其出口与油箱相通;14.影响节流阀流量稳定性的因素有哪些影响流量稳定性的因素有压力、温度和节流口的形状等;15.调速阀与节流阀的结构及流量——压力曲线有何区别当调速阀进、出油口接反时会出现什么情况接反时:在节流调速系统中,如果调速阀的进、出油口接反了,调速阀流量将随负载的变化而变化,流速不稳定;因为进、出油口接反,调速阀中的减压阀弹簧腔压力高,减压口开至最大而不起作用;相当于简式节流阀;第六章辅助元件1.蓄能器的功用是什么2.设计油箱时应考虑哪些问题其容积如何确定设计油箱时应考虑以下几点:油箱的容积、壁板、底板与底脚、顶板、隔板、回油管及油管、油箱壁板应设有液面指示器、油箱顶板上需装空气滤清器3.滤油器有哪几种类型各有什么特点各用在什么场合4.什么情况下设置加热器和冷却器液压系统中,当液压系统领先自然冷却不能使油温控制在30~50℃范围内,则需安装冷却器;若环境温度低于10℃,液压油粘度太大,致使液压泵无法启动或正常运转时,则需安装加热器,将油温升高到15℃以上;5.如何计算油管的内径和壁厚6.蓄能器安装时应注意哪些问题7.油箱有哪些功能8.滤油器的作用有哪些什么是滤油器的过滤精度平时作业三第七章液压传动基本回路1.什么是液压系统的基本回路基本回路的类型有哪几种基本回路是由一些液压元件和管路按一定方式组合起来的、能够完成一定功能的油路结构;基本回路一般包括方向控制回路、压力控制回路、速度控制回路和多执行元件回路等;2.锁紧回路需要采用什么方式实现常用的有哪几种锁紧回路可以采用液压元件实现,如单向阀、液控单向阀、O或M型的中位机能的换向阀、液压锁等;液控单向阀的锁紧回路、换向阀的锁紧回路、3.压力调节回路有哪几种各有什么特点压力调节回路的基本类型有调压回路、减压回路、保压回路、增压回路、平衡回路和卸荷回路等;4.如何实现液压泵的卸荷请画出两个回路;不需要保压的卸荷回路一般直接采用液压元件实现卸荷;还可以在系统中直接采用具有卸荷和溢流组合功能的电磁卸荷溢流阀进行卸荷;需要保压的卸荷回路可以采用蓄能器或采用限压式变量泵保压的卸荷回路;5.顺序动作回路的目的是什么有哪几种控制方式可以实现多个执行元件按预定的次序动作;按照控制方法,顺序动作回路一般分为压控制回路和行程控制回路;6.对调速回路的基本要求是什么有哪些类型有什么特点容积调速回路特点:效率高,产生的热量少,适合大功率或对发热有严格限制的液压系统;其缺点是要采用变量泵或变量马达,变量泵或变量马达的结构要比定量泵和定量马达复杂得多,而且油路也相对复杂,一般需要有补油油路和设备、散热回路和设备;因此,容积调速回路的成本比节流调速回路的高;容积节流调速回路特点:适用于要求效率高、低速稳定性好的场合,可以采用容积节流调速方式;与调速阀的节流回路相比,容积式调速回路的低速稳定性较差;7.普通节流阀和调速阀的调速回路的油路结构是怎样的有什么特点应用在什么场合普通节流阀调速回路调速阀节流调速回路:用调速阀代替节流调速回路中的节流阀组成调速阀的节流回路;采用调速阀可以提高回路的速度刚度,改善速度-负载特性,提高速度的稳定性;8.容积调速回路的类型、特性、应用场合各有哪些类型:容积调速回路的形式有变量泵与定量执行元件液压缸或液压马达、变量泵与变量液压马达以及定量泵与变量液压马达等几种组合;9.容积节流调速回路的类型、特性、应用场合各有哪些容积节流调速回路有限压式调速阀容积节流调速回路和压差式节流阀容积节流调速回路;11.快速运动回路有哪几种是如何实现换接的1液压缸的差动连接快速运动回路,2双泵供油的快速运动回路,3采用蓄能器的快速运动回路液压缸的差动连接快速运动回路:利用三位四通换向阀实现快速运动,当换向阀处于左位时,液压泵提供的液压油和液压缸右腔液压油同时进入液压缸左腔,使活塞快速向右运动;双泵供油的快速运动回路:当系统的执行元件空载快速运动时,低压大流量泵输出 的压力油经过单向阀后与高压小流量泵汇合后,共同向系统供油,而当执行元件开始工作进给时,系统的压力增大,液控顺序阀打开,单向阀关闭,低压大流量泵卸荷,这时由高压小流量泵独自向系统供油,实现执行元件的工作进给;采用蓄能器的快速运动回路:当换向阀在中位时,液压泵启动后首先向蓄能器供油,当蓄能器的充油压力达到设定值时,液控卸荷阀打开,液压泵卸荷,蓄能器完成能量存储,当换向阀动作后,液压泵和蓄能器同时经过换向阀向执行元件供油,使执行元件快速运动,这时蓄能器释放能量;12.如何实现液压执行元件的同步运动1采用流量控制阀的同步回路,2采用串联液压缸的同步回路,3采用同步缸或同步马达的同步回路,4采用比例阀或伺服阀的同步回路14.在进口节流液压回路中,液压缸有效工作面积22150cm 2A A ==,液压泵流。