滤波器采样

  • 格式:doc
  • 大小:105.00 KB
  • 文档页数:7

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滤波器基础:抗混叠

标签:硬件驱动抗混叠滤波器滤波器

2016-02-17 09:29 1453人阅读评论(0) 收藏举报

分类:

基础知识(5)

目录(?)[+]摘要:在数据采样系统中,高于二分之一采样率的频率成分“混叠”(搬移)到有用频带。大多数时间,混叠是有害的副作用,所以在模/数(AD)转换级之前,将“欠采样”的较高频率简单滤除。但有时候,特意设计利用欠采样,混叠使得AD系统作为混频器工作。本应用笔记讨论数据采样系统的不同滤波要求,介绍混叠以及用于抗混叠的不同类型滤波器。

滤波是一种我们往往视为当然的常见过程。我们在打电话时,接收器滤除其它所有信道,使我们仅仅接收到特定的信道。当我们调节立体声系统的均衡器时,利用带通滤波器选择性增大或降低特定频带的音频信号。

滤波器在几乎所有数据采样系统中扮演着重要角色。大多数模/数转换器(ADC)都安装有滤波器,滤除超出ADC范围的频率成分。有些ADC在其结构本身上就具有滤波功能。

我们接下来讨论数据采样系统、滤波要求以及与混叠的关系。

背景

数据采样系统能够高精度处理的最大频率成分称为其奈奎斯特极限。采样率必须大于或等于输入信号最高频率的两倍。如果违反该规则,在有用频带内就会出现多余或有害的信号,称之为“混叠”。

例如,为了数字化1kHz信号,要求最低采样率为2kHz。在实际应用中,采样率通常较高,以提供一定的裕量,降低滤波要求。

为帮助理解数据采样系统和混叠,我们以传统的电影摄影为例。

在西部老片中,当马车加速时,车轮正常加速转动,然后看起来车轮速度却变慢了,再然后似乎停止了。当马车进一步加速时,车轮看起来像在倒转。实际上,我们知道马车没有倒走,因为其它动作都一切正常。什么原因造成了这种现象?答案就是:帧速率不够高,不足以准确捕获车轮的转动。

为帮助理解,假设在马车车轮上贴一个看得到的标记,然后车轮转动。然后我们按时间拍摄照片(或采样)。由于电影摄影机通过每秒捕获一定数量的照片来捕获动作,所以本质上是数据采样系统。就像胶片采用车轮的离散图像一样,ADC捕获的是运动电信号的一系列快照。

当马车首次加速时,采样率(电影摄影机的帧速率)远远高于车轮的转速,所以满足奈奎斯特条件。摄像机的采样率高于车轮转速的两倍,所以能够准确描述车轮的运动,我们看到车轮加速的样子(图1a和1b)。

在奈奎斯特极限下,我们在180度范围内看到两个点(图1c)。人眼一般很难明确分辨这两个点的时间,这两个点同时出现,车轮表现为停止。在这种车轮转速下,转动速率是已知的(根据采样率),但搞不清楚转动方向。当马车继续加速时,不再满足奈奎斯特条件,看到车轮的方式可能有两种:我们“看到”车轮在正转,其他人则看到是倒转(图1d)。

图1. 马车车轮的例子。

这两种方向都可以看做是正确的方向,取决于您如何“看”车轮,但我们知道已经发生了信号混叠。也就是说,系统中出现了有害的频率成分,我们不能将其与真实值区分开,同时出现了正转和倒转的运动信息。我们一般看到倒转成分或正转成分的“约数”或“镜像”。由于是眼/脑相结合的方式处理数据,因此我们并不能察觉到车轮前转的主要信息。另一种有意思的现象是采样率与车轮转速严格相等时,由于标记始终出现在车轮的相同位置,所以数据几乎没有提供有用信息。在这种情况下,没有人能清楚车轮在转动还是静止。

现在转入数学领域,假设车轮为单位圆,采用正弦和余弦坐标。如果在余弦值的正向和负向峰值采样(180度错相),那么就满足奈奎斯特条件,能够利用两个采样数据点重构原始余弦值。所以,奈奎斯特极限是重构原始信号的关键。当增加的点越来越多时,复现原始信号的能力就提高了。

转到频域,图2所示为采样数据系统的频率响应。注意,数据在采样率的倍数处重复(原始信号的“镜像”);这是采样数据系统的一种基本特征。图2a中,满足奈奎斯特条件,有用频带内没有混叠现象。然而,在图2b中,由于有用频带内的最高频率大于二分之一采样率,不再满足奈奎斯特条件。重叠的区域发生了混叠;频率为fT的信号也出现在fT'处,与马车车轮的混叠相似。

图2a. 采样数据系统频率响应,无混叠。

图2b. 采样数据系统频率响应,发生混叠。

欠采样

欠采样是一种功能强大的工具,可有效用于所选应用。欠采样允许ADC作为一个混频器,能够接收调制高频载波信号并产生较低频率的镜像。这种方式下,就像下变频器。另一种主要优点是允许ADC的采样率低于奈奎斯特频率,一般具有较明显的成本优势。例如,假设调制载波为10MHz,带宽为100kHz (±50kHz,中心频率为10MHz)。以4MHz进行欠采样,产生1阶和与差项(f1 + f2和f1 - f2),分别为14MHz和6Mz;2阶项(2f1、2f2、2f1 + f2、f1 + 2f2、| 2f1 - f2 |、| f1 - 2f2 |),分别为8MHz、20MHz、18MHz、2MHz、24MHz和16MHz。出现在2MHz处的镜像信号为有用信号。注意,我们的原始信号在10MHz,通过对其进行数字化在2MHz产生了镜像。现在,我们可以在数字域进行信号处理(滤波和混频),恢复原始50kHz 信号。该过程无需大幅的模拟处理,这是其主要优势之一。由于所有处理都在数字域完成,如果需要对电路的性能和特性进行更改,只需修改软件即可。相对而言,对于模拟设计,如果需要更改电路性能,需要改变电路硬件元件和布局,并且成本相当高。

欠采样的一项缺点是有用频带内可能出现有害信号,您不能将其与有用信号区分开。此外,欠采样时,ADC 输入的频率范围往往非常宽。在上例中,即使采样率为4MHz,ADC前端仍然必须采样10MHz信号。相对而言,如果在ADC之前利用模拟混频器将调制载波信号向下搬移到基带,那么ADC的输入带宽只需要为50kHz,而非4MHz,降低了ADC前端和输入滤波要求。

图3a. 欠采样示例。

图3b. 欠采样数字化的镜像信号(1阶和2阶)。

过采样

过采样提供所谓的处理增益。在过采样时,以较高采样频率获得多出实际需要的采样数量,然后对数据滤波,从而有效降低系统的噪底(假设噪声为宽带白噪声)。这不同于平均,后者是获取很多采样,噪声被平均。可以这么理解过采样:如果输入信号来自于扫描频率的信号源,频谱则可以分为多个范围或“容器”,每个容器的带宽固定。宽带噪声分散在整个有用频率范围内,所以每个容器具有特定量的噪声。现在,如果提高采样率,那么频率容器的数量也增多。在这种情况下,出现的噪声量仍相同,但我们有更多的容器可供容纳噪声。然后我们利用滤波器滤除超出有用频带的噪声。结果就是每个容器的噪声减少,所以就通过过采样有效降低了系统的噪底。

举例说明,如果我们有一个2ksps ADC (下式中使用1kHz奈奎斯特极限)和1kHz信号,ADC之后为1kHz 数字滤波器,处理增益由下式给出:-10 × log (1kHz/1kHz) = 0dB。如果们将采样率增大至10ksps,处理增益现在为-10 × log (1kHz/5kHz) = 7dB,或者说大约1位分辨率(1位大约相当于信噪比(SNR)提高6dB)。通过过采样,噪声没有减少,而是分散在更宽的带宽内;将部分噪声置于有用带宽范围之外,效果就相当于减少了噪声。这种噪声改善基于以下公式:

SNR改善(dB) = 10 × LOGA/B,其中A等于噪声,B等于过采样噪声。

表述这一过程的另一种方式是:过采样降低了带内RMS量化噪声,系数为过采样率的平方根。或者,如果噪声降低二分之一,则相当于3dB有效处理增益。不要忘了,我们这里仅讨论了宽带噪声。过采样不能简单消除其它噪声源和其他误差。

相关主题