物理化学 界面张力
- 格式:pptx
- 大小:625.02 KB
- 文档页数:10
实验33 溶液表面张力及吸附分子横截面积的测定预习要求1. 液体表面张力的概念。
2. 溶质对溶液表面张力的影响的类型。
3. 测定表面张力在恒温槽中进行的原因。
4. 思考本实验中测标准样品的表面张力的目的。
实验目的1. 学习用最大气泡压力法测定溶液的表面张力。
2. 了解吉布斯方程在溶液表面吸附中的实验应用。
3. 了解溶液表面吸附分子的横截面积的测量方法。
实验原理1.表面张力σ与溶液表面的过剩物质的量Γ表面张力,也称为比表面自由能,即单位表面积的表面分子比体相分子多余的能量。
表面张力是液体的重要特性之一,与温度、压力、组成和共存的另一相有关。
纯液体的体相与表面相的组成相同,因此在温度、压力不变时,纯液体降低表面张力的唯一途径是尽量缩小表面积。
而对溶液,溶质的种类和浓度都会影响表面张力。
溶质对溶液表面张力的影响有三种情况:①溶质浓度增加引起溶液表面张力增大;②溶质浓度增加引起溶液表面张力减小;③少量溶质使溶液的表面张力急剧减小,当达到某一临界浓度时,溶液的表面张力几乎不变,见图3-20。
根据能量最低原则,能降低溶液表面张力的物质,其在表面相的浓度必然大于在体相的浓度,否则反之。
这种表面相的浓度与体相浓度不同的现象,叫“吸附”。
在指定的温度和压力下,定量地描述这一规律的方程是Gibbs 等温吸附方程:()c RT c ΓTd d σ-= (3-35) 式中,Γ 为表面过剩物质的量(mol·m -2)。
对某些溶液(如电解质溶液),式中的浓度c 要用活度a 代换。
当(d σ/d c )T >0,Γ<0,称为负吸附(图3-20曲线①);当(d σ/d c )T <0,Γ>0,称为正吸附(曲线②③)。
本实验研究正吸附的情况。
只要获得了溶液表面张力随溶质浓度的变化曲线,就可用微分法得到某一浓度下的(d σ/d c )T,然后依据式(3-35)得到表面过剩物质的量Γ。
2.饱和表面过剩物质的量与吸附分子的横截面积在一定温度下,若溶质在溶液表面是单分子层吸附,则表面过剩物质的量Γ与溶液浓度之间的关系可由Langmuir 等温式表示:Kc1Kc ΓΓ+=∞ (3-36) Γ∞ 为饱和表面过剩物质的量,K 为经验常数,与溶质的性质有关。
物理化学中的表面现象与胶体化学物理化学是一门探讨物质性质变化及相关规律的学科。
与之相关的表面现象和胶体化学则是物理化学领域中一项重要的分支。
本文将从表面现象和胶体化学两个方面入手,探讨它们的基本概念、相关应用和研究意义。
一、表面现象观察一个物体,我们会发现它的表面是与外界直接接触的部分。
因此,表面现象是物质研究中一种极其普遍和重要的现象。
表面现象是指两种或两种以上介质相接触时,有特殊性质的现象出现。
在物理化学中,表面现象主要包括表面张力、毛细现象和润湿现象。
表面张力是液体表面处由于分子间作用力而表现出来的一种现象。
表面张力较大的液体在容器中形成凸面或水滴状,这种现象称为毛细现象。
液体与固体相接触时,液体能否在固体表面上均匀分布并附着称为润湿现象。
表面现象在自然界和人类生活中都有广泛应用。
例如,水平稳定的大船只是因为水面的表面张力;高楼大厦的毛细管水系统则利用了毛细现象;润滑油、乳液、涂料等都运用了润湿性质。
二、胶体化学胶体化学是涉及无色透明的小粒子(胶体)和它所处的环境之间的相互作用的学科。
胶体是介于小分子和宏观物体之间的一种存在形式,其中粒子的平均大小在1至1000纳米之间。
胶体物理包括多种胶体类型,例如溶胶、凝胶和气溶胶等。
胶体学科研究中的主要问题是如何制备胶体,以及在胶体中所表现出的各种特殊性质。
胶体的制备方法包括溶胶法、凝胶法和胶体化合物分解法等。
在胶体中存在的各种特殊现象包括布朗运动、泡沫现象和重力分选等。
胶体的应用十分广泛,例如在涂料、油墨、胶水、陶瓷、橡胶等方面都得到了广泛的应用。
另外,人类生命活动中的一些基础物质,例如蛋白质、肌肉等,都是以胶体形式存在的。
三、物理化学中的表面现象与胶体化学的关联表面现象与胶体化学之间有着密不可分的联系。
在液态物质中,固液接触面所呈现的动态变化与胶体的形成和演化密切相关。
例如,胶体粒子表面的物理化学特征决定了胶体粒子的成长和聚集行为。
此外,表面现象和胶体化学之间也有着一些实际应用。
大学化学实验II实验报告——物理化学实验学院:化学与化工学院专业:班级:图1 被吸附的分子在界面上的排列图1中(1)和(2)是不饱和层中分子的排列,(3)是饱和层分子的排列。
图2 表面张力和浓度关系图当界面上被吸附分子的浓度增大时,它的排列方式在不断改变,最后,当浓度足够大时,被吸附分子盖住了所有界面的位置,形成饱和吸附层,分子排列方式如图1中(3)所示。
这样的吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。
如果在恒温下绘成曲线γ=f(c)(表面张力等温线),当c 增加时,γ在开始时显著下降,而后下降逐渐缓慢下来,以至γ的变化很小,这时γ的数值恒定为某一常数(见图2)。
利用此图求出其在一定浓度时曲线的切线斜率,代入吉布斯吸附方程就可求得表面吸附量。
或者在曲线上某一浓度c 点作切线与纵坐标交于b 点,再从切点a 作平行于横坐标的直线,交纵坐标于b′点,以Z 表示切线和平行线在纵坐标上截距间的距离,故有:(3)根据朗格缪尔(Langmuir)公式:(单分子层吸附)KcKc +Γ=Γ∞1 (4)其中 Г∞为饱和吸附量,即表面被吸附物铺满一层分子时的吸附量,整理可得:浓度(mol/l)0.02 0.04 0.06 0.08 0.10 0.12 0.16 0.20 0.24△P最大(kpa)598 553 536 499 475 467 425 409 391实验数据处理平均温度=17.8℃平均大气压=88.87kpa 表面张力—浓度关系曲线由上图可计算的个点的Γ,结合温度制的下图正丁醇溶液吉布斯吸附等温线:再以c/Γ对c作图得知该直线的斜率为0.013×107,则根据∞∞Γ+Γ=ΓK c c 1 1/∞Γ=1.3×105 1/(K ∞Γ)=0.811×107所以正丁醇饱和吸附量∞Γ=1/(1.3×105)=7.692×10-6mol·m -2问题讨论及 误差分析 问题讨论:1、在毛细管升高法中,影响实验结果的因素有哪些?答:①毛细管及试管的洁净程度;②毛细管的内径大小(内径小,测量的高度误差小);③毛细管粗细是否均匀;④毛细管内半径的测量是否准确;⑤测量时,毛细管是否垂直液面。
物理化学中的表面性质与界面现象在物理化学领域中,表面性质与界面现象是一项重要的研究内容,它涉及到物质的各种表面现象及其在界面上的行为。
表面性质与界面现象的研究对于理解和掌握物质的特性及其应用具有重要意义。
本文将介绍表面性质与界面现象的相关概念、表面张力、胶体稳定性和浸润现象等方面内容。
一、表面性质的概念与研究方法表面性质是指物质在固液、液气等相接触的界面上表现出的特性和行为。
它与物质内部性质的差异密切相关,表面性质的研究对于理解物质的特性和改性以及应用具有重要意义。
研究表面性质的方法主要有表面张力测量、接触角测量、X射线光电子能谱(XPS)等。
二、表面张力的概念与测量表面张力是指液体分子表面层与内部层之间由于分子间相互作用力引起的表面收缩现象。
表面张力决定了液体的形状和质点受力,表现为液滴的定型和液体的流动性质。
表面张力的测量方法主要有浸渍法、半球法和沉降法等。
三、胶体稳定性的研究胶体是由微细颗粒悬浮于连续介质中所形成的系统。
胶体稳定性是指胶体系统中颗粒与连续介质之间的相互作用所表现出的稳定性。
胶体稳定性的研究是物理化学中一个重要的研究领域,涉及到胶体的形成、稳定机制以及其在生物、医药领域的应用等。
常见的胶体稳定机制包括电双层排斥、溶剂化和吸附等。
四、浸润现象的原理与应用浸润是指固体表面与液体接触时,在界面处发生的物理化学现象。
它与表面能、接触角以及界面张力等相关。
浸润现象在材料加工、润湿性研究以及生物医用材料等领域有着广泛的应用,对于材料表面特性及其性能改善具有重要意义。
总结:物理化学中的表面性质与界面现象是一门重要的学科,涉及到物质在界面上的各种行为和特性。
研究表面性质与界面现象对于理解物质的性质、设计新材料以及改善现有材料的性能具有重要意义。
本文简要介绍了表面性质与界面现象的相关概念,包括表面张力、胶体稳定性和浸润现象等方面的内容。
深入研究和应用表面性质与界面现象将会对未来的科学发展和技术创新产生深远的影响。
实验33 溶液表面张力及吸附分子横截面积的测定预习要求1. 液体表面张力的概念。
2. 溶质对溶液表面张力的影响的类型。
3. 测定表面张力在恒温槽中进行的原因。
4. 思考本实验中测标准样品的表面张力的目的。
实验目的1. 学习用最大气泡压力法测定溶液的表面张力。
2. 了解吉布斯方程在溶液表面吸附中的实验应用。
3. 了解溶液表面吸附分子的横截面积的测量方法。
实验原理1.表面张力σ与溶液表面的过剩物质的量Γ表面张力,也称为比表面自由能,即单位表面积的表面分子比体相分子多余的能量。
表面张力是液体的重要特性之一,与温度、压力、组成和共存的另一相有关。
纯液体的体相与表面相的组成相同,因此在温度、压力不变时,纯液体降低表面张力的唯一途径是尽量缩小表面积。
而对溶液,溶质的种类和浓度都会影响表面张力。
溶质对溶液表面张力的影响有三种情况:①溶质浓度增加引起溶液表面张力增大;②溶质浓度增加引起溶液表面张力减小;③少量溶质使溶液的表面张力急剧减小,当达到某一临界浓度时,溶液的表面张力几乎不变,见图3-20。
根据能量最低原则,能降低溶液表面张力的物质,其在表面相的浓度必然大于在体相的浓度,否则反之。
这种表面相的浓度与体相浓度不同的现象,叫“吸附”。
在指定的温度和压力下,定量地描述这一规律的方程是Gibbs 等温吸附方程:()c RT c ΓTd d σ-= (3-35) 式中,Γ 为表面过剩物质的量(mol·m -2)。
对某些溶液(如电解质溶液),式中的浓度c 要用活度a 代换。
当(d σ/d c )T >0,Γ<0,称为负吸附(图3-20曲线①);当(d σ/d c )T <0,Γ>0,称为正吸附(曲线②③)。
本实验研究正吸附的情况。
只要获得了溶液表面张力随溶质浓度的变化曲线,就可用微分法得到某一浓度下的(d σ/d c )T,然后依据式(3-35)得到表面过剩物质的量Γ。
2.饱和表面过剩物质的量与吸附分子的横截面积在一定温度下,若溶质在溶液表面是单分子层吸附,则表面过剩物质的量Γ与溶液浓度之间的关系可由Langmuir 等温式表示:Kc1Kc ΓΓ+=∞ (3-36) Γ∞ 为饱和表面过剩物质的量,K 为经验常数,与溶质的性质有关。
炔二醇表面张力引言表面张力是液体分子之间的相互作用力导致的液体表面处形成膜状结构的性质。
炔二醇是一种有机化合物,它的分子含有两个炔基(-C≡CH)和两个羟基(-OH)。
炔二醇的表面张力是指炔二醇液体表面的张力特性。
本文将就炔二醇表面张力的相关性质进行详细探讨。
炔二醇的结构与性质炔二醇的化学式为C2H2(OH)2,属于脂肪族相似物。
它是无色液体,在室温下可见到烟雾状。
炔二醇具有高度的亲水性,与水能够形成氢键作用。
此外,炔二醇还具有稳定性和可溶性较好的特点。
炔二醇表面张力的定义表面张力是指液体表面上的分子间相互作用所产生的一种性质。
炔二醇液体表面的分子由于亲水基团的存在,会形成一层稳定的膜状结构。
这个膜状结构使得炔二醇液体表面具有一定的弹性和拉伸性,表现出表面张力的特性。
炔二醇表面张力的测量方法测量炔二醇表面张力的方法有很多种,下面介绍几种常用的方法:1. 悬滴法悬滴法是一种用玻璃毛细管或微量注射器等将液体滴入其他液体中,观察液滴形态变化的方法。
通过测量滴液的下降速度或者滴液的接触角大小,可以间接推算出短时间内的表面张力。
2. 振荡法振荡法利用振荡实验仪器的原理,通过将液体表面作为一个振动的曲面,测量液体表面的振幅和频率等参数来推算表面张力。
3. 静力法静力法是利用天平原理来测量表面张力的方法。
将一个悬浮在液体表面的物体与天平相连,测量物体的重量变化,进而计算表面张力。
炔二醇表面张力与物理化学性质的关系炔二醇的表面张力与其物理化学性质有着密切的关系。
下面将就几个与炔二醇表面张力相关的物理化学性质进行探讨。
1. 温度温度对炔二醇表面张力有着直接影响。
随着温度的升高,炔二醇的表面张力会下降。
这是因为炔二醇的分子在较高温度下具有更高的平均动能,导致炔二醇分子之间的相互作用减弱,从而减小了表面张力。
2. 浓度炔二醇的浓度对表面张力也有影响。
一般来说,炔二醇的浓度越高,表面张力也越大。
这是由于高浓度的炔二醇分子间相互作用更强,表面膜也更加紧密。
实验十二溶液中的吸附作用和表面张力的测定摘要:本实验采用最大气泡压力法测定了液体表面张力,通过对不同浓度下正丙醇溶液的表面张力研究其和浓度之间的关系。
初步探讨了表面张力的性质、表面能的意义以及表面张力和吸附作用的关系。
关键词:吸附作用、表面张力、最大气泡法The measurement of the adsorption effect andsurface tensionAbstract:In this experiment, according to Gibbs formula and Langmuir equal-temperature equation, we apply the biggest bladder pressure method to research the relationship between the amount of absorption and the consistency of a substance in the solution besides the surface tension. The phenomenon show that the consistency of a substance in the surface of the solution is different from that inside is called absorption.Keyword:Surface tension, The biggest bubble pressure method, Absorption effect1. 序言物体表面的分子和内部的分子所处的境况不同,因此能量也不同,表面张力就是内部分子对表面分子的作用力,它是液体的重要属性之一,与所处的温度、压力、液体的组成共存的另一面的组成等因素都有关。
对于溶液,由于溶质会影响表面张力,因此可以调节溶质在表面层的浓度来降低表面自由能。