附录1:矢量
- 格式:ppt
- 大小:406.00 KB
- 文档页数:20
矢量分析与张量初步第一章矢量分析U STU STU ST标量(数量):有大小,没方向的物理量。
矢量:既具有大小又具有方向的物理量,矢量又称为向量。
矢量与标量的根本区别是:有没有方向性。
如:温度、质量、角度、长度等。
如:力、速度、电场强度、力矩等。
矢量的模:矢量的大小。
矢量的模记为:或。
A K A ||A KU STU STU ST自由矢量:矢量平移后,其作用效果不变。
即自由矢量就是具有平移不变性的矢量。
FK 只考虑刚体的质心运动,作用力可以平移。
能不能平移?下面只讨论自由矢量。
如果要考虑刚体的转动,则作用力不能平移。
U STU STU ST始端在坐标原点的矢量常称为矢径,显然矢径的末端与直角坐标系中的三个坐标分量之间具有一一对应的关系,则矢径可用其末端的空间坐标来表示:①在直角坐标中的表示对矢量,始端平移到坐标原点,表示为:A Kr xi yj zk=++KK K K、、:单位矢量,分别指向三个坐标轴的正向。
i K j K k K x y z A A i A j A k=++K K K KU STU STU ST其中:为矢量的模,为指向矢量方向上的单位矢量。
R A A e A 三个:、和。
R βαcos cos cos A e i j kαβγ=++K K K KAKRxy zO因为222cos cos cos 1αβγ++=的直角坐标表示为A e K有几个独立坐标量?A Kr e =KU STU STU STOxe ρρK zA kK A K cos sin e i j ρϕϕ=+K K K三个:、和。
ρϕz 的直角坐标表示为e ρK在矢量的球坐标及柱坐标表示中,只要分别把单位矢量和的直角坐标表示代入,即得到矢量的直角坐标表示。
e ρKr e K 有几个独立坐标量?A K第一章矢量分析U STU ST U ST U STU STcos xA Aα=cos yA Aβ=cos zA A γ=(cos cos cos )A A i j k αβγ=++K K K K④方向余弦表示:设矢量与直角坐标三个坐标轴正向的夹角分别为、和,则:αγβA K用方向余弦()表示矢量:A Kcos ,cos ,cos αβγcos x A A α=这实际上就是直角坐标表示,因为:cos y A A β=cos z A A γ=U STU STU ST不能按大小排列)。