高考数学思维导图素材函数与导数(图片版)
- 格式:doc
- 大小:390.00 KB
- 文档页数:1
1.一次函数:在某个变化过程中,设有变量x和y,将其写成y=kx+b(k是一
次项系数,且不等于零,b是常数),则y是x的一次函数,并且x是自变量,y是因变量。
2.二次函数:二次函数的基本形式是:y=ax²+bx+c,二次函数的图像是一条
对称轴平行或者是重合于y轴的抛物线。
3.指数函数:形如y=a^x(a>0且a≠1)(x∈R)的函数称为指数函数。
4.对数函数:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数。
5.幂函数:形如y=xa(a为常数)的函数。
6.三角函数:三角函数是以角度为自变量,角度对应任意两边的比值为因变
量的函数叫三角函数,常见的三角函数包括正弦函数、余弦函数和正切函数。
基本不等式实际是对勾函数的特例,可以考虑利用对勾实际应用题考虑解析式有意义且考虑实际问题有意义
解析式表示的斜率、截距、距离等几何意义一般适用含有绝对值的函数
6种基本函数及其加减形式
形如f[g(x)]
确定函数的定义域.
将复合函数分解成基本初等函数y =f(u),u =g(x).分别确定这两个函数的单调区间.如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,对称轴是两个横坐标的中点
对称中心为函数对称两点的中点,可以利用中点坐标
如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有奇偶性的判断利用奇偶性求解析式公
众
么
难。
2.2常见函数一、一次函数和常函数:思维导图:(一) 、一次函数 〔二〕、常函数 定义域:〔- ∞,+ ∞〕 定义域: 〔- ∞,+ ∞〕 值 域:〔- ∞,+ ∞〕 正 k=0 反 值 域:{ b }解析式:y = kx + b ( k ≠ 0 ) 解析式:y = b ( b 为常数)图 像:一条与x 轴、y 轴相交的直线 图 像:一条与x 轴平行或重合的直线b>0 b=0 b<0 K > 0 k < 0单调性: k > 0 ,在〔- ∞,+ ∞〕↑ 单调性:在〔- ∞,+ ∞〕上不单调 k < 0 ,在〔- ∞,+ ∞〕↓奇偶性:奇函数⇔=0b 奇偶性: 偶函数 非奇非偶⇔≠0b周期性: 非周期函数 周期性:周期函数,周期为任意非零实数 反函数:在〔- ∞,+ ∞〕上有反函数 反函数:在〔- ∞,+ ∞〕上没有反函数 反函数仍是一次函数例题:二、二次函数1、定义域:〔- ∞,+ ∞〕2、值 域: ),44[,02+∞-∈>ab ac y a]44,(,02ab ac y a --∞∈<3、解析式:)0(2≠++=a c bx ax y4、图 像:一条开口向上或向下的抛物线 开口向下,开口向上;正负:增大,开口缩小绝对值:随着,00<>a a a a正半轴相交与负半轴相交与y c y c c,0,0><对称轴:ab x 2-=对称轴: ;)44,2(2ab ac ab --顶点: 轴交点个数图像与x ac b →-=∆42:与x 轴交点的个数。
两个交点,0>∆一个交点,0=∆无交点,0<∆5、单调性:↑+∞-↓--∞>),2[]2,(,0ab ab a↓+∞-↑--∞<),2[]2,(,0ab ab a6、奇偶性:偶函数⇔=0b7、周期性:非周期函数8、反函数:在〔- ∞,+ ∞〕上无反函数,上及其子集上有反函数或在),2[]2,(+∞---∞ab ab例题:三、反比例函数和重要的分式函数〔一〕、反比例函数 〔二〕、分式函数bax dcx y ++= 定义域:〔- ∞,0〕∪〔0,+ ∞〕 定义域:),(),(+∞---∞aba b 值 域:〔- ∞,0〕∪〔0,+ ∞〕 值 域: ),(),(+∞-∞a c a c解析式:)0()(≠=k xk x f 解析式:)(a bx b ax d cx y -≠++=图 像:以x 轴、y 轴为渐进线的双曲线 图 像:以abx -=和a c y =为渐近线的双曲线y y0 x 0 xk > 0 k < 0单调性: k>0,〔- ∞,0〕↓,〔0,+ ∞〕↓ 单调性:在),(a b --∞和),(+∞-ab上 k<0,〔- ∞,0〕↑,〔0,+ ∞〕↑ 单调性相同 奇偶性:奇函数 奇偶性:非奇非偶 对称性:关于原点对称 对称性:关于点),(aca b -成中心对称 周期性:非周期函数 周期性:非周期函数反函数:在定义域上有反函数, 反函数:在定义域有反函数, 反函数是其本身。
新课程高中数学知识点思维导图第一部分:集合、映射、函数、导数及微积分集合是由元素组成的整体,可以用数轴、Venn图或函数图象等方式表示。
集合具有确定性、互异性和无序性等特点。
定义域、值域、单调性、奇偶性、周期性和对称性等是函数的重要性质。
函数可以进行平移、对称、翻折和伸缩变换,最值是函数的重要特征。
对数函数、分段函数、复合函数和抽象函数等都是常见的函数类型。
函数与方程密切相关,函数在生活中有着广泛的应用。
导数是函数变化率的度量,基本初等函数的导数可以通过运用导数的运算法则求得。
导数的应用包括求极值和定积分等。
三角函数、复合函数的单调性、函数模型的建立等都是微积分的重要内容。
第二部分:三角函数与平面向量角的概念可以用弧度制或线度制表示,三角函数是角的重要性质之一。
同角三角函数之间有着密切的关系,诱导公式、和角、差角公式和二倍角公式等都是常用的公式。
三角函数的定义域、图象、对称性、最值、奇偶性、单调性和周期性等都是重要的性质。
正弦函数、余弦函数和正切函数的图象可以通过平移和伸缩变换得到,也可以用五点作图法进行绘制。
最小正周期是正弦函数和余弦函数的重要特征,对称轴和对称中心是正弦函数和余弦函数图象的重要点。
三角函数的化简、求值和证明都需要运用公式的变形和逆用。
平面向量是具有大小和方向的量,可以进行加减和数乘等运算。
向量的模、方向角和坐标等都是向量的重要性质。
向量的共线和垂直关系、平面向量的数量积和叉积等都是向量的重要概念。
概念:解析几何是一种通过运用坐标系和代数方法研究几何问题的数学分支。
线性运算:向量的加法和数乘运算。
基本定理:平面向量的基本定理包括平面向量的加法定理和数量积的几何意义。
平面向量:平面上具有大小和方向的量,可以用有向线段表示。
坐标表示:平面向量可以用坐标表示,其中x和y分别表示向量在x轴和y轴上的投影。
模:向量的大小,也称为模长或长度。
加、减、数乘几何意义:向量加法表示平移,向量减法表示连接两点的向量,数乘表示伸缩或反向。
高二数学知识点推导过程高二数学是中学阶段的重要学科内容之一,下面将就几个高二数学的常见知识点,分别进行推导过程的阐述。
一、函数与导数函数的导数是高二数学中的基础概念之一,其推导过程如下所示:【思维导图】在思维导图中,我们首先定义函数的导数为函数的微分商极限,即:\[f'(x)=\lim _{△x\to 0}\dfrac{f(x+△x)-f(x)}{△x}\]接着,我们推导出函数导数的几个基本性质:1. 导数为常数的函数:\[y=c \Rightarrow y'=0\]2. 乘幂法则:\[y=x^n \Rightarrow y'=nx^{n-1}\]3. 和差法则:\[y=u(x)\pm v(x) \Rightarrow y'=u'(x)\pm v'(x)\]4. 乘积法则:\[y=u(x)\cdot v(x) \Rightarrowy'=u'(x)v(x)+u(x)v'(x)\]5. 商数法则:\[y=\dfrac{u(x)}{v(x)} \Rightarrowy'=\dfrac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2}\]二、三角函数的导数三角函数作为高二数学中常见的函数类型,其导数的推导过程如下:1. 正弦函数导数:\[y=\sin x \Rightarrow y'=\cos x\]2. 余弦函数导数:\[y=\cos x \Rightarrow y'=-\sin x\]3. 正切函数导数:\[y=\tan x \Rightarrow y'=\sec^2x\]4. 反正弦函数导数:\[y=\arcsin x \Rightarrowy'=\dfrac{1}{\sqrt{1-x^2}}\]5. 反余弦函数导数:\[y=\arccos x \Rightarrow y'=-\dfrac{1}{\sqrt{1-x^2}}\]6. 反正切函数导数:\[y=\arctan x \Rightarrowy'=\dfrac{1}{1+x^2}\]三、高等数学中的极限极限是高等数学中重要的概念,其推导过程如下:1. 数列极限的定义:对于数列\(\{a_n\}\),如果对于任意给定的正数\(\varepsilon>0\),存在正整数\(N\),使得当\(n>N\)时,有\(|a_n - A|<\varepsilon\),其中\(A\)为常数,则称\(A\)是数列\(\{a_n\}\)的极限,记作\(\lim _{n\to \infty}a_n=A\)。