例2 在三棱锥P-ABC中,PA⊥平面 ABC,AB⊥BC,PA=AB,D为PB的中点, 求证:AD⊥PC.
P
D
C
A
B
例3 侧棱与底面垂直的棱柱称为直
棱柱.在直四棱柱ABCD-A1B1C1D1中, 当底面四边形ABCD满足什么条件时,
有A1C⊥B1D1,说明你的理由.
A1
D1
B1
C1 A
D
B
C
问题提出
思考1:空间两条直线垂直是怎样定 义的?直线与平面垂直是怎样定义 的?
思考2:什么叫直二面角?如果两个 相交平面所成的四个二面角中,有 一个是直二面角,那么其他三个二 面角的大小如何?
思考3:如果两个相交平面所成的二 面角是直二面角,则称这两个平面 互相垂直.在你的周围或空间几何体 中,有哪些实例反映出两个平面垂 直?
垂直关系的判定
问题提出
1.前面我们全面分析了直线与平面平行 的概念、判定和性质,对于直线与平面 相交,又有哪些相关概念和原理?我们 有必要进一步研究.
2.直线与直线存在有垂直关系,直线与 平面也存在有垂直关系,我们如何从理 论上加以认识?
知识探究(一):直线与平面垂直的概念
思考1:田径场地面上 竖立的旗杆与地面的位 置关系给人以什么感觉? 你还能列举一些类似的 实例吗?
巩固练习
练习1 如图,空间中直线b和三角形的两边 AC,BC同时垂直,则这条直线和三角形的第三 边AB的位置关系是( ) A平行 B垂直 C 相交 D不确定
理论迁移
例1 已知 a//b,a .求证:b .
a
b
c
α
d
巩固练习
练习2 圆O所在一平面为,AB是圆O 的直 径,C 是圆周上一点,且 PA AC, PA AB,求 证: (1)PA BC (2)BC 平面PAC (3)图中哪些三角形 是直角三角形。