15-Bezier曲线曲面
- 格式:ppt
- 大小:977.00 KB
- 文档页数:58
Bezier 曲线什么是 Bezier 曲线?Bezier 曲线是一种数学曲线,由法国工程师 Pierre Bézier 于20世纪50年代发明。
它是计算机图形学中最基本和最常用的曲线之一。
由于其简单性和灵活性,Bezier 曲线被广泛应用于计算机图形、工业设计、动画制作等领域。
Bezier 曲线的特点Bezier 曲线由一系列控制点确定,并通过调整这些控制点的位置和参数来定义曲线的形状。
以下是 Bezier 曲线的一些特点:1.可调节性:调整控制点的位置和参数可以改变曲线的形状、弯曲程度和速度。
2.平滑性:Bezier 曲线能够平滑连接控制点,使得曲线在控制点之间呈连续曲率。
3.参数化形状:Bezier 曲线可以通过调整参数来生成无限多种形状,从简单的直线到复杂的曲线。
4.逼近性:Bezier 曲线可以用来逼近其他复杂的曲线,如圆弧、椭圆等。
Bezier 曲线的数学表达Bezier 曲线是通过插值和多项式生成的数学曲线。
根据控制点的个数,可以确定 Bezier 曲线的阶数。
一般情况下,Bezier 曲线的阶数等于控制点数减1。
对于一维的 Bezier 曲线,它可由以下公式表示:Bezier 1DBezier 1D其中,n 为阶数,t 为参数,Pi 为控制点,Bi, n(t) 为 Bezier 基函数。
对于二维的 Bezier 曲线,它可由以下公式表示:Bezier 2DBezier 2D其中,n 为阶数,t 为参数,Pi 为控制点,Bi, n(t) 为 Bezier 基函数。
Bezier 曲线的应用Bezier 曲线的应用非常广泛,以下是一些常见的应用场景:1.计算机图形学:Bezier 曲线可以用来绘制平滑的曲线和曲面,用于构建2D和3D图形。
2.工业设计:Bezier 曲线可以用来设计平滑的汽车车身、家具等产品。
3.动画制作:Bezier 曲线可以用来定义动画路径,使得动画流畅而自然。
Bezier曲线曲面造型技术研究Bezier曲线之所以在实践中展示出如此顽强的生命力,缘于其具有优良的控制性质,同时又几何直观,使设计者能够模仿曲线曲面的设计过程。
此外,该方法又惊人的简单,有一套稳定、高效的配套算法。
但同时也必须看到,Bezier方法自身也存在一定的缺陷,如不具有局部修改性质,对曲线调节手段过于单一,缺乏足够的自由度实现来实现对组合曲线的局部形状修改等等。
Bezier方法的上述缺陷在一定程度上影响了它的应用,因此,致力于通过对Bezier曲线、曲面进行扩展研究,使得扩展后的贝齐尔曲线、曲面不仅保留了原有的一系列优良特性,并且也具备更加灵活的形状调节手段,在设计样条曲线、曲面时拥有更多的自由度来实现形状的局部调节等方面一直是CAGD界研究的热点。
本文的主要工作如下:1.讨论了一种带有三个形状参数的类四次Bezier曲线的扩展问题。
通过引入带有三个形状参数的伯恩斯坦基函数,并在此基础上对四次贝齐尔曲线进行了多参数的扩展,得到了一类四次Bezier曲线,讨论了曲线的一系列的性质。
通过对三参数的调节使曲线更具可调控性以及对圆锥曲线较好的逼近性。
只经过改变局部曲线段的形状参数值就实现了相邻曲线段间C1、G2光滑拼接,从而能够更好的满足实际应用的需求。
2.引入一组含有n个形状参数的Bernstein基函数,定义了类n次Bezier 曲线,详细讨论了如何通过调节参数的值来达到类Bezier曲线段间的C1、G2和C2光滑拼接。
而且只要曲线的次数不小于四次,就可以只修改其中的部分曲线段而不影响样条曲线的整体连续性,具有很好的局部性质。
3.定义了类m×n次Bezier曲面,讨论了形状参数对曲面的影响,给出了在不改变控制点的条件下,通过调节形状参数值实现相邻类贝齐尔曲面片间的C1拼接的具体方法。
贝塞尔曲线曲面
贝塞尔曲线和曲面是计算机图形学中的重要概念。
贝塞尔曲线是由法国工程师皮埃尔·贝塞尔在20世纪60年代提出的一类参数曲线。
它通过控制曲线上的四个点(起始点、终止点以及两个相互分离的中间点)来创造、编辑图形。
其中起重要作用的是位于曲线中央的控制线。
这条线是虚拟的,中间与贝塞尔曲线交叉,两端是控制端点。
移动两端的端点时贝塞尔曲线改变曲线的曲率(弯曲的程度);移动中间点(也就是移动虚拟的控制线)时,贝塞尔曲线在起始点和终止点锁定的情况下做均匀移动。
贝塞尔曲面则是通过贝塞尔曲线扩展到三维空间的结果,它是一类三维参数曲面,通过调整控制线,可以得到各种各样的曲面形状。
贝塞尔曲线和曲面广泛应用于计算机图形学中,如游戏设计、建筑设计、工业设计等领域。
在计算机图形学中,它们被用来创建各种复杂的形状和表面,使得设计更加灵活和高效。
Bezier曲线曲面的拼接Bezier曲线曲面是一种常见的计算机图形学中的曲线曲面构造方法。
其原理是通过数学公式来描述一个点集合的形状。
在实际应用中,我们通常需要根据实际需求来构造或者拼接Bezier曲线曲面。
本文将着重介绍Bezier曲线曲面的拼接方法。
一、Bezier曲线曲面的构造Bezier曲线曲面的构造方法很简单,只需要给定点的坐标和曲线方程即可。
其中,点的坐标用于描述曲线上的控制点位置,而曲线方程则用于描述控制点间的线段的形状。
对于一条Bezier曲线,它的方程可以表示为:$$P(u)=\\sum_{i=0}^{n}B_i^n(u)P_i$$其中,$n$代表控制点的数量,$P_i$表示第$i$个控制点的坐标,$B_i^n(u)$是权重多项式,它可以通过如下公式计算:$$B_i^n(u)={n\\choose i}u^i(1-u)^{n-i}$$这个公式包含两个部分。
第一部分是二项式系数$C_n^i={n\\choose i}$,它描述的是从$n$个点中选取$i$个点的组合数。
第二部分是$u^i(1-u)^{n-i}$,它描述的是每个控制点在曲线上占据的位置和弧长。
通过这两部分的组合,我们可以得到一个平滑连续的Bezier曲线。
对于一条Bezier曲面,它的方程可以表示为:$$P(u,v)=\\sum_{i=0}^{n}\\sum_{j=0}^{m}B_i^n(u)B_j^m(v)P_{ij}$$其中,$n$和$m$分别代表控制点的数量,$P_{ij}$表示第$i$行,第$j$列的控制点的坐标。
这个方程就是通过控制点的二维数组来描述空间中的三维曲面的。
二、Bezier曲线曲面的拼接当需要在一个三维场景中绘制复杂的曲面形状时,往往需要将不同的曲面拼接起来。
Bezier曲线曲面的拼接可以通过各种方法实现。
以下介绍两种常用的拼接方法。
1. 曲面连接法曲面连接法需要将拼接曲面共享一个相邻控制点,从而使得两个曲面连接处的网格点重合。
简述bezier曲线的性质一、 bezier曲线的定义1. bezier曲线的概念: bezier曲线就是函数y=f(x), y=f(-x),f(x)随x的变化而变化,并且所有这些随机点的集合都包含在一条直线上。
2. bezier曲线的图象: bezier曲线可以由点M(x, y)表示,由点M'(x', y')表示,由点O(x, y)表示,因为这四个点都属于[-x,0],这样,它们围成了一个四边形,我们称这个四边形为[-x, 0]A ∪[0, y]B ∩[0, -y]的bezier曲线图象。
3. bezier曲线的性质:①当x→0时, bezier曲线是开口向上的抛物线,②当x→0时, bezier曲线是以y轴为中心对称的双曲线,③当x→0时, bezier曲线是倾斜的;若y=f(x), f(-x), f(x)是直线,这是一条平行线;4. bezier曲线的拐点:曲线上某一点到x轴、 y轴的距离相等,或该点既不在x轴上,也不在y轴上,则称这一点是bezier曲线的拐点。
拐点有三类:一类是x=0, y=0;第二类是x=y=0;第三类是x=0, y=y=0。
4. bezier曲线的应用:在线性规划问题中,需要确定使得目标函数值达到最大的水平或垂直线段, bezier曲线可以帮助我们做出正确选择, bezier曲线也可以帮助我们分析解决一些实际问题,如果求极值的问题,求两条或多条实际可行线段交点的问题,通过使实际可行线段交点最小来分析问题和找到最佳点。
总之, bezier曲线是我们解决实际问题的有力工具。
5.综合练习,解答1.利用bezier曲线,讨论函数在某一点的取值范围,再由此判断函数的单调区间; 2.求已知函数f(x)的图象与其一阶导数f'(x)的图象的交点坐标; 3.利用bezier曲线及其图象求下列各函数的一阶导数; 4.已知一元二次方程x=1/2-1/3,用bezier曲线法求解; 5.讨论函数f(x)=-x-7/x是否为增函数,并说明理由。
bezier曲线绘制算法贝塞尔曲线绘制算法贝塞尔曲线是一种常用于计算机图形学中的数学曲线,具有平滑弯曲的特性。
通过控制点的位置和数量,可以绘制出各种形状的曲线,如圆弧、曲线等。
本文将介绍贝塞尔曲线绘制算法的基本原理和实现方法。
1. 贝塞尔曲线的基本概念贝塞尔曲线由两个或多个控制点决定,通过这些控制点的位置,可以确定曲线的形状和轨迹。
其中,起始点和结束点称为锚点,而其他点称为控制点。
贝塞尔曲线的形状由控制点之间的插值和权重决定,权重决定了每个控制点对曲线形状的影响程度。
2. 二次贝塞尔曲线绘制算法二次贝塞尔曲线由三个点决定,分别是起始点P0、控制点P1和结束点P2。
绘制二次贝塞尔曲线的算法如下:(1) 将曲线分为若干个线段,每段用t从0到1进行插值。
(2) 根据插值参数t,计算控制点P0、P1和P2在x和y轴上的值。
(3) 绘制连接P0和P1的线段,连接P1和P2的线段。
3. 三次贝塞尔曲线绘制算法三次贝塞尔曲线由四个点决定,分别是起始点P0、控制点P1、P2和结束点P3。
绘制三次贝塞尔曲线的算法如下:(1) 将曲线分为若干个线段,每段用t从0到1进行插值。
(2) 根据插值参数t,计算控制点P0、P1、P2和P3在x和y轴上的值。
(3) 绘制连接P0和P1的线段,连接P1和P2的线段,以及连接P2和P3的线段。
4. 高阶贝塞尔曲线的绘制算法除了二次和三次贝塞尔曲线,还存在更高阶的贝塞尔曲线。
对于n 阶贝塞尔曲线,需要n+1个点来确定。
其绘制算法与二次和三次贝塞尔曲线类似,通过插值参数t来计算各个控制点的值,并连接相邻控制点。
5. 贝塞尔曲线的应用贝塞尔曲线在计算机图形学中有广泛的应用,常用于绘制平滑曲线、图形变形、字体设计等方面。
在计算机动画、游戏开发等领域,贝塞尔曲线的应用也非常广泛。
贝塞尔曲线是一种常用于计算机图形学中的数学曲线,通过控制点的位置和数量,可以绘制出各种形状的曲线。
本文介绍了贝塞尔曲线的基本概念,以及二次、三次和高阶贝塞尔曲线的绘制算法。
昆明理工大学理学院信息与计算科学专业设计/综合性实验报告年级: 2015级姓名:学号: 201511101105 指导教师:胡杰实验课程名称:计算机图形学开课实验室:理学楼210实验内容:1.实验/作业题目:MFC绘图Bezier曲面算法及Bezier曲线2.实验/作业课时:2个课时3.问题描述(包括实验环境、实验内容的描述、完成实验要求的知识或技能):实验环境:(1)硬件:每人一台PC机(2)软件:windows OS,VC++6.0或以上版本。
实验内容的描述:Bezier曲面算法及Bezier曲线,Bezier去面啊绘制需要加入控制网格加以控制,先生成控制网格,再根据Bezier算法来绘制出曲面Bezier曲线根据控制点来绘制曲线。
完成实验要求的知识或技能:Bezier算法的迭代算法。
(2)Bezier曲线分为一次/二次/三次/多次贝塞尔曲线,之所以这么分是为了更好的理解其中的内涵。
一次贝塞尔曲线(线性Bezier),实际上就是一条连接两点的直线段。
在此使用了三次Bezier算法。
(3)曲线算法的几种主要算法以及各自的优缺点。
(4)基本的程序阅读能力,VC6.0的基本使用技巧4.基本要求(完成实验要达到的目标):Bezier曲线定义:给定n+1个控制顶点Pi(i=0~n) ,则Bezier曲线定义为:P(t)=∑Bi,n(t)Pi u∈[0,1] 其中:Bi,n(t)称为基函数。
Bi,n(t)=Ci nti (1-t)n-i Ci n=n!/(i!*(n-i)!) 二、Bezier曲线性质 1、端点性质: a)P(0)=P0, P(1)=Pn, 即:曲线过二端点。
b)P’(0)=n(P1-P0), P’(1)=n(Pn-Pn-1) 即:在二端点与控制多边形相切。
2、凸包性:Bezier 曲线完成落在控制多边形的凸包内。
3、对称性:由Pi与Pn-i组成的曲线,位置一致,方向相反。
4、包络性:Pn (t)=(1-t)Pn-1 (t)+tPn-1 (t)5.程序结构(程序中的函数调用关系图)6.算法描述或流程图:7.实验数据和实验结果(用屏幕图形表示,可另加附页):8.实验心得体会:在数学的数值分析领域中,贝塞尔曲线(Bézier curve)是电脑图形学中相当重要的参数曲线。
贝塞尔曲线(Bezier曲线)贝塞尔曲线(Bézier curve),⼜称贝兹曲线或贝济埃曲线,是应⽤于⼆维图形应⽤程序的数学曲线。
⼀般的⽮量图形软件通过它来精确画出曲线,贝兹曲线由线段与节点组成,节点是可拖动的⽀点,线段像可伸缩的⽪筋,我们在绘图⼯具上看到的钢笔⼯具就是来做这种⽮量曲线的。
贝塞尔曲线是计算机图形学中相当重要的参数曲线。
贝塞尔曲线上的所有控制点、节点均可编辑。
贝塞尔曲线就是这样的⼀条曲线,它是依据四个位置任意的点坐标绘制出的⼀条光滑曲线。
在历史上,研究贝塞尔曲线的⼈最初是按照已知曲线参数⽅程来确定四个点的思路设计出这种⽮量曲线绘制法。
贝塞尔曲线的有趣之处更在于它的“⽪筋效应”,也就是说,随着点有规律地移动,曲线将产⽣⽪筋伸引⼀样的变换,带来视觉上的冲击。
它的主要意义在于⽆论是直线或曲线都能在数学上予以描述。
线性公式给定点P0、P1,线性贝兹曲线只是⼀条两点之间的直线。
这条线由下式给出:且其等同于线性插值。
⼆次⽅公式⼆次⽅贝兹曲线的路径由给定点P0、P1、P2的函数B(t)追踪:TrueType字型就运⽤了以贝兹样条组成的⼆次贝兹曲线。
三次⽅公式P0、P1、P2、P3四个点在平⾯或在三维空间中定义了三次⽅贝兹曲线。
曲线起始于P0⾛向P1,并从P2的⽅向来到P3。
⼀般不会经过P1或P2;这两个点只是在那⾥提供⽅向资讯。
P0和P1之间的间距,决定了曲线在转⽽趋进P3之前,⾛向P2⽅向的“长度有多长”。
曲线的参数形式为:现代的成象系统,如PostScript、Asymptote和Metafont,运⽤了以贝兹样条组成的三次贝兹曲线,⽤来描绘曲线轮廓。
实验三贝齐尔(Bezier)曲线曲面的生成方法实验类型:综合型一、目的与任务目的:通过学生上机,了解贝齐尔(Bezier)曲线德卡斯特里奥的递推算法和贝齐尔(Bezier)曲线的几何作图法。
任务:熟悉线框建模、表面建模的基本方法。
二、内容、要求与安排方式1、实验内容与要求:贝齐尔(Bezier)曲线曲面的德卡斯特里奥的递推算法P(t)=∑Bi,n(t)Q(i)和几何作图法;要求用熟悉的编程语言编制、调试和运行程序,并打印程序清单和输出结果。
2、实验安排方式:课外编写好程序清单,按自然班统一安排上机。
三、实验步骤1、熟悉贝齐尔(Bezier)的贝齐尔基函数和贝齐尔的性质2、贝齐尔(Bezier)曲线的德卡斯特里奥的递推算法;3、贝齐尔(Bezier)曲线的几何作图法;4、贝齐尔(Bezier)曲线的德卡斯特里奥的递推算法;5、贝齐尔(Bezier)曲线的几何作图法。
6、对几何作图法绘制出图,对德卡斯特里奥的递推算法编出程序。
四、实验要求1.在规定的时间内完成上机任务。
2.必须实验前进行复习和预习实验内容。
3.在熟悉命令过程中,注意相似命令在操作中的区别。
4.指定图形完成后,需经指导教师认可后,方可关闭计算机。
5.完成实验报告一份。
五、试验具体内容1,Bezier 曲线的描述在空间给定n + 1 个点P0 ,P1 ,P2 , ⋯,Pn ,称下列参数曲线为n 次的Bezier 曲线。
P(t) = 6nt = 0PiJ i ,n (t) , 0 ≤t ≤1其中J i ,n (t) 是Bernstein 基函数,即B i ,n (t) = n !/i !(n - i) *t(1-t);i = 0 , ⋯⋯,n一般称折线P0P1P2 ⋯Pn 为曲线P(t) 的控制多边形;称点P0 ,P1 ,P2 , ⋯,Pn 为P(t) 的控制顶点。
在空间曲线的情况下,曲线P(t) = (x(t) ,y(t) ,z (t) ) 和控制顶点Pi = (Xi ,Yi ,Zi) 的关系用分量写出即为:X(t) = 6ni = 0XiJ i ,n (t)Y(t) = 6ni = 0YiJ i ,n (t)Z(t) = 6ni = 0ZiJ i ,n (t)当t 在区间[0 ,1 ] 上变动时,就产生了Bezier 曲线。
bezier 曲线的曲面拟合一、Bezier曲线Bezier曲线是一种基本的几何曲线,它是由法国的科学家法国人Pierre Bezier于1962年提出的,在计算机图形学中应用广泛,在大多数绘图软件中都有它的实现。
实际上,Bezier曲线是一种由控制点和贝塞尔曲线段组成的平滑曲线,这些贝塞尔曲线段可以连接构成一条实现的曲线段。
Bezier曲线的定义如下:用n+1个控制点P0,P1,...Pn确定唯一的n阶Bezier曲线,该曲线由n个(n>=2)Bezier曲线段组成,它的路径方程为:B(t) = sum(Pi* Bn,i(t) (i=0,1,...n)其中Bn,i (t)为贝塞尔基函数:Bn,i (t)= C(n,i)*t^i*(1-t)^(n-i) (i=0,1...n) 其中C(n,i) 为组合数:C(n,i) = n!/(i!*(n-i)!)Bezier曲线具有一定的优势:(1)Bezier曲线的计算量不多,而且计算量固定,从它的定义式可以看出,Bezier曲线的计算量只和控制点的数量有关,和区间长度无关;(2)Bezier曲线的计算公式是一种确定的公式,易于推导,即使在变换空间中也能简单的求解;(3)Bezier曲线的优点在于曲线的表示力强,它不仅能准确描述曲线上的每一点,而且能模拟出椭圆、圆弧、抛物线、双曲线等复杂的曲线。
二、Bezier曲面Bezier曲面是基于Bezier曲线构建的一种曲面,与Bezier曲线相比,Bezier曲面有更大的表示能力,能代表更复杂的曲面,该方法在计算机图形学中应用广泛,特别是在汽车设计、航空航天、产品建模、工业设计、船舶设计等行业非常流行。
根据贝塞尔三角形的定义,Bezier曲面的曲面表达形式为:B(u,v)=sum(Pi,j * Bm,i(u) * Bn,j(v) (i=0,1,...,m; j = 0,1,...n))其中Bm,i (u)和Bn,j (v)分别为贝塞尔基函数:Bm,i (u) = C(m,i) * u^i * (1-u)^(m-i) (i=0,1,...,m)Bn,j (v) = C(n,j) * v^j * (1-v)^(n-j) (j=0,1,...n) 其中C(m,i)和C(n,j)分别为组合数,m和n分别表示控制点的维度。
bezier曲面的应用-Bezier曲线曲面的拼接Bezier曲线曲面的拼接摘要曲线曲面的表示是计算机图形学的重要研究内容之1,Bézier曲线曲面又是计算机图形学中常用的曲线曲面,它采用分段和分片参数多项式的形式。
Bézier曲线曲面之所以被广泛使用是因为它有许多特别适合计算机图形学和计算机辅助几何设计的特点。
本文依次详细论述了Bézier曲线的定义和性质、Bernstein基函数性质、介绍了双3次Bézier曲面、递推算法、构图法及其应用、Bézier曲线曲面的拼接。
通过对Bézier曲线曲面的论述,阐述了Bézier曲线曲面的原理及其特性,研究Bézier曲线拼接的几何连续性及参数连续性,总结出G ,G 及C ,C 连续的几何意义。
最后研究了Bézier曲面拼接的几何连续性。
关键词: C 连续;G 连续;Bernstein基函数;参数连续性;几何连续性Abstract The curve curved surface expression is one of computer graphics important research contents, Bézier the curv e curved surface also is in the computer graphics the commonly used curve curved surface, it uses the partition and the lamination parameter multinomial form. Bézier the curve curved surface the reason that by the widespread use is because it has many suits the computer graphics and the computer assistance geometry design characteristic specially. This article in detail elaborated Bézier the curve definition and the nature, the Bernstein primary function nature in turn, introduced a pair of three Bézier cu rved surface, the recursion algorithm, the composition law and the application, Bézier curve curved surface splicing. Through to Bézier the curve curved surface elaboration, elaborated Bézier the curve curved surface principle and the characteristic, the r esearch Bézier curve splicing geometrycontinuity and the parameter continuity,Summarizes G,G and C,C continual geometry significance. Finally has studied Bézier thecurved surface splicing geometry continuity.Key words: C continuity ; G continuity; Bernstein basic function ; parametric continuity ; geometric continuity。
bezier曲面法向量-回复bezier曲面法向量(Bezier Surface Normal Vectors)引言:Bezier曲面是计算机图形领域中一种常用的曲面表示方法。
根据给定的控制点和权重,Bezier曲面可以生成平滑且逼真的曲面形状。
但是,在进行光照和渲染等计算时,我们需要计算曲面上每个点的法向量,以便进行光照模型计算等。
本文将详细介绍如何计算Bezier曲面的法向量,以及其中的数学背景和计算方法。
第一部分:Bezier曲面简介Bezier曲面是利用Bezier曲线在二维或三维空间中进行变形和组合而成的。
Bezier曲线由一系列控制点和权重定义,在曲线上的点是通过使用Bernstein多项式进行插值计算得到的。
Bezier曲线在绘制曲线和表面、CAD建模等领域得到广泛应用。
而Bezier曲面则是由多个Bezier曲线组成的曲面。
第二部分:Bezier曲面的参数化表示在图形学中,我们通常使用参数化表示来描述曲线和曲面。
Bezier曲面可以通过控制点和权重来进行参数化表示。
对于二维的Bezier曲面,我们可以用以下方式来定义:S(u,v) = ∑Bi(u)Bj(v)Pi,j其中,S(u,v)表示曲面上的一点,Bi(u)和Bj(v)是u和v参数所对应的一维Bezier曲线的基函数,而Pi,j表示控制点。
第三部分:Bezier曲面的切向量在计算曲面上某一点的法向量之前,我们首先需要计算该点的切向量。
切向量是描述曲面上某点在该点处切平面上的一个向量。
为了计算切向量,我们可以计算参数u和v分别增加一个微小值时,曲面上相应的两个点。
然后,通过这两个点及其切向量进行差值运算,得到该点的切向量。
计算切向量公式如下:Ts(u,v) = ∂S(u,v)/∂uTv(u,v) = ∂S(u,v)/∂v其中,Ts和Tv分别表示u和v方向上的切向量。
第四部分:Bezier曲面的法向量在得到切向量后,我们可以使用叉乘运算得到曲面上某点的法向量。