数学:3.2导数的计算选修1-1
- 格式:ppt
- 大小:839.50 KB
- 文档页数:16
旧知回顾 求函数的导数的方法是:00f(x +Δx)-f(x )Δy =;Δx ΔxΔx →0Δy y =lim .Δx(1)求增量(2)算比值 (3)求极限0)()(0x x x f x f ='='知识要点21)(),2)(),3)(),14)(),y f x c y f x x y f x x y f x x ========'1y =;'2y x =;21'.y x =-'0y =;新课导入由上节课的内容可知函数y=x2的导数为y’=2x,那么,于一般的二次函数y=ax2+bx+c,它的导数又是什么呢?这就需要用到函数的四则运算的求导法则.又如我们知道函数y=1/x 2的导数是=-2/x 3,那么函数y=1/(3x-2)2的导数又是什么呢?y 学习了这节课,就可以解决这些问题了!3.2.2 基本初等函数的导数公式及导数的运算法则教学目标知识与能力(1)掌握基本初等函数的导数公式.(2)会运用导数的运算法则及简单复合函数的复合过程.过程与方法(1)通过丰富的实例,了解求函数的导数的流程图.(2)理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.情感态度与价值观经历由实际问题中抽象出导数概念,使同学们体会到通过导数也能刻画现实世界中的数量关系的一个有效数学模型.教学重难点重点理解简单复合函数的复合过程.难点函数的积、商的求导法则的推导及复合函数的结构分析.知识要点为了方便,今后我们可以直接使用下面的初等函数的导数公式表:()();x f ,c x f .'01==则若()()();nx x f ,N n x x f .n 'n 12-*=∈=则若()();x cos x f ,x sin x f .'==则若3()();x sin x f ,x cos x f .'-==则若4()();a ln a x f ,a x f .x 'x ==则若5基本初等函数的导数公式()();e x f ,e x f .x 'x ==则若6()();a ln x x f ,x log x f .'a 17==则若()().x x f ,x ln x f .'18==则若例 1假设某国家在20年期间的年通货膨胀率为5﹪,物价p (单位:元)与时间t (单位:年)有函数关系,其中 为t=0时的物价.假定某商品的那么在第10个年头,这种商品的价格上涨的速度的大约是多少(精确到0.01)?()()015%t p t p =+0p 01p=()' 1.05ln1.05.tp t =()()./..ln .p ,'年元所以0800510511010≈=解:根据基本初等函数的导数公式表,有因此,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.如果上式中的某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少?5p当 时,,这时,求P 关于t 的导数可以看成函数f(t)=5与g(t)= 乘积得到导数.下面的“导数运算法则”可以帮助我们解决两个函数加﹑减﹑乘﹑除的求导问题.05p =()5 1.05t p t =⨯ 1.05t若u=u(x),v=v(x)在x 处可导,则根据导数的定义,可以推出可导函数四则运算的求导法则1.和(或差)的导数法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 (u v)u v '''±=±1.和(或差)的导数 (u v)u v '''±=±)()()(x v x u x f y ±==证明:[][])()()()(x v x x v x u x x u -∆+±-∆+=vu ∆±∆=x v x u x y ∆∆±∆∆=∆∆x v x u x v x u x y x x x x ∆∆±∆∆=⎪⎭⎫ ⎝⎛∆∆±∆∆=∆∆→∆→∆→∆→∆0000lim lim lim lim )()(''x v x u ±=例 2'23cos x x =+ y 求y= + sin x 的导数.3x 解:由导数的基本公式得:例 3'3'421x x =-- y 解:由导数的基本公式得: 求的导数. 42y =x -x -x +32.积的导数法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即请同学们自己证明()()()()()()f x g x =f x g x +f x g x ⨯⎡⎤⎣⎦′′′知识拓展推论(:=')CCu'u例422求的导数y=2x-3x+5x-4?解:由导数的基本公式得:'4655=-+=-y x x x例 52y =(2x +3)(3x -2)求的导数?'2223(4)(32)(23)3128691889y x x x x x x x x =-++⨯=-++=-+解:由导数的基本公式得:3.商的导数法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即 []0000020'()()()()f(x)[]'|g(x)()x x f x g x fx g x g x ='-=2x y =sinx 的导数.例62'2''2()sin (sin )sin x x x x y x⋅-⋅=解:222sin cos sin x x x xx-=例7 2x +3y =x =3x +3求在点处的导数.2'221(3)(3)2(3)x x x y x ⋅+-+⋅=+解:22263(3)x x x --+=+'329183241|(93)1446x y =--+-∴===-+()()()()()()()()()2f x f x g x f x g x 3.g x 0.g x g x ⎡⎤-=≠⎢⎥⎡⎤⎣⎦⎣⎦′′′导数的运算法则1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′;2. [f(x) .g(x)] ′=f′(x) g(x)± f(x) g(x) ′;如何求函数y=㏑(x+2)的函数呢?我们无法用现有的方法求函数y=㏑(x+2)的导数.下面,我们先分析这个函数的结构特点.若设u=x+2(x>-2),则y=ln u.即y=㏑(x+2)可以看成是由y=ln u和u=x+2(x>-2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数.名词解释一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数.记做y=f(g(x)).复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为 x u x y =y u ′′′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.()()x u x 13 y =y u =lnu 3x +2=3=u 3x +2⨯⨯ ′′′′′ 问题解答由此可得,y=㏑(3x+2)对x 的导数等于y= ㏑u 对u 的导数与u=3x+2对x 的导数的乘积,即)(x f 例8()2y =2x +3求函数的导数.'''x u x y y u =⋅()()''223u x =⋅+4812.u x ==+解:函数可以看作函数 和 的复合函数.由复合函数求导法则有 ()223y x =+3y u =23u x =+课堂小结1.由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.导数的运算法则 ()()()()()()()()()2f x f x g x -f x g x3.=g x 0g x g x ⎡⎤≠⎢⎥⎡⎤⎣⎦⎣⎦′′′1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′2. [f(x) .g(x)] ′=f′(x) g(x)± f(x) g(x) ′3.复合函数的复合过程利用复合函数的求导法则来求导数时,选择中间变量是复合函数求导的关键.高考链接 (2008海南、宁夏文)设 ,若()ln f x x x = ,则 ( )A. B.C. D. 0'()2f x =0x =2e e ln 22ln 2B2ax y =a 062=--y x =a 121-21-(2008全国Ⅱ卷文)设曲线 在点(1, )处的切线与直线 平行,则A .1B .C .D . ( ) A随堂练习()()()()''3'''32323y x x x x =-+=-+解因为23 2.x =-1、 根据基本初等函数的导数公式和导数运算法则,求函数 的导数. 323y x x =-+随堂练习()()()()0.0511;2sin ,.x y ey x πϕπϕ-+==+其中均为常数2、 求下列函数的导数u -0.05x+1=-0.05e =-0.05e .x u x y =y u ⨯′′′()()u=e -0.05x +1⨯′′(1)函数 可以看做函数 和的复合函数.由复合函数的求导法则有 -0.05x+1y =e u y =e u =-0.05x +1()()2y =sin πx +φy =sinu u =πx +φ.函数可以看作函数和的复合函数由复合函数求导法则有().φx πcos πu cos π+=='x 'u 'x u y y ⋅=()()''φx πu sin +⋅=习题答案练习(第18页)''''1.()27,(2)3,(6) 5.12.(1);ln2f x x f fyx=-=-==所以,'(2)2;xy e='4(3)106;y x x=-'(4)3sin 4cos ;y x x =--''1(5)sin;331(6).21x y y x =-=-。
第三章 导数及其应用 3.2 导数的计算A 级 基础巩固 一、选择题 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π6′=cos π6;③若y =1x 2,则y ′=-1x ;④⎝⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( ) A .0 B .1 C .2 D .3解析:(cos x )′=-sin x ,所以①错误;sin π6=12,而⎝ ⎛⎭⎪⎫12′=0,所以②错误;⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x -3,所以③错误;⎝⎛⎭⎪⎫-1x ′=0-(x 12)′x =12x -12x =12x -32=12x x ,所以④正确. 答案:B2.f (x )=x 3,f ′(x 0)=6,则x 0等于( ) A. 2 B .- 2 C .± 2 D .±1解析:f ′(x )=3x 2,由f ′(x 0)=6,知3x 20=6,所以 x 0=±2. 答案:C3.函数y =x 2x +3的导数是( )A.x 2+6x (x +3)2B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)2解析:y ′=⎝ ⎛⎭⎪⎪⎫x 2x +3′=(x 2)′(x +3)-x 2·(x +3)′(x +3)2= 2x (x +3)-x 2(x +3)2=x 2+6x(x +3)2. 答案:A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( )A.94e 2 B .2e 2 C .e 2 D.e 22解析:由于y =e x ,所以 y ′=e x ,所以 y ′|x =2=e 2=k ,所以 切线方程为y -e 2=e 2(x -2),即y =e 2x -e 2.在切线方程中,令x =0,得y =-e 2,令y =0,得x =1,所以 S 三角形=12×|-e 2|×1=e 22.答案:D5.若f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 013(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:由于f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f2 013(x)=f1(x)=cos x.答案:C二、填空题6.已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x-y =0,则点P的坐标为________.解析:设点P的坐标为(x0,y0),由于f′(x)=4x3-1,所以4x30-1=3,所以x0=1.所以y0=14-1=0,所以即得P(1,0).答案:(1,0)7.已知f(x)=13x3+3xf′(0),则f′(1)=________.解析:由于f′(0)是一常数,所以f′(x)=x2+3f′(0),令x=0,则f′(0)=0,所以f′(1)=12+3f′(0)=1.答案:18.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程是____________________.解析:y′=3x2+6x+6=3[(x+1)2+1],所以当x=-1时,y′取最小值3.此时切点坐标为(-1,-14).所以切线方程为y+14=3(x+1),即3x-y-11=0.答案:3x-y-11=0三、解答题9.求下列函数的导数:(1)y=(2x2+3)(3x-1);(2)y=(x-2)2;(3)y=x-sinx2cosx2.解:(1)法一:y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.法二:由于y=(2x2+3)(3x-1)=6x3-2x2+9x-3,所以y′=(6x3-2x2+9x-3)′=18x2-4x+9.(2)由于y=(x-2)2=x-4x+4,所以y′=x′-(4x)′+4′=1-4×12x-12=1-2x-12.(3)由于y=x-sinx2cosx2=x-12sin x,所以y′=x′-⎝⎛⎭⎪⎫12sin x′=1-12cos x.10.已知曲线f(x)=x3-3x,过点A(0,16)作曲线f(x)的切线,求曲线的切线方程.解:设切点为(x0,y0).则由导数定义得切线的斜率k=f′(x0)=3x20-3,所以切线方程为y=(3x20-3)x+16,又切点(x0,y0)在切线上,所以y0=3(x20-1)x0+16,即x30-3x0=3(x20-1)x0+16,解得x0=-2,所以切线方程为9x-y+16=0.B 级 力量提升1.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)解析:y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1, 设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t+2,由于t +1t ≥2,所以 y ′∈[-1,0),α∈⎣⎢⎡⎭⎪⎫3π4,π.答案:D2.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________. 解析:依据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图,则在点(x 0,y 0)处的切线斜率为1,即=1.由于y ′=(e x)′=e x,所以 e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.答案:223.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解:f ′(x )=a +bx2.由于点(2,f (2))在切线7x -4y -12=0上, 所以 f (2)=2×7-124=12.又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0, 所以 ⎩⎪⎨⎪⎧f ′(2)=74,f (2)=12,⇒⎩⎪⎨⎪⎧a +b 4=74,2a -b 2=12,⇒⎩⎨⎧a =1,b =3.所以 f (x )的解析式为f (x )=x -3x.(2)证明:设⎝ ⎛⎭⎪⎫x 0,x 0-3x 0为曲线y =f (x )上任意一点,则切线斜率k =1+3x 20,切线方程为y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x 20(x -x 0),令x =0,得y =-6x 0.由⎩⎪⎨⎪⎧y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),y =x得⎩⎨⎧x =2x 0,y =2x 0.所以 曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0||-6x 0|=6,为定值.。
导数的运算测试一、选择题(每小题5分,共50分)1.下列结论正确的是 ( )A.若y=sinx ,则y ’=-cosxB. 若y= cosx ,则y ’=-sinxC. 若y=x 1 ,则y ’=-21xD. 若y=x ,则y ’=x 21 2.已知f(x)=x 3,则f ’(2)= ( )A.0B.3x 2C.8D.123.已知f(x)=x 3的切线的斜率等于1,则其切线方程有 ( )A.1个B.2个C.多于两个D.不能确定4.若对于任意x ,有f ’(x)= 4x 3 ,f(1)= -1,则此函数值为 ( )A. f(x)=x 4B. f(x)=x 4-2C. f(x)=x 4+1D. f(x)=x 4+25.曲线y=3x 上的一点P(0,0)的切线的方程为 ( )A.y=-xB.x=0C.y=0D. 不存在6.y=2x 3+3x +cosx ,则y ’= ( )A. 6x 2+x -2/3-sinxB. 2x 2+31x -2/3-sinxC. 6x 2+31x -2/3+sinxD. 6x 2+31x -2/3-sinx 7.f(x)= sin α-cosx ,则f ’(α)= ( )A. sin αB. cos αC. sin α+ cosx αD. 2sin α8.下列求导数运算正确的是 ( ) A.(x+x 1)’=1+21xB.(log 2x)’=2ln 1xC.(3n )’=3x log 3e )D.(x 2cosx)’=-2xsinx 9. 函数f(x)=x 3-3x 2+1是减函数的区间是 ( )A.[)+∞,2B.(]2,∞-C. (]0,∞-D.[0,2]10.y=sinx(cosx +1)的导数是 ( )A. cos2x -cosxB. cos2x+sinxC. cos2x +cosxD. cos2x -sinx二、填空题(每小题5分,共20分)11.质点运动方程是s=t 2(1+ sint),则当x=2π时,瞬时速度为____________。