山东省高考名校联考信息优化卷(一)
- 格式:pdf
- 大小:1.16 MB
- 文档页数:4
- 学年山东新高考联合质量测评9月联考高三思想政治参考答案及评分标准一、选择题:本题共15小题,每小题3分,共45分。
每小题给出的四个选项中,只有一项是最符合题目要求的。
1.C2.D3.B4.A5.B6.D7.B8.A9.A 10.C 11.A 12.D 13.D 14.C 15.C二、非选择题:本题共4题,共55分16.(8分)检察机关严格依法履行检察职责,维护国家法制的统一、尊严和权威,维护社会公平正义;(2分)加大对涉企领域违法犯罪的打击力度,增强公民和企业的法治意识,预防和减少违法犯罪;(2分)坚持以人民为中心,运用信息化手段,为企业提供更加便捷、高效、优质的司法服务,提高司法质效;(2分)推进行政检察与行政执法监督衔接工作,促进涉企领域依法行政、严格执法,正确行使自由裁量权,提高国家治理效能和水平。
(2分)17.(15分)(1)“北京中轴线”体现了中华文明的突出特性,为中华文明的文化传统和精神追求提供了物质载体;(1分)北京中轴线中所蕴含的“中”“和”思想,涵养着中华民族共同的价值观,能够激发民族自信心和自豪感,坚定文化自信;(1分)能够为解决当代中国和世界文化发展中的许多问题提供有益借鉴,推动构建人类命运共同体;(2分)有利于推动中华文化走向世界,增强中华文化的国际影响力;(1分)能够维护世界文化多样性,促进文化交流与文化交融,繁荣世界文化,为世界文化遗产保护贡献中国智慧和中国经验。
(2分)(2)矛盾的同一性和斗争性是矛盾的基本属性。
矛盾双方的统一是对立中的同一,是包含着差别的同一;矛盾的的斗争性寓于同一性之中,并为同一性所制约。
矛盾双方的对立统一推动着事物的运动、变化和发展。
(2分)坚持保护优先的原则,加强对文化和自然遗产的整体性、系统性保护,切实提高遗产保护的能力和水平;(2分)践行“传承优先”,在坚守中创新文化遗产和自然遗产的表达形式,以人们喜闻乐见、具有广泛参与性的方式利用,满足人民美好生活需求;(2分)坚持“保”与“新”的统一,持续加强文化和自然遗产的保护传承利用工作,守护好中华民族精神的根脉,更好建设中华民族现代文明,为强国建设和民族复兴伟业凝聚强大精神力量。
山东省齐鲁名校联盟2024-2025学年高三上学期开学考试物理试题一、单选题1.我国的“钍基熔盐堆”已具备商用条件。
“钍基熔盐堆”采用232Th作为增殖燃料,在热中子堆中232Th俘获一个中子转化为233Th,233Th发生两次 衰变转化为233U,然后把233U分离出来返回堆中循环使用。
下列有关该反应堆的说法正确的是()A.233Th衰变为233U会释放出4He2B.233Th比233U少两个中子C.233Th比233U少两个质子D.233Th的结合能大于233U的结合能2.如图所示,书法家在创作时,会将宣纸铺在水平桌面的毛毡上,然后再用镇尺压在宣纸上,行笔过程中,毛毡、宣纸和镇尺均保持静止,宣纸的重力忽略不计。
某次创作过程,书法家向右行笔时,下列说法正确的是()A.宣纸对镇尺的摩擦力方向水平向右B.毛毡对宣纸的摩擦力方向水平向左C.镇尺对宣纸的压力与宣纸对镇尺的支持力是一对平衡力D.镇尺对宣纸的压力与毛毡对宣纸的支持力是一对相互作用力3.如图1所示为胶片电影放映机,放完电影后需要倒胶片。
图2为倒胶片示意图,将胶片由b轮倒到a轮上,P、Q为图示时刻两轮边缘胶片上的两点,主动轮a轮转动的角速度不变,下列说法中正确的是()A .相同时间内倒到a 轮上的胶片长度越来越长B .从动轮b 轮转动的角速度也不变C .图示时刻P 、Q 两点的角速度P Q ωω<D .图示时刻P 、Q 两点的向心加速度P Q a a <4.热水瓶也叫保温瓶,是居家必备的保温用具。
某次向热水瓶中注入一定量的热水,迅速盖好软木瓶塞,如图所示,不一会发现瓶塞被顶了起来发出“噗”的声音又落下,且被顶起过程封闭在热水瓶内的气体与外界无热传递。
下列关于这一现象的说法正确的是( )A .瓶塞被顶起是瓶内气体分子间存在斥力作用的结果B .瓶塞被顶起的过程瓶内的气体对外做功C .瓶塞被顶起的过程封闭在热水瓶内气体的内能保持不变D .若瓶塞未被二次顶起,则瓶内气体的压强一定小于大气压强5.如图所示,一平行板电容器两极板水平正对,上极板M 固定,下极板N 放在一个绝缘的温度敏感材料上,温度敏感材料会因为温度的变化而出现明显的热胀冷缩,给电容器充电后,N 板带有正电,一带电微粒恰好静止在两极板间的P 点。
2023—2024学年第一学期考试高一数学试题本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}=⋂==B A B A 则,7,6,5,3,2,8,7,5,4{}.2,3,4,5,6,7,8A {}.5,7B {}.5,7,8C {}.6,7,8D 答案:B.解析:{}5,7A B ⋂=2.命题x N N ∃∈“”的否定是.A x N N ∀∉.B x N N∀∈.C x N N∃∈.D x N N∀∈答案:D.解析:命题x N N ∃∈“”的否定是“x N N ∀∈”.3.已知集合{}{}()=⋂≥--=>+=N C M x x x N x x M R ,则082|,012|21.|42A xx ⎧⎫-<<⎨⎬⎩⎭{}.|4B x x ≥1.|42C x x ⎧⎫-<≤⎨⎬⎩⎭1.|22D x x ⎧⎫-≤≤-⎨⎬⎩⎭答案:A解析:1{|},{|24},{|24}2R M x x N x x x C N x x =>-=≤-≥=-<<或,()1|42R M C N x x ⎧⎫∴⋂=-<<⎨⎬⎩⎭4.在同一直角坐标系中,函数()()()的图象可能是0,≥==x x x g a x f a x AB C D答案:C解析:()()()().2)0(,101)0(,1正确所示,故的图象如图时,函数的答案;当所示,此时无满足要求的图象如图时,函数当C x x x g a x f a x x x g a x f a a x a x ≥==<<≥==>图1图2故选C.5.()124y f x =已知幂函数的图象经过点(,),则()()()().....A f x R B f x C f x D f x 定义域为是偶函数.是减函数.的图象关于原点中心对称.答案:B解析:()()22111,222,.44a a f x x a f x x x-⎛⎫=∴=∴=-∴== ⎪⎝⎭幂函数图象过点,,()()00A -∞⋃+∞定义域是,,,错误;函数f(x)在(0,+∞)单调递减,在(-∞,0)单调递增,C 错误;()()()()2211,f x f x f x B D x x -===∴-是偶函数,正确,错误.6.设函数()[)的取值范围是上为减函数,则,在a x f ax x ∞+⎪⎭⎫ ⎝⎛=-23122[).8,A +∞[).4,B +∞(].,4C -∞(].,8D -∞答案:D 解析:令212,3t t x ax y ⎛⎫=-= ⎪⎝⎭在定义域内为减函数,()[)22123x ax f x -⎛⎫=+∞ ⎪⎝⎭函数在,上为减函数,[)222t x ax =-+∞则在,上为增函数,284a a ≤≤则,.7.已知a,b∈N,则“a 2-b 2为偶数”是“a-b 为偶数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析;a,b∈N,分四种情况①a 为偶数,b 为偶数,则a 2-b 2为偶数且a-b 为偶数;②a 为偶数,b 为奇数,则a 2-b 2为奇数且a-b 为奇数;③a 为奇数,b 为偶数,则a 2-b 2为奇数且a-b 为奇数;④a 为奇数,b 为奇数,则a 2-b 2为偶数且a-b 为偶数.所以“a 2-b 2为偶数”是“a-b”为偶数”的充要条件。
试卷类型:A 山东新高考联合质量测评9月联考试题高三英语2024.9本卷满分150分,考试时间120分钟注意事项:1.答题前,考生先将自己的学校、姓名、班级、座号、考号填涂在相应位置。
2.选择题答案必须使用2B铅笔(按填涂样例)正确填涂:非选择题答案必须使用0.5毫米黑色签字笔书写,绘图时,可用2B铅笔作答,字体工整、笔迹清楚。
3.请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
保持卡面清洁,不折叠、不破损。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
第一节(共5 小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What will the speakers eat tonight?A.Italian food.B.Indian food.C.Chinese food.2.What does the man want to do?A.Invite Janet to the gym after work.B.Become a member of the gym.C.Take exercise every morning.3.How many cups of ingredients will the woman need in total?A.Six cups.B.Five cups.C.Four cups.4.Where does the conversation most likely take place?A.At home.B.In the office.C.In a restaurant.5.What is the man’s suggestion?A.Booking tickets in advance.B.Sitting at the back.C.Arriving early.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2023-2024学年山东省名校考试联盟高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <0},B ={x |﹣x 2﹣x +2>0},则(∁R A )∩B =( ) A .{x |0<x <1}B .{x |0≤x <1}C .{x |﹣2<x <0}D .{x |1<x <2}2.若函数f (x )=(m 2﹣m ﹣1)x m 为幂函数,则实数m =( ) A .2B .﹣1C .﹣1或2D .33.若函数f (x )的定义域为[﹣1,2],则函数y =2x+1的定义域为( )A .(−√3,2]B .[0,√3]C .(﹣1,2]D .(−1,√3]4.已知a ,b ,c 均为实数,则( ) A .若a >b ,则ac 2>bc 2B .若a <b <0,则b a>abC .若a >b 且1a>1b,则b <0<aD .若a <b ,则a 2<ab <b 25.已知命题p :∀x >0,√3−x >0,则命题p 的否定是( ) A .∀x >0,√3−x ≤0 B .∃x >0,3﹣x ≤0 C .∃x >0,√3−x ≤0D .∀x ≤0,√3−x ≤06.已知函数f(x)=x +√x +1,其定义域为M ,值域为N .则“x ∈M ”是“x ∈N ”的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要7.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x ﹣a 2|+|x ﹣2a 2|﹣3a 2).若∀x ∈R ,f (x ﹣a )<f (x ),则实数a 的取值范围为( ) A .[−16,16]B .[0,16]C .[−13,13]D .(0,16)8.不等式x 2+2axy +4y 2≥0对于∀x ∈[2,3],∀y ∈[2,9]恒成立,则a 的取值范围是( ) A .[−2512,+∞) B .[﹣5,+∞) C .[−133,+∞) D .[﹣1,+∞)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)={x 2−2x +1,x ≤1−x +1,x >1,下列说法正确的是( )A .函数f (x )是减函数B .∀a ∈R ,f (a 2)>f (a ﹣1)C .若f (a ﹣4)>f (3a ),则a 的取值范围是(﹣2,+∞)D .在区间[1,2]上的最大值为010.已知a ,b 是两个正实数,满足a +b =1,则( ) A .√a +√b 的最小值为1 B .√a +√b 的最大值为√2C .a 2+b 2的最小值为12D .a 2+b 2的最大值为111.已知函数f (x )=ax 2﹣3x +4,若任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<−1,则实数a 的值可以是( ) A .﹣1B .−12C .0D .1212.已知函数f (x )的定义域为R ,f (x ﹣1)为奇函数,f (3x ﹣2)为偶函数,则( ) A .f(13)=0B .f (1)=0C .f (4)=0D .f (3)=0三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={2x +1x ,x <0x 2−3x +1,x ≥0,则f (f (2))= .14.写出3x ﹣1>0的一个必要不充分条件是 . 15.关于x 的不等式11−x≥2x的解集为 .16.设函数f (x )的定义域为R ,满足f (x +1)=3f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥﹣1,则m 的取值范围是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x|x−2x+1≤0},集合B ={x |2m +3<x <m 2},m ∈R . (1)当m =﹣2时,求A ∪B ;(2)若A ∩B =B ,求实数m 的取值范围. 18.(12分)f(x)=1−x 21+x 2. (1)判断f (x )的奇偶性,并加以证明; (2)求f (x )的值域.19.(12分)命题p :关于x 的方程x 2+2ax +4a +5=0有两个不相等的正实根,命题q :a ∈(m ,7m +7), (1)若命题¬p 为真命题,求a 的取值范围; (2)若q 是p 的充分条件,求m 的取值范围.20.(12分)原定于2022年9月10日至25日在中国杭州举办的第19届亚洲运动会延期至2023年9月23日至10月8日在中国杭州举行,名称仍为杭州2022年第19届亚运会.杭州亚组委在亚奥理事会和中国奥委会的指导下,有关各方共同努力,为全世界人民呈现了一届“中国特色、浙江风采、杭州韵味、精彩纷呈”的体育文化盛会.运动会期间,杭州某互联网公司为保证直播信号的流畅,拟加大网络的研发投入.据了解,该公司原有员工200人,平均投入a(a>0)万元/人,现把该公司人员调整为两类:运营人员和服务人员,其中运营人员有x名,调整后运营人员的人均投入调整为a(m﹣4x%)万元/人,服务人员的人均投入增加2x%.(1)若使调整后服务人员的总投入不低于调整前的200人的总投入,则调整后的服务人员最多有多少人?(2)现在要求调整后服务人员的总投入始终不低于调整后运营人员的总投入,求m的最大值及此时运营人员的人数.21.(12分)已知函数f(x)=ax2﹣(a﹣1)x﹣2,a∈R.(1)设a>−12,解关于x不等式f(x)<ax;(2)设a>0,若当x∈[−12,+∞)时,f(x)的最小值为−94,求a的值.22.(12分)已知函数f(x)=√3x−2−34x+12.(1)判断f(x)在区间[2,+∞)上的单调性并证明;(2)令g(x)=f(x)+34x−12,对∀x1∈[2,+∞),∃x2∈[2,+∞),使得(g(x1))2+2−m≥m√3x1−2−f(x2)成立,求m的取值范围.2023-2024学年山东省名校考试联盟高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <0},B ={x |﹣x 2﹣x +2>0},则(∁R A )∩B =( ) A .{x |0<x <1}B .{x |0≤x <1}C .{x |﹣2<x <0}D .{x |1<x <2}解:因为A ={x |x <0},B ={x |﹣x 2﹣x +2>0}={x |﹣2<x <1}, 所以∁R A ={x |x ≥0},则(∁R A )∩B ={x |0≤x <1}. 故选:B .2.若函数f (x )=(m 2﹣m ﹣1)x m 为幂函数,则实数m =( ) A .2B .﹣1C .﹣1或2D .3解:∵函数f (x )=(m 2﹣m ﹣1)x m 为幂函数,∴m 2﹣m ﹣1=1,求得m =﹣1或2, 故选:C .3.若函数f (x )的定义域为[﹣1,2],则函数y =f(x 2−1)√x+1的定义域为( ) A .(−√3,2]B .[0,√3]C .(﹣1,2]D .(−1,√3]解:函数f (x )的定义域为[﹣1,2], 则{−1≤x 2−1≤2x +1>0,解得−1<x ≤√3, 故所求函数的定义域为(﹣1,√3]. 故选:D .4.已知a ,b ,c 均为实数,则( ) A .若a >b ,则ac 2>bc 2B .若a <b <0,则b a>abC .若a >b 且1a>1b,则b <0<aD .若a <b ,则a 2<ab <b 2解:当c =0时,A 显然错误;若a <b <0,则a 2>b 2,即ab>ba ,B 错误;若a >b 且1a>1b,则1a−1b=b−a ab>0,所以ab <0,即a >0>b ,C 正确; a <b <0时,D 显然错误. 故选:C .5.已知命题p:∀x>0,√3−x>0,则命题p的否定是()A.∀x>0,√3−x≤0B.∃x>0,3﹣x≤0C.∃x>0,√3−x≤0D.∀x≤0,√3−x≤0解:根据题意,命题p:∀x>0,√3−x>0,即0<x<3,则命题p的否定为:∃x>0,有x≥3,即3﹣x≤0.故选:B.6.已知函数f(x)=x+√x+1,其定义域为M,值域为N.则“x∈M”是“x∈N”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要解:由题意知,x+1≥0,所以x≥﹣1,所以函数f(x)的定义域M=[﹣1,+∞),因为函数y=x和y=√x+1在定义域内均为增函数,所以f(x)在[﹣1,+∞)上单调递增,所以f(x)min=f(﹣1)=﹣1,即函数f(x)的值域N=[﹣1,+∞),因此“x∈M”是“x∈N”的充要条件.故选:C.7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=12(|x﹣a2|+|x﹣2a2|﹣3a2).若∀x∈R,f(x ﹣a)<f(x),则实数a的取值范围为()A.[−16,16]B.[0,16]C.[−13,13]D.(0,16)解:当x≥0时,f(x)=12(|x−a2|+|x−2a2|−3a2),∴当0≤x≤a2时,f(x)=12[−x+a2−(x−2a2)−3a2]=−x,当a2<x≤2a2时,f(x)=﹣a2,当x>2a2时,f(x)=x﹣3a2,由于函数f(x)是定义在R上的奇函数,即可画出f(x)在R上的图象,如图所示:当x>0时,f(x)的最小值为﹣a2,当x<0时,f(x)的最大值为a2,由于∀x∈R,f(x﹣1)≤f(x),故函数f(x﹣a)的图象不能在函数f(x)的图象的上方,即f(x)的图像向右平移a个单位后的图象总在f(x)图象下方,结合(图二)可得a﹣3a2>3a2,则0<6a<1,故a的取值范围为(0,16 ).故选:D.8.不等式x2+2axy+4y2≥0对于∀x∈[2,3],∀y∈[2,9]恒成立,则a的取值范围是()A.[−2512,+∞)B.[﹣5,+∞)C.[−133,+∞)D.[﹣1,+∞)解:不等式x2+2axy+4y2≥0对于∀x∈[2,3],∀y∈[2,9]恒成立,即a≥−x2+4y22xy=−12(xy+4yx)对于∀x∈[2,3],∀y∈[2,9]恒成立,令t=xy,则t∈[29,32],则a≥−12(t+4t)对于∀t∈[29,32]恒成立,由对勾函数的性质可知y=t+4t在[29,32]上单调递减,所以当t=32时,y取最小值为256,所以−12(t+4t)的最大值为−2512,所以a≥−2512,即a的取值范围是[−2512,+∞).故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)={x 2−2x +1,x ≤1−x +1,x >1,下列说法正确的是( )A .函数f (x )是减函数B .∀a ∈R ,f (a 2)>f (a ﹣1)C .若f (a ﹣4)>f (3a ),则a 的取值范围是(﹣2,+∞)D .在区间[1,2]上的最大值为0 解:函数f(x)={x 2−2x +1,x ≤1−x +1,x >1,对于A ,∵y =x 2﹣2x +1在(﹣∞,1]上单调递减,y =﹣x +1在(1,+∞)上单调递减, 且12﹣2×1+1=0,﹣1+1=0, ∴f (x )在R 上单调递减,A 正确;对于B ,∵a 2﹣(a ﹣1)=a 2﹣a +1=(a −12)2+34>0,∴a 2>a ﹣1,f (a 2)<f (a ﹣1),B 错误; 对于C ,若f (a ﹣4)>f (3a ),则a ﹣4<3a ,解得a >﹣2,C 正确; 对于D ,f (x )在区间[1,2]上单调递减,最大值为f (1)=0,D 正确. 故选:ACD .10.已知a ,b 是两个正实数,满足a +b =1,则( ) A .√a +√b 的最小值为1 B .√a +√b 的最大值为√2C .a 2+b 2的最小值为12D .a 2+b 2的最大值为1解:(√a +√b)2=a +b +2√ab =1+2√ab ,由于0<2√ab ≤a +b =1,所以1<(√a +√b)2≤2,当且仅当a =b =12时,等号成立. 即√a +√b 的最大值为√2,没有最小值,故A 错误,B 正确;因为a 2+b 2=(a +b )2﹣2ab ,且0<ab ≤(a+b)24=14,当且仅当a =b =12时,等号成立. 所以12≤a 2+b 2<1,即a 2+b 2的最小值为12,没有最大值,故C 正确,D 错误.故选:BC .11.已知函数f (x )=ax 2﹣3x +4,若任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<−1,则实数a 的值可以是( ) A .﹣1B .−12C .0D .12解:任意x 1,x 2∈[﹣1,+∞),设x 1>x 2,则x 1﹣x 2>0,∵任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<−1,∴f (x 1)﹣f (x 2)<﹣(x 1﹣x 2), ∴f (x 1)+x 1<f (x 2)+x 2, 设g (x )=f (x )+x =ax 2﹣2x +4, 则g (x 1)<g (x 2),∴函数g (x )=ax 2﹣2x +4在[﹣1,+∞)上单调递减, 当a =0时,g (x )=﹣2x +4在R 上单调递减,符合题意, 当a ≠0时,则a <0且1a ≤−1,解得﹣1≤a ≤0,观察各个选项,实数a 的值可以是﹣1,−12,0. 故选:ABC .12.已知函数f (x )的定义域为R ,f (x ﹣1)为奇函数,f (3x ﹣2)为偶函数,则( ) A .f(13)=0B .f (1)=0C .f (4)=0D .f (3)=0解:因为f (x ﹣1)为奇函数, ∴f (x ﹣1)=﹣f (﹣x ﹣1), 所以f (x )关于(﹣1,0)对称, 因为f (3x ﹣2)为偶函数, ∴f (3x ﹣2)=f (﹣3x ﹣2), 所以f (x )关于x =﹣2对称, 所以f (x )周期为4, 所以f (﹣1)=f (3)=0, 因为f (x )关于(﹣1,0)对称, 所以f (x )+f (﹣2+x )=0,所以f (x )+f (﹣2﹣x )=f (x )+f (﹣2﹣x +4)=0, 即f (x )+f (2﹣x )=0,故得到f (x )关于(1,0)和(3,0)对称. 故选:BD .三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={2x +1x ,x <0x 2−3x +1,x ≥0,则f (f (2))= ﹣3 . 解:根据题意,函数f(x)={2x +1x ,x <0x 2−3x +1,x ≥0,则f (2)=4﹣6+1=﹣1,则f (f (2))=f (﹣1)=﹣2﹣1=﹣3. 故答案为:﹣3.14.写出3x ﹣1>0的一个必要不充分条件是 (0,+∞) . 解:由3x ﹣1>0,解得:x >13,故3x ﹣1>0的一个必要不充分条件可以是x >0. 故答案为:(0,+∞). 15.关于x 的不等式11−x≥2x的解集为 {x |x <0或23≤x <1} .解:由11−x≥2x可得11−x−2x=3x−2x(1−x)≥0,即{(3x −2)(x −1)x ≤0x(x −1)≠0,解得x <0或23≤x <1. 故答案为:{x |x <0或23≤x <1}.16.设函数f (x )的定义域为R ,满足f (x +1)=3f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥﹣1,则m 的取值范围是 (﹣∞,15−√56] . 解:因为f (x +1)=3f (x ),所以f (x )=3f (x ﹣1),即f (x )右移1个单位,图象变为原来的3倍, 当x ∈(0,1]时,f(x)=x(x −1)∈[−14,0],当x ∈(1,2]时,x ﹣1∈(0,1],f (x )=3f (x ﹣1)=(3x ﹣1)(x −2)∈[−34,0]; ∴x ∈(2,3]时,x ﹣1∈(1,2],f (x )=3f (x ﹣1)=9(x ﹣2)(x −3)∈[−94,0]; 令9(x ﹣2)(x ﹣3)=﹣1,解得x 1=15+√56,x 2=15−√56, 所以要使对任意x ∈(﹣∞,m ],都有f (x )≥﹣1, 则m ≤15−√56,即m 的取值范围是(﹣∞,15−√56]. 故答案为:(﹣∞,15−√56].四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A ={x|x−2x+1≤0},集合B ={x |2m +3<x <m 2},m ∈R . (1)当m =﹣2时,求A ∪B ;(2)若A ∩B =B ,求实数m 的取值范围. 解:(1)由题意得A ={x|x−2x+1≤0}={x |﹣1<x ≤2}, 当m =﹣2时,B ={x |﹣1<x <4}, 故A ∪B ={x |﹣1<x <4}; (2)若A ∩B =B ,则B ⊆A ,当B =∅时,2m +3≥m 2,解得﹣1≤m ≤3,当B ≠∅时,{2m +3<m 2m 2≤22m +3≥−1,解得−√2≤m <−1,综上,m 的范围为[−√2,3].18.(12分)f(x)=1−x 21+x 2.(1)判断f (x )的奇偶性,并加以证明; (2)求f (x )的值域. 解:(1)∵f(x)=1−x 21+x 2的定义域为R , 且f (﹣x )=1−(−x)21+(−x)2=1−x 21+x 2=f (x ), ∴f (x )为偶函数; (2)∵y =21+x 2∈(0,2], ∴f (x )=1−x 21+x 2=−1+21+x 2∈(﹣1,1],∴f (x )的值域为(﹣1,1].19.(12分)命题p :关于x 的方程x 2+2ax +4a +5=0有两个不相等的正实根,命题q :a ∈(m ,7m +7), (1)若命题¬p 为真命题,求a 的取值范围; (2)若q 是p 的充分条件,求m 的取值范围.解:若命题p 为真命题,则{Δ=4a 2−4(4a +5)>0x 1+x 2=−2a >0x 1x 2=4a +5>0,解得−54<a <−1.(1)若命题¬p 为真命题,则实数a 满足a ≤−54或a ≥﹣1,即a 的取值范围是(−∞,−54]∪[−1,+∞);(2)若q 是p 的充分条件,则(m ,7m +7)⊆(−54,−1),可得{m <7m +7m ≥−547m +7≤−1,解得−76<m ≤−87,即m 的取值范围是(−76,−87].20.(12分)原定于2022年9月10日至25日在中国杭州举办的第19届亚洲运动会延期至2023年9月23日至10月8日在中国杭州举行,名称仍为杭州2022年第19届亚运会.杭州亚组委在亚奥理事会和中国奥委会的指导下,有关各方共同努力,为全世界人民呈现了一届“中国特色、浙江风采、杭州韵味、精彩纷呈”的体育文化盛会.运动会期间,杭州某互联网公司为保证直播信号的流畅,拟加大网络的研发投入.据了解,该公司原有员工200人,平均投入a (a >0)万元/人,现把该公司人员调整为两类:运营人员和服务人员,其中运营人员有x 名,调整后运营人员的人均投入调整为a (m ﹣4x %)万元/人,服务人员的人均投入增加2x %.(1)若使调整后服务人员的总投入不低于调整前的200人的总投入,则调整后的服务人员最多有多少人?(2)现在要求调整后服务人员的总投入始终不低于调整后运营人员的总投入,求m 的最大值及此时运营人员的人数.解:(1)由题意可知,调整后的服务人员有(200﹣x )人,人均投入为(1+2x %)a 万元/人, 从而(200﹣x )(1+2x %)a ⩾200a ,解得0⩽x ⩽150, 调整后服务人员最多有200人;(2)由题意,得(200﹣x )(1+2x %)a ⩾(m ﹣4x %)ax ,得(200x −1)(1+x50)⩾m −x25, 整理得m ⩽200x +3+x50, 因为200x+3+x 50⩾2√200x⋅x 50+3=7,当且仅当200x=x50,即x =100时等号成立,所以m ⩽7,则m 的最大值为7,此时运营人员有100人.21.(12分)已知函数f (x )=ax 2﹣(a ﹣1)x ﹣2,a ∈R . (1)设a >−12,解关于x 不等式f (x )<ax ;(2)设a >0,若当x ∈[−12,+∞)时,f (x )的最小值为−94,求a 的值. 解:(1)因为f (x )<ax ⇔ax 2﹣(a ﹣1)x ﹣2<ax ⇔ax 2﹣(2a ﹣1)x ﹣2<0, 当a =0时,原不等式等价于x ﹣2<0,解得x <2;当a ≠0时,因为Δ=(2a ﹣1)2+8a =4a 2+4a +1=(2a +1)2, 因为a >−12,所以Δ=(2a +1)2>0,2a +1>0,令ax 2﹣(2a ﹣1)x ﹣2=0⇔(ax +1)(x ﹣2)=0(a ≠0),解得x 1=−1a,x 2=2,当−12<a <0时,−1a>2,所以不等式ax 2﹣(2a ﹣1)x ﹣2<0的解集为:(﹣∞,2)∪(−1a,+∞); 当a >0时,−1a<0<2,所以不等式ax 2﹣(2a ﹣1)x ﹣2<0的解集为:(−1a,2); 综上所述,当a =0时,f (x )<ax 的解集为:(﹣∞,2);当−12<a <0时,f (x )<ax 的解集为:(﹣∞,2)∪(−1a,+∞); 当a >0时,f (x )<ax 的解集为:(−1a ,2);(2)a >0,所以函数f (x )=ax 2﹣(a ﹣1)x ﹣2的开口向上,对称轴为x =a−12a =12−12a <12,当12−12a ≤−12,即0<a ≤12时,f (x )min =f (−12)=3a−104=−94,解得a =13∈(0,12],满足题意;当12−12a>−12,即a >12时,f (x )min =f (12−12a)=−a 2+6a+14a =−94,a 2﹣3a +1=0, 解得a =3−√52<12或a =3+√52>12, 所以a =3+√52, 综上所述,a =13或a =3+√52. 22.(12分)已知函数f(x)=√3x −2−34x +12. (1)判断 f (x )在区间[2,+∞)上的单调性并证明;(2)令g(x)=f(x)+34x −12,对∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得(g(x 1))2+2−m ≥m √3x 1−2−f(x 2)成立,求m 的取值范围.解:(1)f(x)=√3x −2−34x +12在[2,+∞) 上是单调递减, 证明:对任意x 1,x 2∈[2,+∞),且x 1<x 2,有f(x1)﹣f(x2)=(√3x1−2−34x1+12)−(√3x2−2−34x2+12)=12√1√2−34(x1−x2)=(x1−x2)(3√1√234 ),∵x2>x1≥2,∴√3x1−2+√3x2−2>4,3x1−2+3x2−2<34,3x1−2+3x2−2−34<0,由x1﹣x2<0,得f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在区间[2,+∞)上单调递减.(2)化简得∀x1∈[2,+∞),∃x2∈[2,+∞),3x1−2+2−m−m√3x1−2≥−f(x2)成立,由(1)知(﹣f(x))min=﹣f(2)=﹣1,∴3x1−2+2−m−m√3x1−2≥−1,∀x1∈[2,+∞),令√3x1−2=t≥2,∴t2+3﹣m(t+1)≥0,∴m≤t2+3t+1=t+1+4t+1−2,∴p(t)=t+1+4t+1−2在[2,+∞)单调递增,∴p(t)min=p(2)=7 3,∴m≤73,即m的取值范围是(﹣∞,73].。
山东省名校考试联盟2023-2024学年高三上学期12月阶段性检测英语试题一、听力选择题1.What is the man complaining about?A.The food.B.The project C.The noise.2.How much change should the man get?A.$5.B.$7.C.$8.3.How do the speakers feel now?A.Surprised.B.Happy,C.Annoyed.4.Where will the woman probably go first?A.The city library.B.The grocery storeC.The lawyer's office.5.What are the speakers mainly talking about?A.Jane's holiday.B.Iane's cousins.C.Jane's travel plan.听下面一段较长对话,回答以下小题。
6.Where does the woman come from?A.Yorkshire.B.Boston.C.Seattle.7.What does the woman like about Spain?A.Having a long lunch.B.Sitting close to people.C.Taking a midday nap.听下面一段较长对话,回答以下小题。
8.What will the man do this afternoon?A.Write a report.B.Attend a meeting.C.Organize a gathering.9.Why is the man unable to ensure his arrival time?A.He has to pick up Mr.Brown.B.He has to get his car repaired.C.He has to deliver packages.10.What does Jenny suggest the man do?A.Give Henry a call.B.Skip the gathering.C.Take public transport.听下面一段较长对话,回答以下小题。
山东名校考试联盟2024年10月高三年级阶段性检测数学试题注意事项:1.答卷前,考生务必将自己的考生号、姓名、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3全卷满分150分.考试用时120分钟..考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知()(){}23230,02x A x x x B x x +=∈−−==∈≤ − Q R∣,则A B = ( )A. {}2B. {C. {}2D. ∅【答案】D 【解析】【分析】解方程与不等式求得集合,A B ,进而可求A B ∩.【详解】由2(2)(3)0x x −−=,可得2x =或x =,又Q x ∈,所以2x =,所以{2}A =;由302x x +≤−,可得(3)(2)020x x x +−≤ −≠,解得32x −≤<,所以{|32}Bx x =−≤<, 所以{2}{|32}A B x x =−≤<=∅ . 故选:D.2. 幂函数()23f x x =的图象大致为( )A. B.C. D.【答案】B 【解析】【分析】根据题意,利用函数奇偶性的判定方法,得到函数()f x 为偶函数,再由幂函数的性质,结合选项,即可求解.【详解】由函数()23f x x ==,可得函数的定义域为R ,关于原点对称,且()()f x f x −===,所以函数()f x 为偶函数,所以函数()f x 的图象关于y 轴对称,又由幂函数的性质得,当0x ≥时,函数()f x 单调递增, 结合选项,选项B 符合题意. 故选:B.3. 把物体放在冷空气中冷却,如果物体原来的温度是1C θ ,空气的温度是0C θ,那么min t 后物体的温度θ(单位:C )可由公式)01010ktθθθθ−=+−⋅求得,其中k 是一个随物体与空气的接触情况而定的正常数.现有65C 的物体,放到15C 的空气中冷却,1min 后物体的温度是35C ,已知lg20.3≈,则k 的值大约为( ) A. 0.2 B. 0.3 C. 0.4 D. 0.5【答案】C 【解析】【分析】根据题意列出等式()3515651510k−=+−⋅,化简后即可求解.【详解】由题意知015C θ= ,165C θ=, 代入公式()01010ktθθθθ−=+−⋅,可得()3515651510k−=+−⋅,则2105k−=,两边同时取对数得2lg10lg 5k−=, 即lg2lg 50.30.70.4k −=−≈−=−,则0.4k =,故C 正确. 是故选:C.4. 如图所示,一个组合体的上面部分是一个高为0.5m 长方体,下面部分是一个正四棱锥,公共面是边长为1m 的正方形,已知该组合体的体积为32m 3,则其表面积为( )A. (22m +B. (23m +C. (22m +D. (23m +【答案】B 【解析】【分析】由题意先利用棱锥体积公式求出正四棱锥的高,然后再求出其斜面上的高,即可求解. 【详解】由题意知该组合体由长方体和正四棱锥组成,且该组合体的体积为32m 3, 长方体的体积为31110.5m 2××=,则正四棱锥体积为3211m 326−=, 所以正四棱锥的高为1316m 112×=×,2112×, 所以组合体的表面积为()(210.541143m ××+×=+,故B 正确.故选:B.5. 若12,x x 是一元二次方程()()220x m x m m −++=∈R 的两个正实数根,则1221x x x x +的最小值为( ) A. 2 B. 4C. 6D. 8【答案】C 【解析】【分析】由题意及韦达定理可得122x x m +=+,12x x m =,从而得()2221212211222m mx x x x x x x x m+−++==,再结合基本不等式即可求解.【详解】由若12,x x 是一元二次方程()()220x m x m m −++=∈R 的两个正实数根, 所以122x x m +=+,12x x m =,则mm >0所以()()222212121212211212222x x x x m mx x x x x x x x x x m+−+−++===2244226m m m m m ++==++≥+=,当且仅当2m =时取等号,故C 正确. 故选:C.6. 已知等差数列{}n a 和等比数列{}n b 的前n 项和分别为n S 和n T ,且21nn S n T =+,则35=a b ( ) A. 9 B. 10 C. 11 D. 12【答案】C 【解析】【分析】分别设出为n S 和n T 的二次形式,由此求得35,a b ,即可化简后得到结果. 【详解】由等差数列{aa nn }和等比数列{bb nn }的前n 项和分别为n S 和n T ,所以可设()21n S kn n =+,n T kn =,0k ≠, 所以可得33255421101154a S S k k b T T k k−−===−−,故C 正确. 故选:C.7. 若2x =是函数()222exax x f x +−=的极小值点,则实数a 的取值范围是( ) A. (),1∞−− B. (),1−∞C. ()1,−+∞D. ()1,+∞【答案】A 【解析】【分析】求导,利用导数,分0a =,0a >,0a <三种情况讨论可求实数a 的取值范围.【详解】由()222exax x f x +−=,可得()222(22)e (22)e (22)4(2)(2)(e e e)x x x x xax ax x ax a x ax x f x +−+−−+−+−−−′===, 若0a =,当2x <时,()0f x ′>,当2x >时,()0f x ′<,故2x =是()222exax x f x +−=的极大值点,不符合题意,若0a ≠时,令()0f x ′=,可得(2)(2)0ax x −−−=,可得2x =或2x a=−, 若0a >时,则20a−<,当22x a −<<时,()0f x ′>,当2x >时,()0f x ′<,故2x =是()222exax x f x +−=的极大值点,不符合题意, 若0a <时,则20a−>,由二次函数的(2)(2)y ax x =−−−图象可知, 要使2x =是函数()222exax x f x +−=的极小值点, 需22a−<,解得1a <−, 所以实数a 的取值范围是(,1)∞−−. 故选:A.8. 已知函数()()6sin cos 10f x x x ωωω=+−>在π0,3上有且仅有3个零点,则ω的取值范围是( ) A. 3,32B. 3,32C. 93,2D. 93,2【答案】D 【解析】【分析】化简得23()sin 24f x x ω=−,由题意可得2π2π3π3ω<≤,求解即可. 详解】()()()66224224sin cos 1sin cos sin sin ?cos cos 1f x x x x x x x x x ωωωωωωωω=+−=+−+−()242242222sin sin ?cos cos 1sin cos 3sin ?cos 1x x x x x x x x ωωωωωωωω−+−=+−−22222313sin cos 13sin cos sin 24x x x x x ωωωωω=−−=−=− ,因为π0,3x ∈,2π20,3x ωω ∈ , 【由函数()()66sin cos 10f x x x ωωω=+−>在π0,3上有且仅有3个零点,可得2π2π3π3ω<≤,解得932ω<≤,所以ω的取值范围是9(3,]2.故选:D.二、多选题:本题共3小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9. 已知n S 为数列{}n a 的前n 项和,若3n n S a n =+,则( ) A. 112a =B. 数列{}1n a −为等比数列C. 312nn a =−D. 3332nn S n =−⋅+【答案】BCD 【解析】【分析】当1n =时,1131S a =+,解得112a =−;根据3n n S a n =+,可得当2n ≥时,1131n n S a n −−=+−,从而得13122n n a a −=−,即()13112n n a a −−=−;根据B 可求得312nn a−=−;从而可求出333?2nn S n =−+.【详解】A :当1n =时,1131S a =+,解得112a =−,故A 错误; B :因为3n n S a n =+,当2n ≥时,1131n n S a n −−=+−, 将两式相减可得1331n n n a a a −=−+,即13122n n a a −=−, 则()13112n n a a −−=−,因112a =−,则1312a −=−,数列{}1n a −为首项为32−,公比为32的等比数列,故B 正确;C :由B 可得13331?222n n n a −−=−=−,所以312nn a =− ,故C 正确;D :3333?2nn n S a n n =+=−+,故D 正确.故选:BCD.10. 已知幂函数()()293m f x m x =−的图象过点1,n m−,则( )A. 23m =−B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>−的解集为(),1−∞ 【答案】ABC 【解析】【分析】利用幂函数的定义结合过点1,n m−,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x mx =−为幂函数,所以2931m −=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n − ,故23m ≠,当23m =−,幂函数()23f x x −=的图象过点2,3n,则2332n =,解得32()32n ==,故AC 正确; ()23f x x −=的定义域为{|0}x x ≠,且()2233()()f x x xf x −−−=−==,故()f x 为偶函数,故B 正确;函数()23f x x−=在(0,)+∞上单调递减,由()()13f a f a +>−,可得()()|1||3|f a f a +>−,所以1310a a a +<− +≠,解得1a <且1a ≠−,故D 错误.故选:ABC.11. 已知函数()f x 及其导函数()f x ′的定义域均为R ,记()()g x f x ′=,若()2g x +的图象关于直线2x =−对称,且()()()111f x f x f x −++=+−,则( )A. ()g x 是偶函数B. ()f x 是奇函数C. 3为()y f x =的一个周期D.20251()0i g i ==∑【答案】ACD 【解析】【分析】由()2g x +的图象关于直线2x =−对称,则可得()g x 关于xx =0对称,可对A 判断;由gg (xx )=ff ′(xx ),从而可得ff (xx )关于()0,1对称,可对B 判断;由ff (xx )关于()0,1对称,可得()()()113f x f x f x −+++=,故()()()213f x f x f x −+−+=,从而得()()12f x f x +=−,即()()3f x f x +=,可对C 判断;由()()()113f x f x f x −+++=,两边求导得()()()110g x g x g x −+++=,可对D 判断.【详解】A :因为()2g x +的图象关于直线2x =−对称,故将()2g x +的图象向右平移2个单位后变为()g x 的图象,此时()g x 关于xx =0对称,所以()g x 是偶函数,故A 正确;B :因为()g x 是偶函数,所以ff (xx )关于()0,c 对称且c 为常数,当xx =0时,()()()1110f f f −+=+,又因为()()112f f c −+=,()0f c =,所以1c =,所以ff (xx )关于()0,1对称,故B 错误; C :因为ff (xx )关于()0,1对称,所以()()2f x f x −=−+,所以()()()()1113f x f x f x f x −++=+−=−,所以()()()113f x f x f x −+++=①,故()()()213f x f x f x −+−+=②,则①②两式相减得()()12f x f x +=−,即()()3f x f x +=,所以3是()y f x =的一个周期,故C 正确; D :因为()()()113f x f x f x −+++=,两边求导得()()()110g x g x g x −+++=,且()g x 的周期为3,又因为20256753=×,所以()202510i g i ==∑,故D 正确.故选:ACD.【点睛】关键点点睛:B 中因为()g x 是偶函数,所以可得ff (xx )关于()0,c 对称,从而可求出1c =;D 中可有()()()113f x f x f x −+++=,两边求导得()()()110g x g x g x −+++=,从而可知()g x 中连续3项之和为零.三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数()ln f x x x =,则曲线()y f x =在1x =处的切线方程是 _____.【答案】10x y −−=【解析】【分析】求出导函数,根据导数的几何意义得出斜率,求出切点坐标,代入点斜式方程,即可得出答案.【详解】因为()ln 1f x x ′=+,所以()11f ′=. 根据导数的几何意义可知,曲线()y f x =在1x =处的切线的斜率()11k f ′==. 又()10f =,所以,切线方程为1y x =−,即10x y −−=. 故答案为:10x y −−=. 13. 已知0a >且1a ≠,函数()2,1,1x x x f x a x ≥= <,若关于x 的方程()()2560f x f x −+=恰有3个不相等的实数解,则实数a 的取值范围是______. 【答案】(]2,3 【解析】【分析】当1x ≥时,()2xf x =,方程()()2560fx f x −+=有2个不相等实数解,则当1x <时,()x f x a =,此时方程()()2560f x f x −+=只有1个实数解,对a 分类讨论,由()x f x a =的值域求实数a 的取值范围. 【详解】方程()()2560fx f x −+=,即()2f x =或()3f x =, 当1x ≥时,()2xf x =,由()2f x =解得1x =,由()3f x =解得2log 3x =; 当1x <时,()xf x a =,此时方程()()2560fx f x −+=只有1个实数解, 若01a <<,则()xf x a =在(),1∞−上单调递减,()(),f x a ∞∈+,的此时()2f x =和()3f x =都有解,不合题意,若1a >,则()xf x a =在(),1∞−上单调递增,()()0,f x a ∈,则23a <≤.所以实数a 的取值范围是(]2,3. 故答案为:(]2,314. 已知三棱锥A BCD −的四个顶点都在球O 的球面上,若AB CD =O 的半径为,则三棱锥A BCD −体积的最大值为__________.【答案】 【解析】【分析】设,AB CD 的中点为,M N ,球心为O ,由题意可得,,O M N 在同一直线上时,ABN 的面积最大,CD ⊥平面ABN ,三棱锥A BCD −体积的最大值,求解即可. 【详解】设,AB CD 的中点为,M N ,球心为O ,由题意可得,OM AB ON CD ⊥⊥,由题意可得1,2OM ON ==,当,,O M N 在同一直线上时,ABN 的面积最大,最大面积为1(12)2×+, 设C 到平面ABN 的距离为d ,由题意可得D 到平面ABN 的距离也为d ,当CD ⊥平面ABN 时,d 取最大值12CD =所以三棱锥A BCD −体积的最大值为112233ABN S d ××=×=故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()2π2sin 4f x x x=+.(1)求()f x 在π0,2上的单调递增区间;(2)已知ABC 的内角,,A B C 的对边长分别是,,a b c,若π1212C f−,2c =,求ABC 面积的最大值. 【答案】(1)5π[0,]12(2)2 【解析】【分析】(1)化简π()12sin(2)3f x x =+−,利用πππ2π22π,Z 232k x k k −+≤−≤+∈,可求单调区间;(2)由余弦定理可得22242cos 2c a b ab C ab ==+−≥,可求ab 的最大值,进而可求ABC 面积的最大值. 【小问1详解】()2π1cos 2π22sin 21sin 242x f x x x x x x−+=+=×−=+−πππ12(sin 2cos cos2sin 12sin(2)333x x x =+−=+−, 由πππ2π22π,Z 232k x k k −+≤−≤+∈,得π5πππ,Z 1212k x k k −+≤≤+∈, 又π0,2∈ x ,所以函数()f x 在π0,2上的单调递增区间为5π[0,]12;【小问2详解】由π1212C f−=−,得ππ12sin[2()]12123C +×−−,所以πsin()2C −,所以cos C =,因为0πC <<,所以π6C =,又2c =,在ABC中,由余弦定理可得22242cos 2c a b ab C ab ==+−≥−,所以4(2ab ≤=,当且仅当a b ==时取等号,所以111sin 4(22222ABC S ab C =≤×+×=+所以ABC 面积的最大值为2. 16. 已知函数()()ln R mf x x m x=+∈. (1)讨论函数()f x 的单调性;(2)当1m =时,证明:当1x ≥时,()e e 0xxf x x −−+≤.【答案】(1)答案见解析 (2)证明见解析 【解析】【分析】(1)利用导数与函数单调性的关系,分类讨论即可得解;(2)构造函数()()e e xg x xf x x =−−+,利用二次导数,结合函数的最值情况,证得()0g x ≤,从而得证.【小问1详解】因为()ln mf x x x=+的定义域为()0,∞+, 所以()221m x mf x x x x −′=−=,当0m ≤时,()0f x ′>恒成立,所以()f x 在()0,∞+上单调递增; 当0m >时,令()0f x ′=,得x m =, 当()0,x m ∈时,()()0,f x f x ′<单调递减, 当(),x m ∈+∞时,()()0,f x f x ′>单调递增, 综上,当0m ≤时,()f x 在()0,∞+上单调递增;当0m >时,()f x 在()0,m 上单调递减,在(),m +∞上单调递增. 【小问2详解】当1m =时,()1ln f x x x=+, 令()()e e ln e e 1xxg x xf x x x x x =−−+=−−++,则()ln e xg x x =−′, 令()()ln e xh x g x x ′==−,则()1e xh x x=′−,因为1x ≥,所以11,e e 1x x≤≥>, 所以当1x ≥时,()h x ′1e 0xx=−<恒成立,所以()h x 在[)1,+∞上单调递减,即()ln e x g x x =−′在[)1,+∞上单调递减,所以()()1e 0g x g ′≤−′=<, 所以()g x 在[)1,+∞上单调递减,所以()()10g x g ≤=,即()e e 0xxf x x −−+≤. 【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<. (2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔−> ;()()f x g x <恒成立()()max 0f x g x ⇔−< ; (4)1x M ∀∈,2x N ∀∈,()()()()1212min max f x g x f x g x >⇔>.17. 已知函数()33x x af x a+=−.(1)若()f x 为奇函数,求a 的值;(2)当0a <时,函数()f x 在[],m n 上的值域为11,33m n −− ,求a 的取值范围.【答案】(1)1或1−(2)(,3−∞−− 【解析】【分析】(1)由ff (xx )为奇函数,可得()()0f x f x +−=,从而可求解; (2)当0a <时,可得()y f x =是单调增函数,从而可得即,m n 是函数3133x x x a a +=−−的两个解,参数分离可得23313x x xa +=−,利用换元法设13xt =−,可得23a t t =+−,且1t <,再结合对勾函数性质从而可求解.【小问1详解】由()32133x xx a af x a a+==+−−,所以()22?31131?3x x x a a f x a a −−=+=+−−, 因为ff (xx )为定义域上的奇函数,所以()()0f x f x +−=, 即22?311031?3xx xa a a a +++=−−,化简得·3131?3x xx a a a a +=−−−, 则22222·3?3?33?3?30x x x x x x a a a a a a a −+−+−−+=,则得21a =, 所以aa =−1或1a =. 【小问2详解】当0a <时,()32133x x xa af x a a+==+−−,所以()y f x =是单调增函数, 由函数()f x 在[],m n 上的值域为11,33m n −−, 所以()3133m m m a f m a +==−−,()3133n n n a f n a +==−−,即,m n 是函数3133x x x a a +=−−的两个解,则得23313x x xa +=−,设130xt =−<,则22332313x xxa t t +==+−−,0t <,根据对勾函数性质可得23y t t=+−在()上单调递减,(,−∞上单调递增,其中23y t t=+−在(),0−∞上的值域为(,3 −∞− ,当t =时取最大值,综上可得3a <−,所以a 的取值范围为(),3−∞−−. 18. 已知函数()()28ln 1exf x axbx =+++.(1)若()f x ′在R 上单调递减,求a 的最大值; (2)证明:曲线()y f x ′=是中心对称图形; (3)若()8ln2f x ,求a 的取值范围. 【答案】(1)1− (2)证明见解析 (3)(],1−∞−【解析】【分析】(1)对ff (xx )求导得()8e 21e x x f x ax b =+++′,令()8e 21exxg x ax b =+++,再结合基本不等式从而可得()8201e 2ex x g x a =++′≤+,即可求解. (2)由()()28f x f x b ′′−+=+,从而曲线yy =ff ′(xx )关于点()0,4b +对称,即可求解. (3)分情况讨论求出0a <,4b =−,然后再利用导数讨论1a ≤−,10a −<<情况下,从而可求出a 的取值范围是(],1−∞−. 【小问1详解】由函数()()28ln 1e xf x ax bx =+++,所以()8e 21exxf x ax b =+++′, 令()8e 21e xxg x ax b =+++,因若ff ′(xx )在RR 上单调递减,则()()28e 822011e e 2exxxx g x a a =+=+++′≤+恒成立,因为1e 224e x x ++≥=,当且仅当xx =0时取等号, 则821e 2e x x −≥−++,所以821e 2ex x a ≤−++,即22a ≤−,得1a ≤−. 故a 的最大值为1−. 【小问2详解】证明:由(1)知()8e 21e x x f x ax b =+++′,则()8e 21exxf x ax b −−−=−++′, 则()()8e 8e 8e 8222281e 1e 1e 1ex x x x x x xf x f x ax b ax b b b −−−+=−++++=++=+′+′+++, 所以曲线yy =ff ′(xx )关于点()0,4b +对称,是中心对称图形.【小问3详解】当aa >0时,则当x →+∞时,()f x →+∞,与()8ln2f x ≤矛盾,所以0a ≤;为当0a =,0b ≥时,则当x →+∞时,()f x →+∞,与()8ln2f x ≤矛盾; 当0a =,0b <时,则当x →−∞时,()f x →+∞,与()8ln2f x ≤矛盾; 所以0a <.当4b >−,则当402b x a +<<−时,()8e 24201exxf x ax b ax b =++>++>+′, 此时()()08ln 2f x f >=,矛盾; 当4b <−,则当402b x a +−<<时,()8e 24201ex x f x ax b ax b =++<++<+′, 此时()()08ln 2f x f >=,矛盾; 因此4b =−,所以()8e 241exxf x ax =+−+′, 当1a ≤−,由(1)可知ff ′(xx )在RR 上单调递减,又()00f ′=,所以当0x ≤时,()0f x ′≥,ff (xx )在区间(],0−∞上单调递增; 当xx >0时,()0f x ′<,ff (xx )在区间(0,+∞)上单调递减; 此时()()08ln 2f x f ≤=,符合题意; 当10a −<<,则当0ln 1x <<−时,()()()228e 82201e 1e xxxg x a a =+>+′>++,此时()()()00f x g x g >′==,则()()08ln 2f x f >=,不合题意. 综上所述:a 的取值范围是(],1−∞−.【点睛】方法点睛:(1)导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理;(2)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用;(3)证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.19. 若存在1,1,2,2,,,n n 的一个排列n A ,满足每两个相同的正整数()1,2,,k k n = 之间恰有k 个正整数,则称数列n A 为“有趣数列”,称这样的n 为“有趣数”.例如,数列7:4,6,1,7,1,4,3,5,6,2,3,7,2,5A 为“有趣数列”,7为“有趣数”.(1)判断下列数列是否为“有趣数列”,不需要说明理由; ①2:1,2,1,2A ;②3:3,1,2,1,3,2A . (2)请写出“有趣数列”4A 的所有可能情形;(3)从1,2,,4n 中任取两个数i 和()j i j <,记i 和j 均为“有趣数”的概率为n P ,证明:14n P <. 【答案】(1)①不是;②是(2)4,1,3,1,2,4,3,2或2,3,4,2,1,3,1,4 (3)证明见解析 【解析】【分析】(1)根据“有趣数列”定义逐项判断即可求解.(2)分当两个1中间为2,当两个1中间为3,当两个1中间为4,共3种情况从而可找到符合题意的“有趣数列”,即可求解.(3)先设“有趣数列”n A 中数字()1,2,3,k k n = 第一次出现的项记作k a 项,从而可得()21111n n n k k k k k k a a a k k === +++=∑∑∑,可求得()1314nk k n n a =−=∑,再分情况讨论当()*43,42n m m m =−−∈N ,()*41n m m =−∈N ,()*4nm m ∈N 时符合“有趣数列”的情况,从而可得224C 1C 4nn nP =<,即可求解.【小问1详解】①2:1,2,1,2A 中两个2之间间隔数只有一个,故不是“有趣数列”, ②3:3,1,2,1,3,2A 中两个1之间间隔数有1个,两个2之间间隔数有2个, 两个3之间间隔数有3个,故是“有趣数列”.小问2详解】当两个1中间为2,不妨设1,2,1右边两个2中间可能为1,3或1,4, 则4A 可能为4,3,1,2,1,3,2,4或4,3,1,2,1,4,2,3,不符合题意; 当两个1中间为3,两个2中间可能为3,4或4,3,则4A 可能为4,1,3,1,2,4,3,2或2,3,4,2,1,3,1,4,符合题意;【当两个1中间为4,不妨设1,4,1右边两个2中间可能为3,4或4,3, 则4A 可能为1,4,1,2,3,4,2,3或1,4,1,2,4,3,2,3,不符合题意; 综上所述:“有趣数列”4A 可能为4,1,3,1,2,4,3,2或2,3,4,2,1,3,1,4. 【小问3详解】将“有趣数列”n A 中数字()1,2,3,k k n = 第一次出现的项记作k a 项, 由题意可知数字k 第二次出现的项为()1k a k ++项, 于是()21111n nn k kk k k k a aa k k === +++=∑∑∑,则()()13221222nk k n n n n a =+++=∑,即()1314nk k n n a =−=∑,又因为1nk k a =∑为整数,故必有()314n n −为整数,当()*43,42n m m m =−−∈N时,()314n n −不可能为整数,不符合题意; 当()*41n m m =−∈N时,()314n n −为整数,构造“有趣数列”41m A −为44,,2,42,23,1,41,1,23,m m m m m m −−−−− 2,,44,21,43,,21,42,m m m m m −−−+−22,,2,21,41,2,,22,21,,43m m m m m m −−−−+− ,符合题意; 当()*4nm m ∈N 时,()314n n −为整数,构造“有趣数列”4m A 为44,,2,42,23,1,41,1,23,m m m m m m −−−−− 2,,44,4,43,,21,42,m m m m m m −−+−22,,2,21,41,2,,22,21,,43,21,4m m m m m m m m −−−−+−− ,符合题意;这里44,,2m m − 是指将44m −一直到2m 的偶数按从大到小的顺序进行排列,23,,1m − 是指将23m −一直到1的奇数按从大到小的顺序进行排列,故1,2,,4n 中的“有趣数列”为3,4,7,8,,41,4n n − 共2n 个,则所求概率为()224C 211C 2414nn nn P n −==<−. 【点睛】方法点睛:本题主要是根据“有趣数列”定义,理解并应用,对于(3)中主要巧妙设出“有趣数列”n A 中数字()1,2,3,k k n = 第一次出现的项记作k a 项,由题意可知数字k 第二次出现的项为()1k a k ++项,从而求出()1314nk k n n a =−=∑,从而可求解.。
2024届山东名校联盟高三12月联考英语试题2024 Shandong Elite Schools Alliance Senior High School December English ExamPart I Listening (20 marks)Section A1. What is the woman's favorite hobby?A. Reading booksB. Playing sportsC. Listening to music2. When is the man's birthday?A. April 6thB. May 6thC. June 6th3. Where is the woman going tomorrow?A. New YorkB. ChicagoC. Los AngelesSection B4. What does the man want to buy?A. A new watchB. A birthday giftC. A camera5. Why does the woman prefer online shopping?A. It's more convenientB. It's cheaperC. It's fasterPart II Reading (40 marks)Section ARead the passage and answer the questions.Sports are an important part of our lives. They help us stay fit and healthy, teach us teamwork and cooperation, and can be a source of enjoyment and entertainment. However, some people argue that sports have become too commercialized, with lucrative sponsorship deals and expensive ticket prices. While these factors have indeed changed the landscape of sports,many still believe in the power of sports to bring people together and inspire them to achieve their best.1. What are some benefits of sports mentioned in the passage?2. Why do some people believe sports have become too commercialized?Section BRead the passage and answer the questions.Water scarcity is a growing concern around the world, with many regions facing severe shortages due to climate change and overuse of water resources. It is important for us to conserve water and use it wisely to ensure a sustainable future for the planet. Simple actions like taking shorter showers, fixing leaky faucets, and using water-saving appliances can make a big difference in reducing water waste.1. What is the main issue discussed in the passage?2. What are some simple actions individuals can take to conserve water?Part III Writing (40 marks)Write an essay on the following topic:"Should students be allowed to use smartphones in school? Discuss the pros and cons of allowing students to use smartphones in the classroom and provide your own opinion on the matter."Guidelines:1. Introduction: Introduce the topic and provide background information.2. Body: Present arguments for and against allowing students to use smartphones in school. Support each argument with examples or evidence.3. Conclusion: Summarize your main points and provide your opinion on the topic.。
高一质量监测联合调考语文考生注意:1.本试卷共150分,考试时间150分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:部编版必修下册第一至第六单元。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完成1~5题。
材料一:如何处理继承与创新之间的关系,如何把握继承与创新的适度均衡,是中华传统文化所面临的共通课题。
不仅对于诗词而言,对于书法、绘画、音乐等其他艺术形式而言,独立个性和创新能力都是其生命所在。
中国当下的诗词创作,总体来看还是继承偏多,创新的比重相对不足。
我们能听到这样的老生常谈:“不要奢谈什么创新,先把传统继承好了再来谈创新!”貌似有理,实际上有一个重要问题被忽视了:青年是作诗的黄金时期,这个年龄段心灵感受敏锐,思维活跃。
如果把心思全放在对古诗的继承上,耽误了这个思维活跃期,则很有可能出现年龄大了之后,思维已被传统模式固化,那时即使再想创新,也心有余而力不足的情况。
对于诗词这一传统积淀过于厚重的文艺,继承和创新显然需要同步进行。
让诗词作者先练就出将内心的真情实感自如地表达的能力,再达到诗句合律的能力。
对中国古典的研读,可与此同时逐步、长期地进行。
这样,能相对便于保持其独立个性和创新能力,避免陷入古诗的窠白而无法自拔。
从事诗词创作当然需要充分地研读中国古典。
我们反对的是那种仅研读中国古典、作诗时满脑子里只有中国古典套路的做法。
要想提升当代诗词的创作水平必须创新。
我对诗词创新提出的明确方法论是:向自由诗和外国诗学习,以增强作品的现代精神气质。
中国自由诗的发展,很大程度上就受到过外国诗的影响。
现在,有必要让这一影响继续扩大到诗词领域,以改变当下的诗词创作整体上依然“闭关锁国”的状态。
文学创作离不开对先前作品的继承。
比起中国古诗,自由诗和外国诗相对富于现代精神气质,与现代人的思维、情感较为接近。
用这种开辟新继承源泉的方式,给诗词带来创新。
他山之石,可以攻玉。
山东省名校考试联盟2024届高三下学期开学考语文试题一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题.18分)阅读下面的文字:完成1~5题。
①物理学家玻尔钦曼说过,音乐家在听到几个音节后,即能辩认出莫扎特、贝多芬或舒伯特的音乐。
同样,数学家或物理学家将能在读了数页文字后辨认出柯西、高斯、亥姆霍兹或基尔霍夫的工作。
这就是因为他们各自有自己的风格。
②对于他的这一段话也许有人会发生疑问:科学是研究事实的.事实就是事实,哪里会有什么风格?③让我们拿物理学来讲吧,物理学的原理有它的结构,这个结构有它的英和妙的地方,而各个物理学工作者,对于这个结构的不同的英和妙的地方,有不同的感受,所以每位工作者就会发展自己独特的研究方向和研究方法.也就是说他会形成自己的风格。
④狄拉克是二十世纪一位大物理学家。
他话不多,而其内含有简单、直接、原始的逻辑性。
一旦抓住了他独特的、别人想不到的逻辑、他的文章读起来便很通顺、就像“秋水文章不染尘”,直达深处。
二十世纪的物理学家中,风格最独特的就数狄拉克了。
我曾想将其风格写下来给我的文、史、艺术方面的朋友们看,始终不知如何下笔。
去年偶然看到,了高适在《答侯少府》中的诗句:“性灵出万象、风骨超常伦。
”我觉得用这两句诗杂描述狄拉克方程是再好没有了:一方面狄拉克方程确实包罗万象,而用“出”字描述狄拉克的灵感尤为传神。
另一方面,他于1928年以后四年间不顾玻尔、海森伯等当时的大物理学家的冷嘲热讽,始终坚持他的理论,而最后得到全胜,正合“风骨超常伦”。
⑤可是什么是“性灵”呢?若直觉地把“性情”“木性”“心灵”“灵感”等加起来似乎是指直接的、原始的、未加琢磨的思路,而这恰巧是狄拉克方程之精神,这也正是狄拉克作风的特征。
“非从自己的胸臆流出,不肯下笔”,又正好描述了狄拉克的独创性!⑥比狄拉克年长一岁的海森伯是二十世纪另一位大物理学家,有人认为他比狄拉克还要略高一筹。
1925年夏天,海森伯在雾中终于摸到了方向,写了一篇文章,引导出了量子力学的发展。
山东省2024-2025学年高三上学期新高考联合质量测评9月联考英语试题一、阅读理解You may love staying home and having a quiet day in on Christmas — and we totally get that. But there’s a strong case for travelling during Christmas, if only once or a few times, too. In the following cities around the world, Christmastime is a wintery and magical experience like no other.New YorkAt the head of our list is New York, the iconic setting for so many Christmas movies. Go skating in Rockefeller Center in front of the big tree(or if line s are too long, check out Central Park’s Wollman Rink for fantastic skyline views), and visit the Christmas shops at Bryant Park Winter Village.Tallinn, EstoniaFor an up- and-coming travel destination with one of the best preserved medieval towns in the world, head to this Baltic capital across the sea from Finland. It also just so happens to be gorgeous at Christmas time, with an authentic Christmas market, Christmas festival, concerts, and Christmas tree — thought to be the oldest public display of a Christmas tree in the world.Quebec CityWith its cobbled street s and stone buildings in the shadow of the Fairmont Le Chateau Frontenac, which looks like a castle but is actually a hotel, visitors feel like they’ re in a holiday fairytale. Plus, its northern destination makes a white Christmas nearly a guarantee. Cap it off (if you dare) with the toboggan (雪橇) slide right in the centre of town, thrilling riders since 1884 with speeds of over 64 kilometres per hour.Bruges, BelgiumThis pedestrian- friendly city is breathtaking to walk around at Christmas time — or take a boat ride along the shining canals. The medie val buildings look like cookie houses. The city’s holiday events include a midwinter festival, winter market, carolling and music, and an ice sculpture exhibit.1.Which city is the best destination for a Christmas film director?A.Tallinn.B.Bruges.C.Quebec City.D.New York. 2.What is a probable concern of visitors trying sledding in the town?A.The cobbled street.B.The high speed.C.The freezing weather.D.The fairytale castle.3.What is special about Bruges during Christmas?A.A boat trip is accessible.B.The Christmas cookies sell best.C.An old Christmas tree is displayed.D.The medieval town is suitable to walk.Like almost every set of new parents, Bryan and Elizabeth Shaw started snapping pictures of their son, Noah, practically from the moment he was born.When he was about three months old, Elizabeth noticed something odd when she took his picture. The flash on their digital camera created the typical red dot in the center of Noah’s left eye, but the right eye had a white spot at the center, almost as if the flash was being reflected back at the camera by something. When Elizabeth mentioned the strange phenomenon to their doctor, she shined a light into Noah’s eye, saw the same white reflection, and immediately sent the family to an ophthalmologist (眼科医生).A white reflection instead of a red one is a telltale sign of retinal cancer, and that is exactly what Noah had. He endured months of chemotherapy and radiation, but doctors ultimately could not save his eye. Retinoblastoma, the scientific name of Noah’s tumor, is treatable if caught early. Bryan Shaw couldn’t help but wonder whether there were signs he’d missed. He went back over every baby picture of Noah he could find — thousands of them and discovered the first white spot in a photo taken when Noah was 12 days old. As time went on, it appeared more frequently.“By the time he was four months old, it was showing up in 25 percent of the pictures taken of him per month,” Bryan, a chemistry professor at Baylor University in Texas, told People. It was too late for Noah’s eye, but Bryan was determined to put his hard-won insights to good use.He created a database that charted the cancer’s appearance in every photo. He also collected photos and compiled the data from eight other children with retinoblastoma. Armed with that data, he began to work with colleagues in Baylor’s computer science department to develop a smartphone app that can scan the photos in the user’s camera roll to search for white eye and canbe used as a kind of ophthalmoscope (检眼镜).Called White Eye Detector, it is now available for free on Google Play and in Apple’s App Store. “I just kept telling myself, I really need to do this,” Bryan told People. “This disease is tough to detect. Not only could this software save vision, but it can save lives.”4.Why did Elizabeth turn to the doctor?A.Because Noah had strange behaviour.B.Because Noah’s eyes were hurt by camera flash.C.Because Noah was to be checked regularly.D.Because Noah’s eyes had different spots in the photo.5.Why did Noah’s eyes fail to be cured?A.Because Noah’s eyes were infected frequently.B.Because doctors were inexpert in the rare disease.C.Because signs of Noah’s problem were found late.D.Because Noah couldn’t stand the pain during treatment.6.How does the smartphone app save lives?A.By checking photos for eye disease.B.By shooting pictures for comparison.C.By recording data of eye development.D.By examining the eyesight of the users. 7.Which of the following words can describe Bryan?A.Humorous and kind.B.Honest and humble.C.Determined and caring.D.Courageous and intelligent.If you’ re a sports fan, you may be familiar with the emotional rollercoaster that comes with sports audience. Whether you’ re part of a buzzing crowd in a stadium, or just watching at home on TV, it’s easy to get caught up in the highs and the lows when you celebrate or commiserate with your favourite team or athlete.Those feelings are so strong, in fact, that a study from Croatia, published in PubMed, showed that the emotional stress during a football match increased the risk of a cardiovascular (心血管的) incident.But can watching sports be good for you too? The evidence suggests that people who watch live sporting events experience greater wellbeing than those who don’t. A study published inFrontiers in Public Health by the Anglia Ruskin University in the UK, found sports spectators felt less lonely and had higher scores for life satisfaction. Lead author Helen Keys said in a press release, “Watching live sport of all types provides many opportunities for social interaction and this helps to forge group identity and belonging.” She says this then reduces loneliness and boosts wellbeing. But, if for any reason you aren’t keen on going to live events, don’t worry! Watching sports on TV or on the Internet may also have great benefits, according to a study by Tsuji and colleagues.They found that older adults who watched sports were less likely to have depressive symptoms than those who didn’t. On top of that, the sports watchers tended to have richer social networks than non-watchers. The authors suggest that the social networks you gain through watching sports may lower the risk of depressive symptoms. So, the cheers at a live sports event or even casual chit-chat with friends about your favourite team can bring a friendship and may reduce loneliness and depression.It seems the health benefits of sports are not limited to physical activity through participation in them, but that we can make gains in our general wellbeing through social bonding. 8.What does the underlined word “commiserate” in paragraph 1 mean?A.Agree.B.Struggle.C.Sympathize.D.Correspond. 9.What does the study published in Frontiers in Public Health focus on?A.Benefits of doing sports.B.Loneliness in sports men’s life.C.Positive effects of watching sports.D.Players’ satisfaction with their performance. 10.Why does the author mention the older adult sports watchers?A.To demonstrate watching sports can improve physical health.B.To praise older people’s high spirit while watching sports.C.To advocate the senior taking sports instead of watching.D.To show sports watching reduces risk of mental diseases.11.Which of the following is the structure of the text?A.B.C.D.Switching food and drink purchases to very similar but more environmentally friendly alternatives could reduce the greenhouse gas emissions from household groceries by more than a quarter (26%), according to a new Australian study from The George Institute published in Nature Food. Making bigger changes— like swapping a frozen meat lasagne (宽面条) for the vegetarian option— could push the reduction to as much as 71%.Lead author Dr Allison Gaines said, “Dietary habits need to change significantly if we are to meet global emissions targets, particularly in high- income countries like Australia, the UK, and the US.” But while consumers are increasingly aware of the environmental impact of the food system, they lack reliable information to identify the more environmentally friendly options.Researchers calculated the projected emissions of annual grocery purchases from 7,000 Australian households in The George Institute’s FoodSwitch database and global environmental impact datasets. More than 22,000 products were assigned to major, minor and sub- categories of foods(e. g. ‘bread and bakery’, ‘bread’ and ‘white bread’, respectively) to quantify emissions saved by switching both within and between groups. Making switches within the same sub-categories of foods could lead to emission reductions of 26% in Australia, equivalent to taking over 1.9 million cars off the road. Switches within minor categories of foods could lead to even bigger emission reductions of 71%.The results of the study show the potential to significantly reduce our environmental impact by switching like- for- like products. “It showed that you can switch to lower emissions products while still enjoying nutritious foods,” Dr Gaines added.A free app, called ecoSwitch, has been developed currently available in Australia, based on this research. Shoppers can use their device to scan a product barcode and check its ‘Planetary Health Rating’, a measure of its emissions shown as a score between half a star(high emissions) to five stars (low emissions).“While ecoSwitch is a much- needed first step in providing environmental transparency (透明度) for grocery shoppers, the vision is for compulsive display of a single, standardisedsustainability rating system on all supermarket products,” concluded prof Neal, Professor of Clinical Epidemiology at Imperial College London.12.What does the author want to show by listing numbers in paragraph 1?A.The impact of food industry.B.The need of changing daily diet.C.The status of environmental problems.D.The influencing factors of gas emissions. 13.Why do researchers make a detailed classification for products?A.To set up a comprehensive database.B.To figure out the detailed food categories.C.To identify emissions reduced by switching food.D.To ensure less air pollution caused by food options.14.What do we know about ecoSwitch?A.It is popular in high- income countries.B.It checks the emissions of star products.C.It is a measurement system for a supermarket.D.It ensures wiser choices for foodpurchase.15.What does the text mainly talk about?A.EcoSwitch makes customers aware of food risk.B.Food swaps contribute to environmental sustainability.C.Environmental problems account for less food nutrition.D.Greenhouse gas emissions have an effect on food safety.The psychological weight of regret can be a heavy burden, impacting mental wellbeing and influencing future decision-making. 16 We will discover how, with the right mind-set, we can embrace regrets as stepping stones to a richer and more fulfilling life.17 But its contradiction lies in its potential to be a powerful force for positive change. Individuals who embrace, rather than hold back, their regrets are more likely to engage in adaptive behaviours and self-improvement.The very existence of regret is a sign of our capacity for self-reflection and growth. 18 In other words, it can help recognise that this complex emotion can be an activator for personal transformation.Coping with regret requires a mix of emotional recovery, self-sympathy and proactivedecision-making. 19 Instead of focusing on what went wrong and blaming ourselves, consider what valuable insights and strengths we have gained from the experience.In the grand tapestry (织锦) of life, regrets need not be seen as spots but as bright threads contributing to the richness of our personal accounts. Embracing regrets involves acknowledging their presence and understanding their differences. 20 As we manage the complicated psychology of regret, let us remember that it is not the absence of regret that defines a life well lived, but the ability to learn, adapt and evolve in the face of it.So, let us not fear our regrets, but rather, welcome them as companions on the path to a more authentic and fulfilling existence.A.Regret is often associated with negative emotions.B.Reorganizing narrative about regrets can improve the capacity.C.Reflecting regularly is crucial in the journey to embrace regrets.D.Treat ourselves with the same kindness we would offer to a friend.E.Additionally, it contains transforming them into activator for growth.F.Regret serves as a marker of our evolving understanding of ourselves.G.But what if we could view it not as a source of pain but a guide to growth?二、完形填空One summer night in a seaside cottage, a small boy felt himself lifted from bed. Then, still sleepy, he was held in his father’s arms 21 the stairs and out onto the beach. Overhead the sky was 22 with stars. “Watch!” 23 , as his father spoke, one of the stars moved. In a streak of golden fire it 24 across the astonished heavens. And before the wonder of this could 25 , another star moved suddenly from its place, then another, 26 towards the restless sea.“What is it?” the child 27 .“Shooting stars. They come every year on a certain night in August. I thought you would like to see the show.”That was all. For the child, it was just a(n) 28 glance of something amazingly mysterious and beautiful. But, back in bed, the child stared for a long time into the dark,fascinated with the 29 that all around the quiet house, the night was full of the silent music of the falling stars.Decades have passed, but my memory stays fresh, because I was the 30 seven-year-old boy whose father 31 that a new experience was more important for a small boy than an unbroken night’s sleep. He 32 me into numerous areas of splendid newness and add 33 to my world.This, surely, is the most valuable 34 we can pass on to the next generation: not money, not houses, but a capacity for wonder and gratitude, a sense of 35 and joy. And next year, when August comes with its shooting stars, my son will be seven.21.A.on B.down C.off D.up 22.A.spotted B.greeted C.replaced D.armed 23.A.Accidentally B.Eventually C.Immediately D.Incredibly 24.A.flashed B.snaked C.marched D.flowed 25.A.work B.return C.fade D.change 26.A.going up B.coming across C.diving down D.rolling away 27.A.added B.wept C.repeated D.whispered 28.A.unexpected B.secret C.patient D.careful 29.A.dream B.knowledge C.pity D.pray 30.A.curious B.fortunate C.energetic D.innocent 31.A.anticipated B.promised C.believed D.recalled 32.A.tricked B.talked C.led D.forced 33.A.images B.choices C.desires D.dimensions 34.A.treasure B.lesson C.memory D.experience 35.A.humour B.belonging C.relief D.aliveness三、语法填空阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
山东省名校考试联盟2024-2025学年高三上学期10月阶段性检测数学试题一、单选题1.已知()(){}23230,02x A x x x B x x ⎧⎫+=∈--==∈≤⎨⎬-⎩⎭Q R∣,则A B =I ( )A .{}B .{C .{}2D .∅2.幂函数()23f x x =的图象大致为( )A .B .C .D .3.把物体放在冷空气中冷却,如果物体原来的温度是1C θo ,空气的温度是0C θo ,那么mint 后物体的温度θ(单位:C o )可由公式()01010ktθθθθ-=+-⋅求得,其中k 是一个随物体与空气的接触情况而定的正常数.现有65C o 的物体,放到15C o 的空气中冷却,1min 后物体的温度是35C o ,已知lg20.3≈,则k 的值大约为( ) A .0.2B .0.3C .0.4D .0.54.如图所示,一个组合体的上面部分是一个高为0.5m 长方体,下面部分是一个正四棱锥,公共面是边长为1m 的正方形,已知该组合体的体积为32m 3,则其表面积为( )A.(22mB.(23mC.(22mD.(23m5.若12,x x 是一元二次方程()()220x m x m m -++=∈R 的两个正实数根,则1221x x x x +的最小值为( ) A .2B .4C .6D .86.已知等差数列{}n a 和等比数列{}n b 的前n 项和分别为n S 和n T ,且21n n S n T =+,则35=a b ( ) A .9B .10C .11D .127.若2x =是函数()222e xax x f x +-=的极小值点,则实数a 的取值范围是( )A .(),1∞--B .(),1-∞C .()1,-+∞D .()1,+∞8.已知函数()()66sin cos 10f x x x ωωω=+->在π0,3⎡⎫⎪⎢⎣⎭上有且仅有3个零点,则ω的取值范围是( ) A .3,32⎡⎫⎪⎢⎣⎭B .3,32⎛⎤ ⎥⎝⎦C .93,2⎡⎫⎪⎢⎣⎭D .93,2⎛⎤ ⎥⎝⎦二、多选题9.已知n S 为数列{}n a 的前n 项和,若3n n S a n =+,则( ) A .112a =B .数列{}1n a -为等比数列C .312nn a ⎛⎫=- ⎪⎝⎭D .3332nn S n ⎛⎫=-⋅+ ⎪⎝⎭10.已知幂函数()()293mf x m x =-的图象过点1,n m ⎛⎫- ⎪⎝⎭,则( )A .23m =-B .()f x 为偶函数C .n =D .不等式()()13f a f a +>-的解集为(),1-∞11.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若()2g x +的图象关于直线2x =-对称,且()()()111f x f x f x -++=+-,则( )A .()g x 是偶函数B .()f x 是奇函数C .3为()y f x =的一个周期D .20251()0i g i ==∑三、填空题12.已知函数()ln f x x x =,则曲线()y f x =在1x =处的切线方程是 .13.已知0a >且1a ≠,函数()2,1,1x x x f x a x ⎧≥=⎨<⎩,若关于x 的方程()()2560f x f x -+=恰有3个不相等的实数解,则实数a 的取值范围是.14.已知三棱锥A BCD -的四个顶点都在球O 的球面上,若AB CD ==O 的半A BCD -体积的最大值为.四、解答题15.已知函数()2π2sin 4f x x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调递增区间;(2)已知ABC V 的内角,,A B C 的对边长分别是,,a b c ,若π1212C f ⎛⎫-= ⎪⎝⎭,2c =,求ABCV 面积的最大值. 16.已知函数()()ln R mf x x m x=+∈. (1)讨论函数()f x 的单调性;(2)当1m =时,证明:当1x ≥时,()e e 0xxf x x --+≤.17.已知函数()33x x af x a+=-.(1)若()f x 为奇函数,求a 的值;(2)当0a <时,函数()f x 在[],m n 上的值域为11,33m n ⎡⎤--⎢⎥⎣⎦,求a 的取值范围.18.已知函数()()28ln 1e x f x ax bx =+++.(1)若()f x '在R 上单调递减,求a 的最大值; (2)证明:曲线()y f x '=是中心对称图形; (3)若()8ln2f x …,求a 的取值范围.19.若存在1,1,2,2,,,n n L 的一个排列n A ,满足每两个相同的正整数()1,2,,k k n =L 之间恰有k 个正整数,则称数列n A 为“有趣数列”,称这样的n 为“有趣数”.例如,数列7:4,6,1,7,1,4,3,5,6,2,3,7,2,5A 为“有趣数列”,7为“有趣数”.(1)判断下列数列是否为“有趣数列”,不需要说明理由; ①2:1,2,1,2A ;②3:3,1,2,1,3,2A . (2)请写出“有趣数列”4A 的所有可能情形;(3)从1,2,,4n L 中任取两个数i 和()j i j <,记i 和j 均为“有趣数”的概率为n P ,证明:14n P <.。
2024-2025学年山东省名校考试联盟高一上学期10月联考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“x为自然数”是“2x+1为自然数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知集合M={x∈Z||x|≤2},N={x|−2≤x<0},则M∩N=( )A. {−1}B. {−2,1,2}C. {−2,−1}D. {−2}3.已知命题p:∀x∈R,|x|>0;命题q:∃x>0,x2=x,则( )A. p和q都是真命题B. ¬p和q都是真命题C. p和¬q都是真命题D. ¬p和¬q都是真命题4.下列不等式中成立的是( )A. 若a>b>0,则ac2>bc2B. 若a>b>0,则a2>b2C. 若a<b<0,则a2<ab<b2D. 若a<b<0,则1a <1b5.已知集合A={1,2,3,4,5},B={x|x∈A},则∁A(A∩B)=( )A. {1,4}B. {3,4}C. {1,2,3}D. {2,3,5}6.如果0<a<b,那么下列不等式正确的是( )A. ab<a+b2<a<b B. a<ab<a+b2<bC. ab<a<a+b2<b D. a<a+b2<ab<b7.正确表示图中阴影部分的是( )A. (∁U A)∪BB. (∁U A)∪(∁U B)C. ∁U(A∪B)D. ∁U(A∩B)8.若a>0,b>0,则1a +ab2+2b的最小值为().A. 2B. 22C. 4D. 6二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
2025届山东省名校联盟新教材数学高三第一学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三角形ABC 中,1a =,sin sin sin sin b c a bA AB C++=+-,求sin b A =( )A .2B .3C .12D .22.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=3.已知函数()f x 是奇函数,且22()'()ln(1)ln(1)1f x f x x x x -=+----,若对11[,]62x ∀∈,(1)(1)f ax f x +<-恒成立,则a 的取值范围是( ) A .(3,1)--B .(4,1)--C .(3,0)-D .(4,0)-4.已知直线1l :x my =(0m ≠)与抛物线C :24y x =交于O (坐标原点),A 两点,直线2l :x my m =+与抛物线C 交于B ,D 两点.若||3||BD OA =,则实数m 的值为( ) A .14B .15C .13D .185.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x -6.在ABC ∆中,D 为AC 的中点,E 为AB 上靠近点B 的三等分点,且BD ,CE 相交于点P ,则AP =( ) A .2132AB AC + B .1124AB AC + C .1123AB AC + D .2133AB AC + 7.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向左平移5π12个长度单位8.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心9.某几何体的三视图如图所示,则该几何体的体积为( )A .23B .13C .43D .5610.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( ) A .33B .3C 33-D .3211.已知集合{|4},{|2,}A x N y x B x x n n Z =∈=-==∈,则A B =( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]12.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( ) A .1e 2⎛⎝ B .12e ⎡⎢⎣C .1,2e e ⎛⎤ ⎥ ⎝⎦D .1,2e e ⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。