七年级数学上册 1.3《有理数的加减法》有理数的加减混合运算教案 (新版)新人教版
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
一、教学目标:1. 让学生掌握有理数的加减混合运算规则。
2. 培养学生运用有理数加减混合运算解决实际问题的能力。
3. 提高学生的数学思维能力和运算速度。
二、教学内容:1. 有理数的加法运算:同号相加,异号相加。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
3. 有理数的加减混合运算:先计算加法或减法,再进行混合运算。
三、教学重点与难点:1. 重点:有理数的加减混合运算规则。
2. 难点:运用有理数加减混合运算解决实际问题。
四、教学方法:1. 采用实例讲解法,让学生通过具体例子理解有理数加减混合运算。
2. 采用小组合作学习法,让学生互相讨论、交流,提高解决问题的能力。
3. 采用练习法,让学生通过大量练习,巩固所学知识。
五、教学过程:1. 导入:通过生活实例,引出有理数加减混合运算的必要性。
2. 新课讲解:讲解有理数的加法运算、减法运算及加减混合运算的规则。
3. 实例分析:分析实际问题,运用有理数加减混合运算解决问题。
4. 小组讨论:学生分组讨论,总结加减混合运算的规律。
5. 练习巩固:布置练习题,让学生独立完成,巩固所学知识。
6. 总结:对本节课内容进行总结,强调加减混合运算的注意事项。
7. 布置作业:布置课后作业,让学生进一步巩固有理数加减混合运算。
六、教学评估:1. 通过课堂练习和课后作业,评估学生对有理数加减混合运算的掌握程度。
2. 结合学生的课堂表现,评估学生对有理数加减混合运算的实际应用能力。
七、教学反思:1. 反思教学过程中是否有效地引导学生理解有理数加减混合运算的规则。
2. 反思教学过程中是否注重培养学生的数学思维能力和运算速度。
3. 反思教学过程中是否充分调动学生的学习积极性,提高学生的学习兴趣。
八、教学拓展:1. 引导学生探索有理数加减混合运算在实际生活中的应用,提高学生的实际操作能力。
2. 引导学生思考如何提高有理数加减混合运算的速度和准确性。
3. 推荐学生参加数学竞赛或相关数学活动,提高学生的数学素养。
有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出
正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做
净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作-5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结
果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(-5)+(-3) = -8
1。
《有理数的加减混合运算》教学设计《有理数的乘法(1)》教学设计运算符号理解为数的性质符号,看成省略加号的和式。
再利用加法运算律进行简化运算。
3、重练习,在学生自主练习中强调在交换加数的位置时,要连同前面的符号一起交换。
教学过程设计师生交往活动教师活动一、复习回顾1.叙述有理数的加法法则.2.叙述有理数的加法运算律.3.叙述有理数的减法法则.4.小学加减法混合运算的顺序是怎样的?板书课题:有理数的加减混合运算复习回顾,能巩固前面所学知识,为本节课学习作铺垫。
二、新课探究例计算:(20)(3)(5)(7)-++---+师生分析:这个算式中有加法,也有减法.可以根据有理数减法法则,把它改写为(20)(3)(5)(7)-+++++-让学生思考减法转化为加法运算,渗透转化思想这个算式可以读作“负20、正3、正5、负7的和”,或读作“负20加3加5减7”. 大胆探究:在符号简写这个环节,有什么小窍门么?有理数加减混合运算的步骤是怎样的?培养学生的符号语言,发展符号感.4.教科书第24页练习课堂练习(1)、(2)学生上台板演观察板书,学习解题步骤。
三名学生板演,其余学生练习本上完成。
及时巩固,让学生体会到学以致用.把知识变成能力.巩固所学知识,达到学以致用的目的。
教案新人教版七上1.3.4 有理数的加减混合运算教案新人教版七上1.3.4有理数的加减混合运算1.3有理数的加减法崔秀芹一、背景与意义分析本课安排在第一章“有理数的加法、减法”之后,属于《全日制义务教育数学课程标准(试验稿)》中的“数与代数”领域。
有理数运算是根据实际需要而产生的,被广泛应用。
从数学科学的角度来看,有理数运算是代数的基本内容。
下一章方程的求解是基于有理数的运算,而有理数的加减运算是有理数运算的基础。
本课根据有理数的减法可以通过转化成有理数的加法来进行运算,则有理数的加减法混合运算就可以统一成加法运算,进一步通过省略加号、括号,得出简单的书写方式,并在此形式下进行加法运算。
运算过程中的“转化思想”是本课始终渗透的主要数学思想,也体现了数学的统一美。
二、学习和指导目标1、知识积累与疏导:通过实际的例子,体会到加减法混合运算的意义,正确掌握并熟练地进行有理数加减法混合运算。
认知率达100%2.技能掌握与指导:由于减法可以转化为加法,加减的混合运算实际上是有理数的加法。
灵活运用加法运算法则简化运算,利用率高达100%。
3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话,与同学合作,合理清晰地表达自己的思维过程,提高计算的准确能力。
互动率达90%。
4.情感培养与启迪:积极创设问题情境,学会从唯物主义的角度分析和解决数学问题,并用数学思想处理问题。
投资率达到95%。
5、观念确认与引导:通过有理数加减混合运算,感受到“问题情境――分析讨论――建立模型――计算应用――转换拓展”的模式,从而更好地掌握有理数的混合运算。
结合例题培养学生观察、类比的能力和计算准确能力和渗透转化思想。
认同率达95%。
三、学习和领导活动(I)创造情境、回顾和介绍师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:(-20)+(+3);(-5)-(+7)(2)“+,-”是什么意思?它是什么样的符号?“+,-”是什么意思?它是什么符号?学生活动:口头回答老师的问题师继续提问:(1)这两个题目运算结果是多少?(2)(-5)-(+7)这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正).师小结:减法往往通过转化成加法后来运算.〔指令〕为了进行有理数的加减运算,首先要复习有理数的加法,特别是有理数的减法,为进一步学习加减混合运算打下基础。
有理数加减运算中的结合技巧有理数的加减混合运算是七年级数学的重点,也是同学们难以掌握,常常出错的地方,如能根据题目特征选择适当的方法,则可简化运算过程,提高解题速度与准确度。
现举例如下,供同学们学习参考。
一、把符号相同的加数相结合例1 计算:(+5)+(-6)+(+4)+(+9)+(-7)+(—8)。
解:原式=[(+5)+(+4)+(+9)]+[(—6)+(—7)+(-8)]=(+18)+(-21)=-3.二、把和为零的加数结合例2 计算:(-15。
43)+(-4.15)+(+15.20)+(+4。
15)+(+0。
23)+(—5)。
解:原式=[(-15。
43)+(+15.20)+(+0.23)]+[(-4.15)+(+4.15)]+(—5)=0+0+(—5)=—5。
三、把和为整数的加数相结合例3 计算:(+6。
4)+(—5。
1)-(-3.9)+(—2.4)—(+4。
9)。
解:原式=(+6.4)+(-5.1)+(+3.9)+(-2.4)+(-4。
9)=6.4—5。
1+3.9—2.4—4.9=(6。
4—2.4)+(-5。
1—4.9)+3。
9=4—10+3.9=—2。
1。
四、把整数与整数,分数与分数分别相结合例4 计算:—423-313+612-214。
解:原式=(-4—3+6-2)+(-23—13+12—14)=—3-1 4=-334。
点评:在分拆带分数时,要注意符号。
如:—423=-4-23,而不是-4+23.五、统一形式后再结合例5 计算:(—0.125)+(—0.75)+(34)+18+1。
解:原式=(-18)+(-34)+(-34)+18+1=[(—18)+18]+[(-34)+(—34)]+1=0+(-64)+1=—1 2 .点评:当同一个算式中既有分数,又有小数时,一般要先统一形式,具体统一成分数还是统一成小数要看哪一种计算简便。
六、把分母相同或便于通分的加数相结合例6 计算:(+37)+(—513)+(+47)+(+1526)+(—17)+(+3).解:原式=[(+37)+(+47)+(—17)]+[(-513)+(+1526)]+(+3)=67+526+3=737 182。
人教版七年级数学上册1.3.2.2《有理数的加减混合运算》说课稿一. 教材分析《有理数的加减混合运算》是人教版七年级数学上册第一章第三节第二小节的内容,本节内容是在学生掌握了有理数的基本概念和加减法的基础上进行学习的。
有理数的加减混合运算在实际生活中有着广泛的应用,对于培养学生的逻辑思维能力和解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和加减法有了一定的了解。
但是,学生在进行加减混合运算时,可能会对符号的运用和运算顺序产生困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行指导和讲解。
三. 说教学目标1.知识与技能目标:使学生掌握有理数的加减混合运算的运算方法,能够正确进行计算。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生理解加减混合运算的运算顺序和规则。
3.情感态度与价值观目标:培养学生积极参与数学学习的兴趣,提高学生解决实际问题的能力。
四. 说教学重难点1.教学重点:掌握有理数的加减混合运算的运算方法,能够正确进行计算。
2.教学难点:理解加减混合运算的运算顺序和规则,能够灵活运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例分析法、小组合作法等教学方法,结合多媒体课件和黑板等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。
六. 说教学过程1.导入新课:通过生活中的实际例子,引出有理数的加减混合运算,激发学生的学习兴趣。
2.自主学习:让学生通过阅读教材,了解有理数的加减混合运算的运算方法。
3.课堂讲解:针对学生的学习情况,讲解加减混合运算的运算顺序和规则,引导学生进行思考和总结。
4.案例分析:分析典型例题,让学生通过观察、分析、归纳等方法,理解加减混合运算的运算顺序和规则。
5.小组合作:让学生进行小组讨论和交流,共同解决实际问题,提高学生的合作能力和解决问题的能力。
6.总结提升:对本节课的内容进行总结,强调加减混合运算的运算顺序和规则。
人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计一. 教材分析《有理数的加减法》是人教版数学七年级上册的教学内容,本节课主要介绍了有理数的加减混合运算。
学生在学习了有理数的基础知识后,进一步学习有理数的加减法运算,这对于培养学生解决实际问题的能力具有重要意义。
教材通过例题和练习题,使学生掌握有理数加减法运算的规则和方法,并能灵活运用到实际问题中。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数的大小比较也有了一定的了解。
但学生在进行有理数的加减法运算时,可能会对符号的判断和运算顺序产生困惑。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生正确判断符号,掌握运算顺序,提高运算能力。
三. 教学目标1.知识与技能:使学生掌握有理数的加减法运算方法,能正确进行有理数的加减混合运算。
2.过程与方法:通过实例演示、小组讨论等方法,培养学生合作学习、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:有理数的加减法运算方法。
2.难点:符号的判断和运算顺序。
五. 教学方法1.实例演示法:通过具体的例子,让学生直观地理解有理数的加减法运算。
2.引导发现法:教师引导学生发现运算规律,培养学生的探究能力。
3.小组讨论法:学生分组讨论,共同解决问题,提高合作能力。
4.练习法:通过大量练习,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示例题和练习题。
2.教学素材:准备一些实际问题,用于引导学生运用有理数加减法解决实际问题。
3.练习题:设计一些有梯度的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何运用有理数加减法解决问题。
例如:小明买了3本书,每本书5元,又卖掉2本书,每本书3元,请问小明最后赚了多少钱?2.呈现(10分钟)教师展示教材中的例题,引导学生观察和分析,让学生发现有理数加减法运算的规律。
1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则教学目标1.理解有理数加法的意义;2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.教学过程一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法法则例1 计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312); (3)(-5.25)+514; (4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113; (3)(-5.25)+514=0; (4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用例2 股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题例3 已知|a |=5,b 的相反数为4,则a +b =________.解析:因为|a |=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎨⎪⎧(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.教学反思本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.第2课时 有理数加法的运算律及运用教学目标1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点)2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.教学过程一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.二、合作探究探究点一:加法运算律例1 计算:(1)31+(-28)+28+69;(2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123). 解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8. 方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用例2 某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运算律⎩⎪⎨⎪⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )教学反思本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.1.3.2 有理数的减法第1课时 有理数的减法法则教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.教学过程一、情境导入北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是2015年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?二、合作探究探究点:有理数的减法法则【类型一】 有理数减法法则的直接运用例1 计算:(1)7.2-(-4.8);(2)-312-514. 解析:先根据有理数的减法法则,将减法转化为加法,再根据有理数的加法法则计算即可.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834. 方法总结:进行有理数减法运算时,将减法转化为加法,再根据有理数加法法则进行计算.要特别注意减数的符号.【类型二】 有理数减法的实际应用例2 上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( )A .5℃B .6℃C .7℃D .8℃解析:由题意得6-(-1)=6+1=7(℃),故选C.方法总结:要根据题意列出算式,再运用有理数的减法法则解答.【类型三】 应用有理数减法法则判定正负性例3 已知有理数a <0,b <0,且|a |>|b |,试判定a -b 的符号.解析:判断a ,b 差的符号,可能不好理解,不妨把它转化为加法a -b =a +(-b ),利用加法法则进行判定.解:因为b <0,所以-b >0.又因为a <0,a -b =a +(-b ),所以a 与-b 是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a |>|b |,即|a |>|-b |,所以取a 的符号,而a <0,因此a -b 的符号为负号.方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断,若是解答题,可以将减法转化为加法通过运算法则来解答.三、板书设计有理数减法法则:减去一个数,等于加上这个数的相反数,即a-b=a+(-b).利用有理数减法法则,可以将有理数减法统一成加法运算.教学反思本节课从实际问题出发,创设教学情境,有效调动学生学习的兴趣和积极性.通过实例计算,激发学生的探索精神.通过大量的数学练习,使学生在计算中巩固解题技能,在小组交流中体验有理数的减法运算的运算魅力,并在教师的指导下自行归纳运算法则;学生亲身体验知识的形成过程,感悟数学的转化思想.第2课时有理数的加减混合运算教学目标1.会把有理数的加减混合运算统一成加法运算;2.熟练掌握有理数的加减混合运算及其运算顺序;(重点)3.能根据具体问题,适当运用运算律进行简化运算.(难点)教学过程一、情境导入此时飞机比起飞点高多少千米?小组探究此时飞机与起飞点的高度,得出以下两种计算方法:(1)4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米);(2)4.5-3.2+1.1-1.4=1.3+1.1-1.4=2.4-1.4=1(千米).比较以上两种算法,你发现了什么?二、合作探究探究点一:加减混合运算统一成加法运算例1 将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)解析:先把加减法统一成加法,再省略括号和加号;读有理式,式子中第一项的符号,要作为这一项的符号读出正负来,式子中的符号就读作加或减.解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32.读法①:负13、正7、负21、负9、正32的和;读法②:负13减去负7减去21减去9加上32.方法总结:注意掌握括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号.探究点二:有理数的加减混合运算例2 计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|; (2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38). 解析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后,运用加法运算律,简化运算,求出结果.其中互为相反数的两数先结合;能凑成整数的各数先结合.另外,同号各数先结合;同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16; (3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.探究点三:利用有理数加减运算解决实际问题例 3 下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米.方法总结:解此题的关键是分析题意列出算式,采用的数学思想是转化思想,即把实际问题转化成数学问题.三、板书设计1.有理数的加减混合运算(1)将减法转化为加法,然后去掉括号和加号.(2)运用加法法则和运算律进行计算.2.加法运算律(1)结合律:(a+b)+c=a+(b+c).(2)交换律:a+b=b+a.教学反思本节课是学生在学习了有理数的加法和减法的基础上进行的.通过本节课的学习使学生知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式,并能熟练掌握有理数的加减混合运算及其运算顺序.本节课本着“扎实、有效”的原则,既关注课堂教学的本质,又注重学生能力的培养,且面向全体学生来设计教学.。
七年级数学上册教案新版湘教:第2课时有理数的加减混合运算1.经历加减混合运算的过程,进一步巩固对加法法则和减法法则的理解,并能熟练进行有理数的加减混合运算.2.通过减法到加法的转化,让学生初步体会转化、化归的数学思想.3.在经历减法到加法的转化过程中,让学生体会运算法则的多样化,激发学生学习的兴趣.【教学重点】有理数的加减混合运算.【教学难点】有理数的加法法则和减法法则的结合,并熟练地进行有理数的加减混合运算.一、情景导入,初步认知1.上节课我们已经学习了有理数的减法法则,那么有理数的减法法则是什么?2.当有理数的加法法则和减法法则同时出现时,我们应该如何进行运算?【教学说明】提出问题让学生思考解决方法,能有效提高学生学习的主动性.二、思考探究,获取新知计算:8-(-3)+(-5)-7在上面的计算过程中,我们把加减运算都统一成了加法运算,原来的算式就转化为求几个正数或负数的和.在上面的计算中,我们可以把算式8+3+(-5)+(-7)中的括号及它前面的加号省略不写,写成8+3-5-7.【教学说明】经过上面教学活动,便于学生形成自己的数学体系,真正的掌握.另外教学中注重培养学生的反思能力,不但能提高学生学习的效果,在学生的一生发展中,也能起到举足轻重的作用.三、运用新知,深化理解1.计算:2.有理数a,b在数轴上的位置如图所示,有下列关系式:①a-b>0;②a+b>0;③b-a>0.其中,正确的个数是().A.0B.1C.2D.3答案:B3.计算下列各式:解:(1)方法一:4.一个病人每天下午需要测量一次血压,下表是该病人周一至周五血压变化情况,该病人上个周日的血压为160单位.(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?解:(1)该病人周四的血压最高,周二的血压最低.(2)∵+25-15+13+15-20=18,∴与上周比,本周五的血压升了.【教学说明】练习是知识巩固的有效手段,从简单运用法则运算的练习到复杂的练习使学生进一步掌握法则的应用,提高运算能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第9、10、11题.本节是在前面学习了有理数的加法和减法的基础上进行的,学生在加法和减法的运算上掌握得较好,但在混合运算上有待加强,需要进一步的运算练习.。
1.3.2 有理数的减法(第2课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3有理数的加减法第4课时,内容包括有理数加减混合运算.2.内容解析本节课教材主要内容本质是上一课时有理数减法法则的应用,一是将有理数加减法混合运算中的减法运算统一转化为加法运算,进而运用有理数加法法则与运算律进行计算,其间体现了转化化归的思想;二是利用“归纳”指出,可以省略有理数加减法混合运算式子中的加号与括号,直接写成“+”、“-”号与数字连接的形式,“+”、“-”既可以理解为正、负号,也可以理解为运算符号,其间体现了有理数加减法的统一性,省略加号代数和的简捷性;三是给出的“探究”栏目,提出了利用有理数减法计算数轴上两点之间的距离问题.让学生结合数轴,并通过数字验证的形式探究发现,若数轴上点A、B对应的有理数分别为a、b,那么A,B两点之间的距离就是|a-b|.其间既体现了由特殊到一般的思想,也体现了数形结合的思想.基于以上分析,确定本节课的教学重点为:有理数的加减混合运算.二、目标和目标解析1.目标(1)理解有理数加减法混合运算统一转化为有理数加法运算的依据——有理数减法法则.(2)能够迅速、准确地进行有理数的加减混合运算.(3)理解有理数减法运算可以表示数轴上两点之间距离,体会数形结合思想的应用.2.目标解析(1)依据有理数减法法则(减去一个数等于加上这个数的相反数),可以将有理数减法改写为加法,因此,有理数的加减混合运算可以统一改写为有理数加法.在有理数加减法相互转化的过程中,有理数之间的符号既可以看成是数的正、负号,也可以看作加减运算符号,因此在书写有理数加减混合运算算式时,可以省略括号与加号,从而使书写简便.(2)有理数加减混合运算统一改写为有理数加法运算后,可以利用有理数加法法则及其运算律进行运算,从而可以简便、快捷地进行计算.(3)借助数轴和特殊数字验证得知,数轴上两点之间的距离,等于右边的点表示的数减去左边的点表示的数的差,是数轴上表示这两个点对应的有理数的减法运算结果,其中体现了由特殊到一般的思想和数形结合思想.三、教学问题诊断分析对于有理数的加减混合运算,学生依据小学学习过的加减混合运算经验,可以按照从左到右的顺序去进行计算,在这一过程中本身也需要将减法统一成加法,但学生未必能感受这这转化的数学思想方法,未必能有将其先统一成加法然后再进行运算的意识.同时凭借学生以往的运算经验,不容易注意两种运算方法的对比,及在运算过程中应用加法运算律.基于以上分析,确定本节课的教学难点为:能把加、减法正确地统一成加法运算,并用加法运算律合理地进行运算.四、教学过程设计(一)创设情境,引入新课一架飞机作特技表演,起飞后的高度变化如下表:此时,飞机比起飞点高了多少千米?解法1:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=1(千米)解法2:4.5-3.2+1.1-1.4=1.3+1.1-1.4=1(千米)师生活动:学生快速组内思考思路回答.教师根据学生回答的情况给出两种解法,比较4.5+(-3.2)+1.1+(-1.4)和4.5-3.2+1.1-1.4,同时指出:我们实际问题中有时还要涉及有理数的加减混合运算,进而引入新知.教师板书:4.5+(-3.2)+1.1+(-1.4)=4.5-3.2+1.1-1.4,省略了加号和括号把4.5-3.2+1.1-1.4看作为4.5,-3.2,1.1,-1.4的和,也叫“代数和”.【设计意图】通过生活中的现象和问题引入有理数的混合运算,引起学生的学习热情.(二)典例分析例1:计算(-20)+(+3)-(-5)-(+7).解:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+5)+(+3)]=(-27)+(+8)针对训练:把下列算式改写为省略括号和加号的形式:(1)(-40)-(+27)+19-24-(-32);(2)(-9)-(-2)+(-3)-4.师生活动:学生自主完成.学生可以按照从左到右的顺序去进行计算,在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.随后教师提出新问题,可否将其先统一成加法然后再进行运算?学生谈论后回答.让学生尝试新的思路,然后与刚才的方法相比较.教师进一步提出问题:在刚才的过程中你是否注意到了加法运算律的应用?鼓励学生自己比较计算两种计算方法,方法二由于采用运算律变得简单,而使用运算律的前提是把加减混合运算统一成加法运算,这里也让学生体会把加减混合运算统一成加法运算的意义.让学生再重新尝试做一做,之后师生共同归纳方法:引入相反数后,有理数的加减混合运算可以统一为加法运算:a+b-c=a+b+(-c).进一步挖掘:(-20)+(+3)+(+5)+(-7)是-20,3,5,-7这四个数的和.为书写简单,省略算式中的括号和加号写为-20+3+5-7.我们可以读作负20、正3、正5、负7的和,或读作负20加3加5减7.师生活动:注意让学生理解这两种读法,并让学生体会两种读法的区别.尤其是第一种,学生可能不习惯,但在后面学习到多项式的知识的时候还会涉及类似的问题.【设计意图】一方面让学生体会混合运算中运算顺序确定的重要性,另一方面,先让学生按从左到右的顺序来计算,也是为了与接下去的加减混合运算统一成加法运算再利用运算律进行简便计算作出比较.通过教师的讲解和学生的练习,使学生掌握统一成加法以后的省略括号的书写形式及读法,感受数学的转化思想.例2:计算:(-2)+(+30)-(-15)-(+27)方法一:减法变加法解:原式=(-2)+(+30)+(+15)+(-27)(减法转化成加法)=[(-2)+(-27)]+[(+30)+(+15)] (按有理数加法法则计算)=(-29)+(+45)=16.方法二:去括号法解:原式=-2+30+15-27(省略括号)=-2-27+30+15(运用加法交换律使同号两数分别相加)=-2+(-27)+45=-29+45(按有理数加法法则计算)=-(29-45)师生活动:师生共同完成例1.教师板书例2,给学生一个规范的解题过程和完整的思路分析,这一过程要注重与前面学过的知识的结合,将加减法统一成加法,然后还要考虑运算律的应用.同时提醒学生运算的每一步要有依据.师生共同归纳:有理数加减混合运算的步骤:1. 将减法转化为加法运算;2. 省略加号和括号;3. 运用加法交换律和结合律,将同号两数相加;4. 按有理数加法法则计算.【设计意图】通过观察、比价、分析、归纳,使学生感受数学中的转化思想,探索归纳有理数的加减混合运算的思路.(三)针对训练计算:(1)(-72)-(-37)-(-22)-17;(2)(-16)-(-12)-24-(-18);(3)23-(-76)-36-(-105);(4)(-32)-(-27)-(-72)-87.答案:(1)-30;(2)-10;(3)168;(4)-20.师生活动:学生思考,自主完成,师生共同纠错.【设计意图】通过练习使学生掌握统一成加法后的省略括号的书写形式及读法,巩固和加深对这一内容的理解.(四)探究归纳问题:在数轴上,点A、B分别表示数a,b,利用有理数减法法则探究:点A、B之间的距离与a,b的关系.师生活动:教师引导学生用数来刻画直线上两点之间的距离.由于学生目前没有这样的认识基础,作出“设点A、B在数轴上分别表示数a,b,则点A,B之间的距离|AB|=|a-b|”这样的一般概括有困难,因此只要求学生利用数轴,通过观察几组数的情况后,知道用较大的数减去较小的数,得到的差就是这两点的距离即可,不要求学生记住这个结论,更不需进行拓展.【设计意图】提出了利用有理数的减法计算数轴上两点之间的距离问题,让学生进一步体会数形结合的数学思想.(五)当堂巩固1. 下列交换加数的位置的变形中,正确的是( D )A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1=4.5-2.5+1-1.72. 计算:(1)152363⎛⎫--+⎪⎝⎭;(2)27-18+(-7)-32;(3)110.5 2.7542⎛⎫+---+⎪⎝⎭();(4)33.1-(-22.9)+(-10.5);(5)2111 3642⎛⎫⎛⎫-+----⎪ ⎪⎝⎭⎝⎭.答案:(1)116;(2)-30;(3)72;(4)45.5;(5)1312-.3. 计算:(1)-11-9-7+6-8+10;(2)-5.75-(-3)+(-5)-3.125;(3)131 111442⎛⎫---+--⎪⎝⎭.答案:(1)-19;(2)-10.875;(3)1 22.4. 某公路养护小组乘车沿南北方向公路巡视维护,某天从A地出发,约定向南行驶为正,到收工时的行驶记录如下:(单位:千米)8,-5,7,-4,-6,13,4,12,-11(1)问收工时,养护小组在A地的哪一边?距离A地多远?(2)若汽车行驶毎千米耗油0.5升,求从A出发到收工共耗油多少升?答案:(1)养护小组在A地的南边,距离A地18千米;(2)从A出发到收工共耗油35升.【设计意图】巩固所学知识,加深对加减混合运算的方法的理解与掌握.(六)能力提升1. 若a=-2,b=3,c=-4 ,则a-(b-c)的值为.2. -4,-5,+7这三个数的和比这三个数的绝对值的和小_____.3. 计算1-2+3-4+5+…+99-100=________.4. 计算:(1)765512111211-+-+; (2)21(18.25)4(18) 4.454--+++. 5. 一辆货车从超市出发,先向东走了3千米到达小彬家,继续走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?答案:1.-9;2.18;3.-50;4. 解:(1)原式756512121111⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭=-1+1=0; (2)原式1218.25184 4.445⎛⎫⎛⎫=-++-+ ⎪ ⎪⎝⎭⎝⎭=0+0=0; 5. 解:(1) ;(2)3-(-5)=3+5=8(千米);或|3-(-5)|=8(千米);(3)|3|+|1.5|+|-9.5|+|5|=3+1.5+9.5+5=19(千米).【设计意图】加深对加减混合运算的方法的理解与掌握,进一步培养学生的运算能力.(七)感受中考(2021•河北5/26)能与-(3645-)相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 【解答】解:-(3645-)=3645-+,与其相加得0的是3645-+的相反数. 3645-+的相反数为3645-, 故选:C .【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(八)课堂小结1. 本节课学习的主要内容有哪些?这些内容中体现了哪些数学思想方法?2. 解答有理数加减混合运算需要注意的事项有哪些?其基本的运算步骤是什么?有理数加减法混合运算的步骤为:方法一:减法转化成加法1. 减法变加法:a+b-c=a+b+(-c);2. 运用加法交换律使同号两数分别相加;3. 按有理数加法法则计算.方法二:省略括号法1. 省略括号;2. 同号放一起;3. 进行加减运算.师生活动:学生思考、归纳、交流.教师补充归纳.【设计意图】让学生自己对本节课所学知识进行梳理,巩固所学知识,加深对加减混合运算方法的理解与掌握.(九)布置作业P24:习题1.3:第2题;P25:习题1.3:第5题;P26:习题1.3:第8、9、10、13题.五、教学反思对于有理数加减混合运算统一为加法运算是这样突破的:1.根据有理数减法法则(减去一个数等于加上这个数的相反数)可知,有理数的减法可以改写为加法,即a+b-c=a+b +(-c),既可以按左式理解为a加b减c,也可以按右式理解为a,b,-c的和(代数和),因此“+”、“-”既可以理解为加号与减号(左式,运算符号),也可以理解为正号与负号(右式).需要注意的是,a,b,c都是有理数,都含有自身的符号. 2.由于“+”、“-”既可以理解为加、减号(运算符号),也可以理解为正、负号(性质符号),所以,通常情况下,可以将有理数加减法混合运算中的加号和括号省略,直接写成“+”、“-”号与数字连接的形式,从而使书写算式更简捷,便于直接运用加法的运算律.对于有理数加减混合运算基本方法是这样突破的:1.有理数加减混合运算的一般步骤是:①把减法统一改写为加法;②写成省略加号和括号的形式;③运用运算律进行简便运算. 2.在进行有理数加减混合运算时,通常需要灵活运用如下一些基本方法:①正负数归类法;②凑整法;③同分母分数结合法;④相反数结合法等.对于数轴上两点之间的距离是这样突破的:设点A、B在数轴上分别表示数a,b,则点A,B之间的距离|AB|=|a-b|.分以下几种情况:(1)若点A、B有一个点在原点,不妨设点A在原点,如图(1)所示,则|AB|=|OB|=|b|=|a-b|;(2)若点A、B都不在原点,①设点A、B都在原点右侧,如图(2)所示,则|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②设点A、B都在原点左侧,如图(3)所示,则|AB|=|OB|-|OA|=|b|-|a|=-b―(―a)=|a-b|;③设点A、B在原点两边,如图(4)所示,则|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|;综合可得,数轴上A,B两点之间的距离为|AB|=|a-b|.。
第2课时有理数的加减混合运算【知识与技能】使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.【过程与方法】通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.【情感态度】敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.【教学重点】把加减混合运算理解为加法算式.【教学难点】把省略括号的和的形式直接按有理数加法进行计算.一、情境导入,初步认识竞赛活动比一比,看谁算得快(-20)+(+3)-(-5)-(+7)①(-7)+(+5)+(-4)-(-10)②师:对比上式①,你首先想到将原式如何变形?生:根据有理数的减法法则把减号统一成加号,即原式变为:-20+(+3)+(+5)+(-7)③师:很好,可见在引入相反数后,加减混合运算可以统一为加法运算.用字母可表示成:a+b-c=a+b+(-c).下面,请大家一起来练习计算以上两道题.【教学说明】式③表示的是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号,从而有-20+3+5-7.大家要注意到,虽然加号和括号都省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读作“负20,正3,正5,负7的和”.当然,按运算意义也可读作“负20加3加5减7”.学生尝试用两种读法读.同桌间互相出式,并读出两种读法.刚才在大家练习的过程中,我们看到有两种典型的处理方法,一是将原式按次序计算;二是将原式换成(-20-7)+(3+5).大家观察比较一下,你看哪种方法更好,为什么?生:第二种过程更简便、合理.因为它运用了有理数加法的交换律、结合律.师:太棒了,在有理数的加法运算中,通常应用加法运算律,可使计算简化,根据刚才过程可见,在有理数加减混合运算统一成加法后,一般应注意运算的合理性,适当运用运算律.大家一起看栏目二中的思考题.二、思考探究,获取新知【教学说明】解题过程由学生口述、教师板演,同时提问每步的根据和目的,并强调书写的规范化,然后由学生小组交流并归纳得出结论.【归纳结论】有理数的加减混合运算的计算有如下几个步骤:1.将减法转化成加法运算;2.省略加号和括号;3.运用加法交换律和结合律,将同号两数相加;4.按有理数加法法则计算.三、典例精析,掌握新知例1比谁算得对,算得快【分析】按照正确的运算法则进行运算.【答案】(1)-1;(2)1;(3)-5050例2银行储蓄所办理了8笔工作业务,取出950元,存进500元,取出800元,存进1200元,存进2500元,取出1025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?【分析】根据题意把取出记为“-”,存进记为“+”,列出算式进行运算.解:每次存款数记为-950,+500,-800,+1200,+2500,-1025,-200,+400.则总额为:银行存款增加3,且增加了1625元-950+500+(-800)+1200+2500+(-1025)+(-200)+400=1625(元)例3计算:1-3+5-7+9-11+……+97-99【分析】抓住算式的结构规律,可以考虑两两结合.解:原式=(1-3)+(5-7)+(9-11)+……+(97-99)=-50四、运用新知,深化理解1.(1)式子-6-8+10+6-5读作,或读作.(2)把-a+(+b)-(-c)+(-d)写成省略加号的和的形式为.(3)若|x-1|+|y+1|=0,则x-y= .(4)运用交换律填空:-8+4-7+6= - + + .2.(1)已知m是6的相反数,n比m的相反数小2,则m+n等于()A.4B.8C.-10D.-2(2)使等式|-5-x|=|-5|+|x|成立的x是()A.任意一个数B.任意一个正数C.任意一个负数D.任意一个非负数(3)-a+b-c由交换律可得()A.-b+a-cB.b-a-cC.a-+c-bD.-b+a+c(4)a、b两数在数轴上位置如图,设M=a+b,N=-a+b,H=a-b,G=-a-b,则下列各式中正确的是()A.M>N>H>GB.H>M>G>NC.H>M>N>GD.G>H>M>N3.计算题.4.股票交易是市场经济中的一种金融活动,它可以促进投资和资金流通.南京某证券交易所的一种股票第一天最高价比开盘价高0.3元,最低价比开盘价低0.3元,第二天的最高价比开盘价高0.3元,最低价比开盘价低0.1元,第三天的最高价等于开盘价,最低价比开盘价低0.2元.一天中最高价与最低价的差,叫做这天股票的涨幅.计算这三天的平均涨幅.【教学说明】这4题可由学生独立完成,老师评讲.【答案】1.(1)负6,负8,正10,正6与负5的和负6减8加10加6减5(2)-a+b+c-d(3)2(4)-8 7 4 62.(1)D(2)D(3)B(4)B3.(1)-1(2)25/24(3)-52 74.0.4五、师生互动,课堂小结回顾一下本节课所学内容,你学会了什么?【教学说明】在学生思考回答的过程中将本节的重点知识纳入知识系统.1.布置作业::从教材习题1.3中选取.2.完成练习册中本课时的练习.本课时主要通过学生习题的训练,巩固有理数加法、减法及加减混合运算的法则与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.成功名言警句:2、对我来说,不学习,毋宁死。
【人教版七年级数学上册第一章】1.3.2 第2课时《有理数加减混合运算》教学设计2一. 教材分析人教版七年级数学上册第一章《有理数》的1.3.2节是关于有理数的加减混合运算。
这一节内容是在学生已经掌握了有理数的基本概念和加减法的基础上进行进一步的拓展,使学生能够熟练地进行有理数的加减混合运算。
本节内容的学习,对于学生理解数学的本质,提高解决问题的能力具有重要意义。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减法,但他们在实际操作中可能还存在一些困难,如对运算顺序的理解,对负数加减法的掌握等。
因此,在教学过程中,需要针对这些困难进行详细的讲解和示例,以帮助学生更好地理解和掌握有理数的加减混合运算。
三. 教学目标通过本节课的学习,学生能够掌握有理数的加减混合运算的规则,能够熟练地进行有理数的加减混合运算,并能够理解运算的实质。
四. 教学重难点1.教学重点:有理数的加减混合运算的规则和运算方法。
2.教学难点:对运算顺序的理解,对负数加减法的掌握。
五. 教学方法采用问题驱动法,通过提问引导学生思考和探索,以讲解和示范为主,辅以学生自主练习和小组讨论,以提高学生对知识的理解和运用能力。
六. 教学准备1.教学PPT:制作有关有理数加减混合运算的PPT,包括知识点、例题和练习题。
2.练习题:准备一些有关有理数加减混合运算的练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数加减法的基本概念和运算方法,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加减混合运算的规则,通过PPT展示例题,让学生跟随老师一起解答,讲解每一步的运算方法。
3.操练(10分钟)让学生独立完成PPT上的练习题,老师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)学生分组讨论,互相交换答案,老师选取一些学生的答案进行讲解,以巩固所学知识。
5.拓展(10分钟)让学生尝试解答一些有一定难度的练习题,提高他们的运算能力和解决问题的能力。
人教版七年级数学上册1.3《有理数的加减法》教学设计一. 教材分析《有理数的加减法》是人教版七年级数学上册第一章第三节的内容,本节内容是在学生已经掌握了有理数的概念和简单的性质的基础上进行讲授的。
有理数的加减法是数学中基本的运算,也是日常生活中经常使用的运算。
本节内容的学习,有助于学生进一步理解和掌握有理数的运算规则,培养学生解决实际问题的能力。
二. 学情分析学生在进入七年级之前,已经初步接触过有理数的概念和性质,对有理数有了一定的认识。
但学生的数学基础参差不齐,部分学生对有理数的理解还不够深入,对有理数的加减运算规则还不够熟悉。
因此,在教学过程中,需要关注所有学生的学习情况,针对不同学生进行有针对性的教学。
三. 教学目标1.理解有理数的加减法运算规则,能够熟练地进行有理数的加减运算。
2.培养学生解决实际问题的能力,使学生能够运用有理数的加减法规则解决生活中的问题。
3.培养学生的逻辑思维能力,使学生能够理解和分析数学问题。
四. 教学重难点1.教学重点:有理数的加减法运算规则,有理数的加减运算。
2.教学难点:理解并掌握有理数的加减法运算规则,能够灵活运用规则解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生主动探索和理解有理数的加减法运算规则。
同时,运用实例讲解和练习,使学生能够熟练地进行有理数的加减运算。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备一些实际问题,用于引导学生运用有理数的加减法规则解决实际问题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)通过PPT展示有理数的加减法运算规则,让学生初步了解并感知加减法运算的规则。
3.操练(10分钟)让学生进行有理数的加减运算练习,教师引导学生注意运算的顺序和规则,并及时给予反馈和纠正。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数的加减法规则进行解决,巩固所学知识。
人教版七年级数学上册1.3.2《有理数的加减混合运算》说课稿一. 教材分析《有理数的加减混合运算》是人民教育出版社七年级数学上册第一章第三节的一部分。
这一部分内容是在学生已经掌握了有理数的基本概念和加减法的基础上进行学习的。
通过这一节的学习,使学生能够掌握有理数的加减混合运算的法则,能够熟练地进行计算,并能够解决实际问题。
教材中,首先介绍了有理数加减混合运算的概念,然后通过例题和练习题,让学生熟练掌握有理数加减混合运算的法则,并能够应用到实际问题中。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,已经掌握了有理数的基本概念和加减法。
但是,对于有理数的混合运算,可能还存在一些困难。
因此,在教学过程中,需要引导学生通过实际操作,理解并掌握有理数加减混合运算的法则。
三. 说教学目标1.知识与技能:学生能够理解有理数加减混合运算的概念,掌握有理数加减混合运算的法则,能够熟练地进行计算。
2.过程与方法:学生通过实际操作,培养观察、分析、归纳的能力。
3.情感态度与价值观:学生能够体验到数学与生活的联系,增强对数学的兴趣。
四. 说教学重难点1.教学重点:有理数加减混合运算的法则。
2.教学难点:理解并掌握有理数加减混合运算的法则,能够应用到实际问题中。
五. 说教学方法与手段1.教学方法:采用问题驱动法,让学生在解决问题的过程中,理解和掌握有理数加减混合运算的法则。
2.教学手段:利用多媒体课件,进行直观演示,帮助学生理解和掌握有理数加减混合运算的法则。
六. 说教学过程1.导入:通过实际问题,引入有理数加减混合运算的概念。
2.讲解:讲解有理数加减混合运算的法则,并通过例题,让学生理解和掌握。
3.练习:让学生进行练习,巩固所学内容。
4.应用:解决实际问题,让学生体验到数学与生活的联系。
七. 说板书设计板书设计如下:有理数加减混合运算1.同号相加,取相同符号,并把绝对值相加。
2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
第一章有理数1.3 有理数的加减法1.3.2 有理数的减法课时2 有理数的加减混合运算【知识与技能】使学生理解将加减法统一成加法的意义,能熟练地进行有理数的加减混合运算【过程与方法】通过加减法的相互转化,培养学生的应变能力、口头表达能力及运算能力.【情感态度与价值观】通过有理数的加减混合运算,使学生养成认真、细致的运算习惯,培养转化思想.有理数的加减混合运算.把加减混合运算统一为加法运算.多媒体课件利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做得又对又快.计算:(1)45+(-23);(2)9-(-5);(3)-28-(-37);(4)(-13)+0;(5)(-29)+(-31);(6)(-16)-(-12)-24-(-18);(7)1.6-(-1.2)-2.5;(8)(-42)+57+(-84)+(-23).教师点评,引出新课,板书课一、思考探究,获取新知探究1:一架飞机做特技表演,起飞后的高度变化如下:高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米此时飞机比起飞点高了多少千米?让学生分组探究、讨论并发表自己的见解,不难得出以下两种算式:(1)4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1.(2)4.5-3.2+1.1-1.4=1.3+1.1-1.4=2.4-1.4=1.教师引导,归纳总结:加减混合运算可以统一成加法运算;加法运算可以写成省略括号和加号的形式.有理数的加减混合运算有如下几个步骤:1.将减法转化成加法;2.省略加号和括号;3.运用加法交换律和加法结合律,简化运算;4.按有理数的加法法则计算.二、典例精析,掌握新知例2某银行储蓄所某一时段办理了8项工作业务:取出950元,存进500元,取出800元,存进1 200元,存进2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了还是减少了?增加或减少了多少元?【解】每次的存款数可分别记为-950,+500,-800,+1 200,+2 500,-1 025,-200,+400.则(-950)+500+(-800)+1 200+2 500+(-1 025)+(-200)+400=1 625(元).所以银行的现款增加了,增加了1 625元.有理数的加减混合运算,可以利用运算顺序进行计算,也可以适当地运用加法运算律,把正数与负数分别相加简化运算.但要注意交换加数的位置时,要连同它前面的符号一起移动.教材P25习题1.3第5题。
七年级数学《有理数加法(1)》学案人教新课标版年级:初一年级学科:数学执笔:审核:内容:有理数的加法(1)课型:新授课学习目标:1.理解有理数加法意义2.掌握有理数加法法则,会正确进行有理数加法运算3.经历探究有理数有理数加法法则过程,学会与他人交流合作学习重点:和的符号的确定学习难点:异号两数相加的法则学法指导:在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。
先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程(一)课前学习导引:1.如果向东走5米记作+5米,那么向西走3米记作2.比较大小:2 -3,-5 -7,4 53.已知a=-5,b=+3,则︱a ︳+︱b︱=(二)课堂学习导引正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是(1)红队的净胜球数为4+(-2),(2)蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
那么,怎样计算4+(-2),1+(-1)的结果呢?现在让我们借助数轴来讨论有理数的加法:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示①先向东走了5米,再向东走3米,结果怎样?可以表示为②先向西走了5米,再向西走了3米,结果如何?可以表示为:③先向东走了5米,再向西走了3米,结果呢?可以表示为:④先向西走了5米,再向东走了3米,结果呢?可以表示为:⑤先向东走了5米,再向西走了5米,结果呢?可以表示为: ⑥先向西走5米,再向东走5米,结果呢?可以表示为: 从以上几个算式中总结有理数加法法则:(1)、同号的两数相加,取 的符号,并把 相加.(2).绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 .(3)、一个数同0相加,仍得 。
七年级上册数学教案《有理数的加减混合运算》教学目标1、能熟练地进行有理数的加减混合运算,会使用加法运算律简化运算。
2、了解有理数混合运算中省略加号和括号的意义及读法。
教学重难点把加减法统一为加法运算,并用加法运算律合理地进行计算。
教学过程一、复习导入1、有理数的加法法则是什么?①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
2、有理数的减法法则是什么?减去一个数,等于加上这个数得相反数。
3、什么是加法运算律?怎么用字母表示?两个数相加,交换两个加数得位置,和不变。
a+b = b+a二、学习新知1、省略加号和的形式计算(-20)+(-3)+(+5)-(+7)方法一:按次序计算(-20)+(-3)+(+5)-(+7)= -20 - 3 + 5 - 7= -23 + 5 - 7= -18 - 7= -25分析:这个算式中有加法,也有减法,可以根据有理数减法法则,把它改写为方法二:把减号统一成加号(-20)+(-3)+(+5)+(-7)= (-20)+(-3)+(+5)+(-7)= [(-20)+(+5)]+[(-3)+(-7)]= (-15)+(-10)= -25小结:在引入相反数后,加减混合运算可以统一为加法运算。
用字母可表示为:a+b-c = a+b+(-c)哪种方法更好?为什么?生:第二种方法更简便、合理,因为它运用了有理数加法的交换律、结合律。
小结:在有理数的加法运算中,通常应用加法运算律可简化计算。
在有理数加法混合运算统一加法后,应注意运算的合理性,适当运用运算律。
2、数轴上两点之间的距离在数轴上,点A,B分别表示数a,b。
利用有理数减法,分别计算下列情况下点A,B之间的距离:(1)a=2,b=6 ;6-2=4(2)a=0,b=6 ;6-0=6(3)a=2,b=-6 ;2-(-6)=8(4)a=-2,b=-6;-2-(-6)=-4小结:根据AB = |a-b|,得:当a > b时,AB = a-b;当a = b时,AB = 0;当a < b时,AB = b-a。
有理数的加减混合运算
教学目的和要求:
1.使学生理解有理数的加减法可以互相转化,并了解代数和概念。
2.使学生熟练地进行有理数的加减混合运算。
3.培养学生的运算能力。
教学重点和难点:
重点:准确迅速地进行有理数的加减混合运算。
难点:减法直接转化为加法及混合运算的准确性。
教学工具和方法:
工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合(并采取尝试指导法)。
教学过程:
一、复习引入:
1.叙述有理数加法法则。
2.叙述有理数减法法则。
3.叙述加法的运算律。
4.符号“+”和“―”各表达哪些意义?
5.化简:+(+3);+(―3);―(+3);―(―3)。
6.口算:
(1)2―7;(2)(―2)―7;(3)(―2)―(―7);
(4)2+(―7);
(5)(―2)+(―7);(6)7―2;(7)(―2)+7;
(8)2―(―7)。
二、讲授新课:
1.加减法统一成加法算式:
以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数。
同样,(―11)―7+(―9)―(―6)按减法法则应为(―11)+(―7)+(―9)+(+6),这样便把加减法统一成加法算式。
几个正数或负数的和称为代数和。
再看16―(―2)+(―4)―(―6)―7写成代数和是16+2+(―4)+6+(―7)。
既然都可以写成代数和,加号可以省略,每个括号都可以省略,如:(―11)―7+(―9)―(―6)=―11―7―9+6,读作“负11,负7,负9,正6的和”,运算上可读作“负11减7减9加6”;16+2+(―4)+6+(―7)=16+2―4+6―7,读作“正16,正2,负4,正6,负7的和”,运算上读作“16加2减4加6减7”。
2.例题:
例1:把写成省略加号的和的形式,并把它读出来。
解:原式== 读作:“的和”。
3.加法运算律的运用:
既然是代数和,当然可以运用有理数加法运算律:a+b=b+a,(a +b)+c= a +(b+c)。
例2:计算:―20+3―5+7。
解:原式=―20―5+3+7
=―25+10
=―15。
注意这里既交换又结合,交换时应连同数字前的符号一起交换。
例3:计算:
(1)――+;(2)(+9)―(+10)+(―2)―(―8)+3。
解:(1) 原式=+―― (2)原式=9―10―2+8+3
=1―1 =9+8+3―10―2
=―;=20―12=8。
(3.五分钟测试:
(1)填空:
—4+7—4=—— +
+6+9—15+3= + + —
—9—3+2—4= 9 3 4 2
(2)计算
(+9)―(+10)+(―2)―(―8)+3
12—(—18)+(—7)—15)
三、课堂小结:
1.有理数的加减法可统一成加法。
2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便。
但要注意交换加数的位置时,要连同前面的符号一起交换。
四、课堂作业:
课本:P25:习题1,2。
板书设计:
教学后记:。