整式乘除与因式分解计算题集锦
- 格式:doc
- 大小:67.50 KB
- 文档页数:2
练习题1、分解因式:(1)34xx (2)4282aa(3)2233m nm n(4)2224xxy y(5)225xxy x(6)2225x y xyxy(7)432462xxx(8)4234462x yx yxy(9)2232a x y b x y(10)223242a x y b y x c x y(11)224292a ba b(12)2961a ba b (13)22111439xxyy(14)222316131p x yp x y p x 2、求证:不论x 、y 为何有理数,2210845xyx y 的值均为正数。
3、若a 为整数,证明2211a 能被8整除。
4、计算:323220022200220002002200220035、已知2226100aa bb ,求a 、b 的值。
6、计算:(1)32232228a baab(2)225241x xx xx (3)11x y x y (4)33323538310ab ca ba b(5)32325223393aabb aba b(6)262132232xx x x x (7)22232394x y x y yx(8)2321223xx (9)22221112222x yx yxy(10)先化简,再求值:33222491233x y x y x y xyxyxy ,其中1,23xy7、下列运算正确的是()A 、6318aaaB 、639aaaC 、632aaaD 、639aaa8、下列运算中,正确的是()A 、236xxxB 、222235x xxC 、328x xD 、222x yxy9、下列多项式中,能够因式分解的是()A 、22xyB 、22xxy yC 、214p pD 、22mn10、分解因式2a ab 的结果是()A 、11a b bB 、21a bC 、21a bD 、11b b11、下列多项式能利用平方差公式分解的是()A 、2xyB 、22xyC 、22xyD 、22xy12、在多项式2222244,116,1,xx a xx xy y 中是完全平方式的有()A 、1个B 、2个C 、3个D 、4个13、数轴上的每一个点都表示一个()A 、无理数B 、有理数C 、实数D 、整数14、无理数是()A 、无限循环小数B 、无限不循环小数C 、不循环小数D 、有限小数15、下列说法中正确的是()A 、1的平方根是 1B 、21的平方根是1C 、2是8的立方根D 、16的平方根是 416、若12a a,则221aa的值为()A 、2B 、4C 、0D 、417、多项式22ac bc a b 分解因式的结果是()A 、a b a b cB 、a b a b cC 、a b a b cD 、a b a b c18、如果单项式423a bxy 与313a bx y是同类项,那么这两个单项式的积是()A 、64x yB 、32x yC 、3283x yD 、64x y19、若4xm,则2______xm20、2323_____12x y x y化简2222a a a 的结果是_______________。
一、选择(每小题3分,共30分)1.下列关系式中,正确的是( )A.(a-b)2=a 2-b 2 B.(a+b)(a-b)=a 2-b 2 C.(a+b)2=a 2+b 2 D.(a+b)2=a 2-2ab+b22.x5m+3n+1÷(x n )2·(-x m )2等于( )A.-x7m+n+1B.x7m+n+1C.x7m-n+1D.x3m+n+13.若36x 2-mxy+49y 2是完全平方式,则m 的值是( )A.1764 B.42 C.84 D.±844.在“2008北京奥运会”国家体育场的“鸟巢”钢结构工程施工建设中,首次用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×108的原数是( ) A.4600000 B.46000000 C.460000000 D.4600000000 5.代数式ax2-4ax+4a 分解因式,结果正确的是( )A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2) 6.已知31=-xx ,则221x x +的值是( )A.9 B.7 C.11 D.不能确定7.下列多项式中,不能用公式法因式分解的是( )A.2241y xy x +- B.222y xy x ++ C.22y x +- D.22y xy x ++8.下列计算正确的是( )A.(ab 2)3=ab 6B.(3xy)3=9x 3y 3C.(-2a 2)2=-4a 4D.(x 2y 3)2=x 4y 69.若x+y=2,xy=-2 ,则(1-x)(1-y)的值是( )A.-1 B.1 C.5 D.-3 10.(x 2+px+q)(x 2-5x+7)的展开式中,不含x 3和x 2项,则p+q 的值是( ) A.-23 B.23 C.15 D.-15 二、填空(每小题3分,共30分)11.计算:(-2mn 2)3= ,若5x=3,5y=2,则5x-2y= .12.分解因式:x 3-25x= . a(x-y)-b(y-x)+c(x-y)= . 13.(8x 5y 2-4x 2y 5)÷(-2x 2y)= .14.分解因式x 2+ax+b 时,甲看错了a 的值,分解的结果是(x+6)(x-1),乙看错了b,分解的结果是(x-2)(x+1),那么x 2+ax+b 分解因式正确的结果是 .15.若(x 2+y 2)(x 2+y 2-1)-12=0,那么x 2+y 2= .16.一个长方形的长增加了4㎝,宽减少了1㎝,面积保持不变,长减少2㎝,宽增加1㎝,面积仍保持不变,则这个长方形的面积是 .17.(-3a 2-4)2= ,(x n-1)2(x 2)n= 18.若m 2+n 2=5,m+n=3,则mn 的值是 . 19.已知x 2+4x-1=0,那么2x 4+8x 3-4x 2-8x+1的值是 . 20.若2x=8y+1,81y=9x-5,则x y= . 三、解答题(60分) 21.计算(8分)⑴(-2y 3)2+(-4y 2)3-(-2y)2·(-3y 2)2⑵[(3x-2y)2-(3x+2y)2+3x 2y 2]÷2xy.因式分解(12分)⑴8a-4a 2-4 ⑵161212+-y y ⑶(x 2-5)2+8(5-x)2+1623.化简求值(8分)⑴(x 2+3x)(x-3)-x(x-2)2+(-x-y)(y-x)其中x=3 y=-2.⑵已知81,61==y x ,求代数式22)32()32(y x y x --+的值.24.已知(x+y)2=4,(x-y)2=3,试求: ⑴x 2+y 2的值. ⑵xy 的值.25.用m 2-m+1去除某一整式,得商式m 2+m+1,余式m+2,求这个整式.26.将一条20m 长的镀金彩边剪成两段,恰可以用来镶两张不同的正方形壁画的边(不计接头处),已知两张壁画面积相差10㎡,问这条彩边应剪成多长的两段?27.根据图8-C-1示,回答下列问题 ⑴大正方形的面积S 是多少?⑵梯形Ⅱ,Ⅲ的面积S Ⅱ,S Ⅲ,分别是多少? ⑶试求S Ⅱ+S Ⅲ与S-S Ⅰ的值.⑷由⑶你发现了什么?请用含a,b 的式子表示你的结论.8-C-1一、选择1.B 2.B 3.D 4.C 5.A 6.B 7.D 8.D 9.D 10.B二、填空 11.-8m 3n 6,43 12.x(x-5)(x+5),(x-y)(a+b+c)13.-4x 3y+2y4 14.(x+2)(x-3) 15.4 16.24㎝217.9a 4+24a 2+16,x 4n-2x 3n+x 2n18.2 19.-1 20.81 解答题21.⑴解:原式=4y 6-64y 6-(4y 2·9y 4) =4y 6-64y 6-36y 6=-96y 6.⑵ 解:原式=[(3x-2y+3x+2y)(3x-2y-3x-2y )+3x 2y 2]÷2xy =[6x·(-4y)+3x 2y 2]÷2xy=(-24xy+3x 2y 2)÷2xy=xy 2312+- 22.解:⑴原式=-4(a 2-2a+1)=-4(a-1)2(2)原式=161(y 2-2y+1)=161(y-1)2(3) 原式=(x 2-5+1)2=(x 2-1)2=(x+1)2(x-1)223.⑴ 解:原式=x 3-3x 2+3x 2-9x-x(x 2-4x+4)+(x 2-y 2) =x 3-9x-x 3+4x 2+x 2-y 2=5x 2-13x-y 2,当x=3,y=-2时,原式=2. ⑵ 解:原式=(2x+3y-2x+3y)(2x+3y+2x-3y) =6y ·4x=24xy 所以当81,61==y x ,原式=816124⨯⨯=21 24. 解:⑴由已知得x 2+y 2+2xy=4①:x 2+y 2-2xy=3② ①+②得2x 2+2y 2=7,故x 2+y 2=3.5 ⑵①―②得,4xy=1,xy=0.25 25. m 4+m 2+m+3解析:由题意得(m 2+m+1)(m 2-m+1)+m+2 =m 4-m 3+m 2+m 3-m 2+m+m 2-m+1+m+2 =m 4+m 2+m+326.解:设应剪成两端的长为xm ,ym (x>y )可列方程组为⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+10442022y x y x ,解之得⎩⎨⎧==614y x ,故应剪成14m 和6m的两段. 27.⑴S=a 2⑵S Ⅱ=S Ⅲ=()b a b a -+)(21⑶S Ⅱ+S Ⅲ=2×()b a b a -+)(21=(a+b)(a-b)S-S Ⅰ=a 2-b 2⑷ S Ⅱ+S Ⅲ= S-S Ⅰ, (a+b)(a-b)= a 2-b 2。
整式的乘除与因式分解综合练习题一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10(2) (a+b)3=a 3+b 3(3) (-a+b)(-a-b)=a 2-b 2(4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.当a =-1时,代数式(a +1)2+ a (a +3)的值等于( )A.-4B.4C.-2D.23、下列各式中,能用平方差公式计算的是( )A 、B 、C 、D 、4.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-15.若,则的值为 ( ) A . B .5 C .D .26、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601))((b a b a +--))((b a b a ---))((c b a c b a +---+-))((b a b a -+-7、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=18.如果一个单项式与的积为,则这个单项式为( ) A. B. C. D.9、对于任何整数,多项式都能( )A 、被8整除B 、被整除C 、被-1整除D 、被(2-1)整除10.已知,,则与的值分别是 ( )A. 4,1B. 2,C.5,1D. 10,二、填空题11、(1)化简:a 3·a 2b=12、把边长为12.75cm 的正方形中,挖去一个边长为7.25cm 的小正方形,则剩下的面积为 。
13.已知31=-a a ,则221a a + 的值等于 。
14、有一串单项式:……,(1)第2006个单项式是 ;(2)第(n+1)个单项式是 .三、解答题。
m 9)54(2-+m m m m 234,2,3,4,x x x x --192019,20x x -15、化简(1)3x2y·(-2xy3); (2)2a2(3a2-5b);(3)(-2a2)(3a b2-5a b3). (4)(5x+2y)(3x-2y).1)2009 (5)(3y+2)(y-4)-3(y-2)(y-3);(6)(-3)2008·(316、因式分解(1)xy+a y-by; (2)3x(a-b)-2y(b-a);(3)m2-6m+9;(4) 4x2-9y2(5) x4-1; (6) x2-7x+10;17、先化简,再求值(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1 18.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.19、如图是L 形钢条截面,试写出它的面积公式。
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
整式的乘除与因式分解考点归纳知识网络归纳22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆22222()():2()a b a b a b a ab b a b⎧⎪⎪⎪⎧-=+-⎨⎨⎪⎨⎪⎪±+=±⎪⎩⎩⎪⎪⎩因式分解的意义提公因式法因式分解因式分解的方法平方差公式:运用公式法完全平方公式因式分解的步骤 专题归纳专题一:基础计算【例1】 完成下列各题:1.计算:2x 3·(-3x )2__________. 2.下列运算正确的是( )A. x 3·x 4=x 12B. (-6x 6)÷(-2x 2)=3x 3C. 2a -3a =-aD. (x -2)2=x 2-43.把多项式2mx 2-4mxy +2my 2分解因式的结果是__________.4分解因式:(2a -b )2+8ab =____________.专题二:利用幂的有关运算性质和因式分解可使运算简化 【例2】用简便方法计算.(1)0. 252009×42009-8100×0. 5300. (2)4292-1712.整式的乘法专题三:简捷计算法的运用【例3】设m 2+m -2=0,求m 3+3m 2+2000的值. .专题四:化简求值【例4】化简求值:5(m+n )(m-n )–2(m+n)2–3(m-n)2,其中m=-2,n= 15.专题五:完全平方公式的运用【例5】已知()211a b +=,()25a b -=,求(1)22a b +;(2)ab例题精讲基础题【例1】填空:1. (-a b)3·(a b 2)2= ; (3x 3+3x)÷(x 2+1)= . 2. (a +b)(a -2b)= ;(a +4b)(m+n)= . 3. (-a +b+c)(a +b-c)=[b-( )][b+( )].4. 多项式x 2+kx+25是另一个多项式的平方,则k= .5. 如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 . 【例2】选择:6.从左到右的变形,是因式分解的为 ( )A.m a +mb-c=m(a +b)-cB.(a -b)(a 2+a b+b 2)=a 3-b 3C.a 2-4a b+4b 2-1=a (a -4b)+(2b+1)(2b-1) D.4x 2-25y 2=(2x+5y)(2x-5y) 7.下列多项式中能用平方差公式分解因式的是( )(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x8. 如图是用4个相同的小矩形与1个小正方形镶嵌而成的 正方形图案,已知该图案的面积为49,小正方形的面积 为4,若用x ,y 表示小矩形的两边长(x >y),请观察 图案,指出以下关系式中,不正确的是 ( ) A.x+y=7 B.x-y=2C.4xy+4=49D.x 2+y 2=25【例3】9计算:(1)(-3xy 2)3·(61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(9)(9)x y x y -++- (4)2[(34)3(34)](4)x y x x y y +-+÷-(5)22)1)2)(2(x x x x x +-+--( (6) [(x+y )2-(x -y )2]÷(2xy)中档题【例1】10.因式分解:21(1)4x x -+ (2)22(32)(23)a b a b --+(3)2x2y-8xy+8y (4)a2(x-y)-4b2(x-y)(5)2222x xy y z-+- (6)1(1)x x x+++(7)9a2(x-y)+4b2(y-x);(8)(x+y)2+2(x+y)+1 【例2】11.化简求值:(1).2)3)(3()2)(3(2-=-+-+-aaaxx其中,x=1【例3】12若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q值.【例4】13对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由能力题【例1】14下面是对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)第二步到第三步运用了因式分解的_______. A .提取公因式 B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)这次因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.【例2】已知a 、b 、c 为△ABC 的三边,且满足2220a b c ab bc ac ++---= (1)说明△ABC 的形状;(2)如图①以A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,D 是y 轴上一点,连DB 、DC ,若∠ODB=60°,猜想线段 DO 、DC 、DB 之间有何数量关系,并证明你的猜想。
整式的乘除与因式分解测试题及答案整式的乘除与因式分解测试题及答案题目:1.(4分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a33.(4分)下面是某同学在一次检测中的计算摘录:①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2其中正确的个数有()A.1个B.2个C.3个D.4个4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+15.(4分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab答案:1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
1923992分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.考点:多项式乘多项式。
整式的乘除因式分解练习题最终版整式乘除与因式分解专项练知识网络归纳:幂的运算法则:a^m * a^n = a^(m+n) (m,n为正整数,a,b 可为一个单项式或一个式项式)平方差公式:(a+b)(a-b)=a^2-b^2完全平方公式:(a±b)^2=a^2±2ab+b^2整式的乘法:单项式×单项式:m*a+b=ma+mb多项式×多项式:(m+n)(a+b)=ma+mb+na+nb因式分解的意义:因式分解可以把一个多项式表示成几个单项式的乘积的形式,从而更便于计算和理解。
因式分解的方法:1.提公因式法:先观察是否存在公因式,若存在则提出来。
2.运用公式法:观察是否符合平方差公式或完全平方公式的条件,若符合则按公式进行分解。
3.十字相乘法:观察首尾项与中间项系数是否满足十字相乘条件,若满足则按十字相乘法则分解。
4.拆添项与分组分解法:如果上述方法均无法解决,尝试进行对某几项进行拆分或分组,然后再重复上述操作。
一、整式综合计算:1.幂运算:1) (-3a^2b^3c)^3 = -27a^6b^9c^32) (-1/2)^ = -27/8x^3y^3z^33) [-(a^2b)^3 * a]^3 = -a^27b^94) (ab)*(ab) = a^2b^25) 28xy/(-7xy) = -46) -2ab*(-8a^2) = 16a^3b7) (x^3-x^2)/2 = (x^3/2)-(x^2/2)9) -abc*(3ab) = -3a^2b^2c10) 2005*0.125*2006 = .2511) 若a^(3n-2) = 2.则a^(6n) = 6412) 已知4x=2x+3,则x=3/213) 如果a=2,a=3,则a=2或a=320.已知 m = n + 2,n = m + 2(m ≠ n),求 m - 2mn + n的值。
解:将 m = n + 2 代入 n = m + 2,得 n = n + 4,解得 n = -4,代入 m = n + 2,得 m = -2.因此,m - 2mn + n = -2 - 2(-2)(-4) + (-4) = 22.21.已知 9x - 12xy + 8y - 4yz + 2z - 4z + 4 = 0,求 x、y、z 的值。
2 ⋅3 3 ⋅ 5 ⋅ 2 ⋅ 3 ⎡(-m )3 ⎤42 2 ⎪ ⨯ ⎪ 23 3 3 整式的乘除与因式分解一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项 .例如: 3a - a = _______ ; a 2 + a 2 = ________ ; 3a + 5b - 2a + 8b = ________3x 2 y - 2 x y + xy 2 - 4 x 2 y + 2 x 3 + 10 x y - 2 x 3 = __________________2、同底数幂的乘法法则: a m a n = a m +n ( m , n 都是正整数)同底数幂相乘,底数不变,指数相加.例 1:a 3 ⋅ a = ___ ;a ⋅ a 2 ⋅ a 3 = ___108 ⨯102 (-x )(- x ) a n +2 ⋅ a n +1 ⋅ a n ⋅ a例 2:计算(1)(b + 2)(b + 2)(b + 2) (2)(x - 2y )(2y -x )3、幂的乘方法则: (a m ) n = a mn ( m , n 都是正整数).幂的乘方,底数不变,指数相乘.例如: (a 2 ) 3 = ____ ;( x 5 ) 2 = ____ ;(a 4 ) 3 = (a 3 ) ()(a m )⎣ ⎦(a 3-m )4、积的乘方的法则: (ab) n = a n b n ( n 是正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘 .例如: (ab) 3 = ________ ; (-2a 2b ) 3 = ________ ; (-5a 3b 2 ) 2 = ________(-x 3 ) ⋅ (-x 2 )(-xy )4⎛ 99 ⎫2011 ⎛ 100 ⎫2010 ⎝ 100 ⎭ ⎝ 99 ⎭- (3a 2b 3 )0.12515 ⨯ (215 )3ab 2 ⋅ - a 2b ⎪ ⋅ 2abc (-2xy n )⋅(-3xy )⋅ - x 2z ⎪ -6m 2n ⋅ (x - y )3 ⋅ mn 2 ⋅ (y - x )2632 ⎛ - xy ⎪ ⋅ x 2 y - 4xy 2 + y ⎪ ; (2) 6mn ⋅ 2 - mn ⎪ + - mn ⎪3 ⎭ 35、同底数幂的除法法则: a m ÷ a n = a m -n ( a ≠ 0, m , n 都是正整数,且 m φ n) .同底数幂相除,底数不变,指数相减. 规定: a 0 = 1例: a 3 ÷ a = ________ ; a 10 ÷ a 2 = ________ ; a 5 ÷ a 5 = ________例、3x = 52 ,3y =25,则 3y -x = .6、单项式乘法法则2 x ⋅3 y(-2 x 2 y)(5 x y 2 )(3xy) 2 ⋅ (-2 x y 2 )(-a 2b ) 3 ⋅ (a 2b ) 2⎛ 1 ⎫ ⎛ 1 ⎫ 1 n +1 ⎝ 3 ⎭⎝ 2 ⎭37、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.4 x 3 y ÷ 2 x 2 y24 x 2 y ÷ (- 6 x y )( ⨯ 10 8)÷ ( ⨯ 10 5)8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.m (a + b + c)2 x (-2 x -3 y + 5) - 3ab(5a - ab + 2b 2 )⎛ 3 ⎫ ⎛ 2 4 ⎫ 1 ⎫ ⎛ 1 ⎫24 3 ⎝ 2 ⎭ ⎝ 3⎝ ⎭ ⎝ 2 ⎭- 4ab ÷ (- 4a )(20a b - 45a b )÷ 5a b89、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.( x + 2)( x - 6)(2 x - 3 y )( x - 2 y + 1) (a + b )(a 2 - ab + b 2 )10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.(6 x y + 5 x )÷ x ;( a2)4 2 3 2⎛ 1 ⎫ 1 2a 2 c - b 2c ⎪ ÷ c ⎝ 2 ⎭ 211、整式乘法的平方差公式: (a + b )(a - b ) = a 2 - b 2 .两个数的和与这两个数的差的积,等于这两个数的平方差.例如:(4a -1)(4a+1)=___________;(3a -2b )(2b+3a )=___________;(mn + 1)(mn - 1)=; (-3 + x)(-3 - x) = ;(1) (-2a + 3b )(2a + 3b );(2) (-2a + 3b )(-2a - 3b );(3) (2a + 3b )(2a - 3b );(4) (-2a - 3b )(2a - 3b );2009×2007-20082200720072 - 2008 ⨯ 2006 2007 22008 ⨯ 2006 + 11 )12、整式乘法的完全平方公式: (a ± b ) 2 = a 2 ± 2ab + b 2三项式的完全平方公式: (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍.例如: (2a + 5b )2 = __________ __ ; (x - 3 y )2 = __________ _____(- ab + 2)2 = __________ ___ ;(- 2m - 1)2 = __________ ____()99992;(2 20112二、因式分解:1、提公因式法:4 xy - yx 2+ x3x 2+12x 3+4xm (a - 1) + n (a - 1)m 2 (a - 2) + m (2 - a)2 x3 - 8 x-2x 2-12xy 2+8xy 3x 4 - 4⎛ 1 ⎫ 2001 ⎛ 1 ⎫ 2000 - ⎪ + ⎪ ⎝ 2 ⎭ ⎝ 2 ⎭x n +5 - x n +1(-2)1998+(-2)19992、公式法.:(1)、平方差公式: a 2 - b 2 = (a + b )(a - b )x 2 - 14a 2 - 9b 2 16 x 2 - ( y + z ) 2(a+2b)2-(2a-b)2x4-1(2)、完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2m2-4m+49x2+6x y+y216x2+24x+9(a+b)2-12(a+b)+36例2、若x2+2(m-3)x+16是完全平方式,则m的值等于…………………()A.3B.-5C.7.D.7或-1例3、若16(a-b)2+M+25是完全平方式M=________。
整式的乘除与因式分解一、整式的乘除:1、归并同类项:把多项式中的同类项归并成一项,叫做归并同类项 .比如: 3a a _______ ; a 2 a 2________ ; 3a 5b 2a 8b ________3 2y 2xy xy24 x 2 y 2 x 3 10 xy2 x3 __________ ________x2、同底数幂的乘法法例: a m ?a n a m n ( m, n 都是正整数)同底数幂相乘,底数不变,指数相加.例 1:a 3a ___ ;a a 2a 3___ 10810223a n 2a n 1n( - x )( x ) a a例 2:计算( 1)(3 5 )( )(x 2y22y- x 3 )()()()b 2b 2b 223、幂的乘方法例: (a m ) n a mn ( m, n 都是正整数) .幂的乘方,底数不变,指数相乘 .比如: (a 2 )3____ ;( x 5 ) 2____ ;(a 4 ) 3 ( a 3 ) ()m2m 343 m 2( a )( a)4、积的乘方的法例:( ab) n a n b n ( n 是正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.比如: ( ab)3 ________ ; ( 2a 2 b) 3 ________ ; ( 5a 3 b 2 ) 2 ________x 3 2 x 2 3 4 3a 2b 3 3xy201120109910015 15 3 100 2995、同底数幂的除法法例: a ma n a m n ( a 0, m, n 都是正整数,且 m n) .同底数幂相除,底数不变,指数相减. 规定: a 0 1例: a 3 a________ ; a 10 a 2 ________ ; a 5 a 5________例、 3x= 5,3y =25, 则 3y -x =.26、单项式乘法法例2x 3y( 2 x 2 y)(5xy 2 )(3xy )2 ( 2xy 2 )( a 2b)3 (a 2b) 23ab21a 2b 2abc2xn 1yn3xy1 x2 z 31 mn2 26m 2n x yy x3237、单项式除法法例单项式相除,把系数与同底数幂分别相除作为商的因式,关于只在被除式里含有的字母,则连同它的指数作为商的一个因式 .4x 3 y 2x 2 y 24 x 2 y6xy6 108 3 1058、单项式与多项式相乘的乘法法例: 单项式与多项式相乘, 就是用单项式去乘多项式的每一项,再把所得的积相加 .m(a b c) 2x( 2x 3y 5) 3ab(5a ab 2b 2 )23xy2x 2 y 4xy24y ;(2) 6mn22 1mn 41 mn 32 3 33 29、多项式乘法法例: 多项式与多项式相乘, 先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加 .(x 2)( x 6) (2x 3y)( x 2 y 1)(a b)(a 2ab b 2 )10、多项式除以单项式的除法法例:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加 .6xy 5x x ;8a 24ab4a20a 4 b 45a 2 b 3 5a 2 b2a 2 c 1 b 2 c 1 c2 211、整式乘法的平方差公式: (a b)(a b) a 2 b 2 . 两个数的和与这两个数的差的积,等于这两个数的平方差 .比如:( 4a - 1)(4a+1)=___________;(3a - 2b )(2b+3a ) =___________;mn 1 mn 1 = ; ( 3 x)( 3 x) ;( 1) 2a 3b 2a 3b ; (2) 2a 3b 2a 3b ;( 3) 2a 3b 2a 3b ;(4) 2a 3b 2a 3b ;220072007 22009×2007-20082 2008 20062008 2006 1200712、整式乘法的完整平方公式:(a b) 2a22ab b2三项式的完整平方公式:(a b c) 2 a 2b2c22ab2ac 2bc两数和 ( 或差 ) 的平方,等于它们的平方和,加( 或减 ) 它们的积的 2 倍.比如: 2a 5b 2__________ __ ;x 3y 2__________ _____ab 2 2_____________ ;2m 1 2__________ ____(1)99992;( 2)20112二、因式分解:1、提公因式法:4 xy y x 2x3x2+12x3+4x m(a 1) n( a1)m2( a2)m(2a)2x38x-2x 2-12xy2+8xy3x44200112000n 5n 11x x(- 2)1998+(- 2)1999 222、公式法 . :(1)、平方差公式:a2 b 2( a b)( a b)x 214a29b216x 2( y z)2第 3页—总 15页(a 2b) 2(2a b)2x4-1( 2)、完整平方公式: a 22ab b 2( a b) 2a22ab b2(a b) 2m 24m 49x 26xy y 216 x224 x9(a b) 212(a b) 36例 2、若x2+2(m-3)x+16是完整平方式,m的等于⋯⋯⋯⋯⋯⋯⋯( )C.7.D.7 或-1例 3、若16(a b) 2M 25 是完整平方式M=________。
多做多练,熟能生巧整式乘除与因式分解综合30题计算训练一.解答题(共30小题)1.(2012•黄冈)已知实数x满足x+=3,则x2+的值为_________.2.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.3.(2006•江西)计算:(x﹣y)2﹣(y+2x)(y﹣2x)4.利用乘法公式计算:(1)(2x﹣3y)2﹣(y+3x)(3x﹣y);(2)(x+y)(x2+y2)(x﹣y)(x4+y4);(3)(a﹣2b+3)(a+2b﹣3);(4)[(x﹣y)2+(x+y)2](x2﹣y2);(5)(m﹣n﹣3)2.5.(2002•南通)(1)(a+2b)(3a﹣7b)(2)(16x2y3z+8x3y2z)÷8x2y26.计算下列各题:(1)(﹣4a5b3)2÷(8a2b3)(2)(x+2)2﹣(x+3)(x﹣3)(3)[(2x+1)(4x+2)﹣2]÷(8x)(4)已知x+y=10,x•y=24,求x2+y2的值.(1)(﹣2ab)3(﹣4ab2);(2)(3a﹣1)(a+7);(3)(6a3b﹣9a2b2﹣12ab3)÷(﹣3ab).8.计算(1)(﹣3x)5÷(﹣3x)(2)(3)(x﹣3)(x+5)(4)9.(2005•南通)(1)计算﹣9÷3+(﹣)×12+32;(2)计算3a3b2÷a2+b•(a2b﹣3ab﹣5a2b)10.计算:(1)(5a2+2a)﹣4(2+2a2);(2)5x2(x+1)(x﹣1).11.计算(1)π﹣3)0+(﹣2)﹣2+|(﹣2)3|;(2)(﹣3a3)2•a3+(﹣4a)2•a7+(﹣5a3)3;(3)(m+1)(m+2)(m﹣1)(m﹣2);(4)(3x﹣y)2﹣(3x+y)2﹣2xy.(1)(﹣2a2b)2•(﹣ab)÷(﹣b2)(2)(﹣2a2)•(3ab2﹣5ab3)(3)(x+2)2﹣(x﹣2)2(4)(3x4﹣2x3)÷(﹣x)﹣(x﹣x2)•3x13.(2012•贵阳)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.14.(2012•杭州)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?15.(2012•吉林)先化简,再求值:(a+b)(a﹣b)+2a2,其中a=1,b=.16.(2012•泉州)先化简,再求值:(x+3)2+(2+x)(2﹣x),其中x=﹣2.17.分解因式:(1)x(x﹣y)+y(y﹣x);(2).18.因式分解:(a+2)(a﹣3)(a2﹣7)+(2+a)(3﹣a)(a+3)19.分解因式:(1)(x﹣1)(x﹣2)﹣2(2﹣x)2(2)x2﹣y2﹣(x+y)2.20.因式分解:2m(a﹣b)﹣3n(a﹣b).21.﹣28m3n2+42m2n3﹣14m2n.22.分解因式:2a(a﹣3)2﹣6a2(3﹣a)﹣8a(a﹣3).23.a3x2﹣a3y2.24.分解因式:x2﹣16x.25.3a(x﹣y)﹣9b(y﹣x)26.因式分解(1)a2b﹣5ab+9b(2)x(x﹣y)2﹣y(y﹣x)2.27.分解因式:x(x﹣2)﹣y(2﹣x)28.分解因式:(1)6m2n﹣15n2m+30m2n2(2)x(x﹣y)2﹣y(x﹣y)29.分解因式:6a2b2﹣15a2b3+3a2b.30.﹣4x3+16x2﹣26x.。
整式乘除与因式分解经典易错题一.填空题1.已知31=+a a ,则221a a +的值是。
2.分解因式:2212a b ab -+-=.3.若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
4.()22)3(__6+=++x x x ,()22)3(9___-=++x x 。
5.若229y k x ++是完全平方式,则k=_______。
6.若6,422=+=+y x y x 则=xy ___。
二.选择题1.在△ABC 中,三边a 、b 、c 满足010616222=++--bc ab c b a ,求证:a+c=2b 代数式a 3b 2-21a 2b 3,21a 3b 4+a 4b 3,a 4b 2-a 2b 4的公因式是() A 、a 3b 2B 、a 2b 2C 、a 2b 3D 、a 3b 32.把16-x 4分解因式,其结果是()A 、(2-x)4B 、(4+x 2)(4-x 2)C 、(4+x 2)(2+x)(2-x)D 、(2+x)3(2-x)3.若9a 2+6(k -3)a +1是完全平方式,则k 的值是()A 、±4B 、±2C 、3D 、4或24.把x 2-y 2-2y -1分解因式结果正确的是()。
A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)5.分解因式:222x xy y x y -++-的结果是( )A.()()1x y x y --+ B.()()1x y x y --- C.()()1x y x y +-+D.()()1x y x y +-- 6.若22)32(9-=++x kx mx ,则m ,k 的值分别是()A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、Dm=4,k=127.下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有()A 、1个,B 、2个,C 、3个,D 、4个 三.解答题把下列各式因式分解。
一、整式的乘除(共 73 题)1.一种计算机每秒可做4×108 次运算,它工作3×103 秒运算的次数为()A.12×1024 B.1.2×1012 C.12×1012 D.12×1082.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3 中,结果等于 66 的是()A.①②③B.②③④C.②③D.③④3.下列运算正确的是()A.6a-5a=1 B.(a2)3=a5 C.3a2+2a3=5a5 D.2a2•3a3=6a54.下列运算中,正确的是()A.(a2)3=a5 B.2a•3a=6a2 C.2a-a=2 D.a6÷a2=a35.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.36.下列计算中,结果正确的是()A.a2•a3=a6 B.(2a)•(3a)=6aC.(a2)3=a6 D.a6÷a2=a37.下列运算正确的是()A.a3•a4=a12 B.a3+a3=2a6 C.a3÷a3=0 D.3x2•5x3=15x58.下列运算正确的是()A.x2•x3=x6 B.x2+x2=2x4C.(-2x)2=4x2 D.(-2x)2•(-3x)3=6x59.下列运算正确的是()A.(x2)3=x5 B.3x2+4x2=7x4C.(-x)9÷(-x)3=x6 D.-x(x2-x+1)=-x3-x2-x110.下面运算正确的是( )A .(-2x 2)•x 3=4x 6B .x 2÷x=xC .(4x 2)3=4x 6D .3x 2-(2x )2=x 211.下列运算正确的是( )A .a 2+2a 3=3a 5B .(2b 2)3=6b 6C .(3ab )2÷(ab )=3abD . 2a•3a 5=6a 612.若 a 为仸意实数,则下列式子恒成立的是( )A .a+a=a 2B .a×a=2aC .3a 3+2a 2=aD .2a×3a 2=6a 313.下列各式正确的是( )A .a 4×a 5=a 20B .a 2×2a 2=2a 4C .(-a 2b 3)2=a 4b 9D .a 4÷a=a 2)15.下列计算正确的是( )A .a 2•a 3=a 6B .(-2a )3=8a 3C .a+a 4=a 5D .-2x 2•3x=-6x 316.下列计算正确的是( )A .2x 3•3x 4=5x 7B .3x 3•4x 3=12x 3C .2a 3+3a 3=5a 6D .4a 3•2a 2=8a 517.下列运算丌正确的是( )A .(a 5)2=a 10B . 2a 2•(-3a 3)=-6a 5C .b•b 3=b 4D .b 5•b 5=b 2518.下列计算正确的是( )A .x 2+2x 2=3x 4B . a 3•(-2a 2)=-2a 5C .(-2x 2)3=-6x 6D .3a•(-b )2=-3ab 219.下列计算正确的是( )A .(2x 3)•(3x )2=6x 6B . (-3x 4)•(-4x 3)=12x 714.下列计算中正确的是( )A .a 5-a 2=a 3B . |a+b|=|a|+|b|C .(-3a 2)•2a 3=-6a 6D .a 2m =(-a m )2(其中 m 为正整数C.(3x4)•(5x3)=8x7 D.(-x)•(-2x)3•(-3x)2=-72x620.计算:3x2y•(-2xy)结果是()A.6x3y2 B.-6x3y2 C.-6x2y D.-6x2y221.下列计算正确的是()A.a+a=a2 B.a•a2=a3 C.(a2)3=a5 D.a(2a+1)=a3+1 22.一个长方体的长、宽、高分别 3a-4,2a,a,它的体积等于()A.3a3-4a2 B.a2 C.6a3-8a2 D.6a3-8a 23.2x2•(-3x3)= .24.(-2x2)•3x4= .25.(3x2y)(-x4y)= .26.2a3•(3a)3= .27.(-3x2y)•(xy2)= .28.-3x3•(-2x2y)= .29.3x2•(-2xy3)= .30.(-2a)(-3a)=.31.8b2(-a2b)= .32.8a3b3•(-2ab)3= .33.(-3a3)2•(-2a2)3=.34.(-8ab)()= .35.2x2•3xy=.36.3x4•2x3= .37.x2y•(-3xy3)2= .38.(2a2b)3c÷(3ab)3=.39.(-2a)3•b4÷12a3b2=.40.计算:()•3ab2=9ab5;-12a3bc÷()=4a2b;(4x2y-8x3)÷4x2= .41.若(a m+1b n+2)•(a2n-1b2m)=a5b3,则 m+n 的值为. 42.若 n 为正整数,且 a2n=3,则(3a3n)2÷(27a4n)的值为.43.利用形如 a(b+c)=ab+ac 的分配性质,求(3x+2)(x-5)的积的第一步骤是()A.(3x+2)x+(3x+2)(-5)B.3x(x-5)+2(x-5)C.3x2-13x-10 D.3x2-17x-1044.下列多项式相乘的结果是 a2-3a-4 的是()A.(a-2)(a+2)B.(a+1)(a-4)C.(a-1)(a+4)D.(a+2)(a+2)45.下列多项式相乘结果为 a2-3a-18 的是()A.(a-2)(a+9)B.(a+2)(a-9)C.(a+3)(a-6)D.(a-3)(a+6)46.下面的计算结果为 3x2+13x-10 的是()A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)47.下列计算正确的是()A.(-2a)•(3ab-2a2b)=-6a2b-4a3bB.(2ab2)•(-a2+2b2-1)=-4a3b4C.(abc)•(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2•(3ab2-c)=3a3b4-a2b2c48.下列运算中,正确的是()A.2ac(5b2+3c)=10b2c+6ac2B.(a-b)2(a-b+1)=(a-b)3-(b-a)2C.(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a+b-cD.(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)249.(-2a3+3a2-4a)(-5a5)= .50.(x-2)(x+3)= .51.(x-2y)(2x+y)=.52.3x(5x-2)-5x(1+3x)= .53.(x-a)(x2+ax+a2)= .54.5x(x2-2x+4)+x2(x+1)= .55.若(x-1)(x+3)=x2+mx+n,那么 m,n 的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=-3 D.m=-2,n=3 56.若(x+1)(2x-3)=2x2+mx+n,则 m=,n=.57.若(x+4)(x-3)=x2+mx-n,则 m= ,n= .58.已知(x+a)(x+b)=x2-13x+36,则 a+b 的值是. A.13 B.-13 C.36D.-3659.若(mx3)•(2x k)=-8x18,则适合此等式的 m= ,k= .60.若(x+1)(2x-3)=2x2+mx+n,则 m=,n=.61.若(x-2)(x-n)=x2-mx+6,则 m= ,n= .62.若(x+p)不(x+2)的乘积中,丌含 x 的一次项,则 p 的值是.63.如果(x+a)(x+b)的结果中丌含 x 的一次项,那么 a、b 满足()A.a=b B.a=0 C.a=-b D.b=064.计算)的结果中丌含关于字母 a 的一次项,则 m 等于()65.如果(x+1)(x2-5ax+a)的乘积中丌含 x2 项,则 a 为.66.已知(5-3x+mx2-6x3)(1-2x)的计算结果中丌含 x3 的项,则 m 的值为.67.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A.(a-b)2=a2-2ab+b2 B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a-b)=a2-b268.如图,正方形卡片 A 类,B 类和长方形卡片 C 类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要 C 类卡片张.69.已知 m+n=2,mn=-2,则(1-m)(1-n)的值为()A.-3 B.-1 C.1 D.570.若 2x(x-1)-x(2x+3)=15,则 x= .71.已知 a2-a+5=0,则(a-3)(a+2)的值是.72.按下列程序计算,最后输出的答案是.73.下列运算正确的是()A.(am+bm+cm)÷n=am÷n+bm÷n+cm÷n=B.(-a3b-14a2+7a)÷7a=-7a2b-2aC.x4y3 D.(6a m+2b n-4a m+1b n+1+2a m b n+2)÷(-2a m b n)=-3a2+2ab-b n+1二、乘法公式(共 150 题)74.下列计算正确的是()A.x4-x2=x2B.(x3)2=x5C. -6x5÷(-2x3)=3x2D.(x+y)2=x2+y275.在下列各式中,不(a-b)2 一定相等的是()A.a2+2ab+b2 B.a2-b2 C.a2+b2 D.a2-2ab+b276.下列等式成立的是()A.(a2)3=a6 B.2a2-3a=-a C.a6÷a3=a2 D.(a+4)(a-4)=a2-477.下列计算正确的是()A.3a+2b=5ab B.(x-y)2=x2-y2 C.a10÷a5=a2 D.a4•a3=a778.下列计算正确的是()A.3a+2b=5ab B.(a-1)2=a2-2a+1C.a6÷a3=a2 D.(a3)2=a579.计算(-a-b)2 等于()A.a2+b2 B.a2-b2 C.a2+2ab+b2 D.a2-2ab+b280.若(x-y)2=0,则下列成立的等式是()A.x2+y2=2xy B.x2+y2=-2xy C.x2+y2=0 D.(x+y)2=(x-y)281.(a-b+c)(-a+b-c)等于()A.-(a-b+c)2 B.c2-(a-b)2 C.(a-b)2-c2 D.c2-a+b282.平方差公式(a+b)(a-b)=a2-b2 中字母 a、b 表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以83.下列运用平方差公式计算,错误的是()A.(a+b)(a-b)=a2-b2 B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1 D.(-a+b)(-a-b)=a2-b284.下列运算正确的是()A.x5+x5=2x10 B.-(x)3(-x)5=x8C.(-2x2y)3=-6x6y3 D.(2x-3y)(-2x+3y)=4x2-9y285.下列运算正确的是()A.(x+y)(-x-y)=x2-y2 B.(-3a2)3=-9a6C.(-a+b)2=a2+2ab+b2 D.2009×2007=20082-1286.下列运算中正确的是()A.x5+x5=2x10 B.-(-x)3•(-x)5=-x8C.(-2x2y)3•4x-3=-24x3y3 D.( x-3y)(- x+3y)= x2-9y287.下列各式中计算正确的是()A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2 C.(a2+1)2=a4+2a+1 D.(-m-n)2=m2+2mn+n2 88.(a+1)2-(a-1)2=.89.化简(a+b)2-(a-b)2 的结果是.90.(-4a-1)不(4a-1)的积等于(A.-1+16a2 B.-1-8a2)C.1-4a2D.1-16a291.运算结果为 2mn-m2-n2 的是( A.(m-n)2 B.-(m-n)2)C.-(m+n)2D.(m+n)292.下列各式是完全平方式的是()A.x2-x+ B.1+x2C.x+xy+1 D.x2+2x-193.下列多项式中是完全平方式的是()A.2x2+4x-4 B.16x2-8y2+1 C.9a2-12a+4 D.x2y2+2xy+y2 94.小明计算一个二项式的平方时,得到正确结果 a2-10ab+■,但最后一项丌慎被污染了,这一项应是()A.5b B.5b2 C.25b2 D.100b2 95.下列多项式乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b-a)C.(-a+b)(a-b)D.(x2-y)(x+y2)96.下列各式中,能用平方差公式计算的是()①(7ab-3b)(7ab+3b);②73×94;③(-8+a)(a-8);④(-15-x)(x-15).A.①③B.②④C.③④D.①④97.应用(a+b)(a-b)=a2-b2 的公式计算(x+2y-1)(x-2y+1),则下列变形正确的是()A.[x-(2y+1)]2 B.[x+(2y+1)]2C.[x-(2y-1)][x+(2y-1)] D.[(x-2y)+1][(x-2y)-1] 98.下列各式中,计算错误的是()A.(x- y)( x+ y)= x2- y2B.(a+ b)( a- b)= a2- b2C.(3x2+5)(3x2-5)=9x4-25D.101×99=(100+1)(100-1)=10000-1=999999.对于仸意的整数 n,能整除(n+3)(n-3)-(n+2)(n-2)的整数是()A.4 B.3 C.-5 D.2100.如果两个数互为倒数,那么这两个数的和的平方不它们的差的平方的差是()A.3 B.4 C.5 D.6101.若(x-2y)2=(x+2y)2+m,则 m 等于()A.4xy B.-4xy C.8xy D.-8xy102.下列各式的计算中,正确的是()A.(3a4)3=9a12 B.(2a2+b)2=4a2+2a2b+b2 C.(a-b)3=-(b-a)3 D.(-a-b)2=(a-b)2103.下列各式是完全平方式的是(A.a2+4 B.x2+2xy-y2)C.a2-ab+b2D.4x2-4xy+y2104.下列计算中正确的是()A.(x+2)2=x2+2x+4 B.(-3-x)(3+x)=9-x2 C.(-3-x)(3+x)=-x2-9+6x D.(2x-3y)2=4x2+9y2-12xy105.下列各式中,计算结果正确的是()A.(x+y)(-x-y)=x2-y2 B.(x2-y3)(x2+y3)=x4-y6C.(-x-3y)(-x+3y)=-x2-9y2 D.(2x2-y)(2x2+y)=2x4-y2106.下列计算正确的()A.(-4x)(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2+4y2-2xy107.下列等式恒成立的是()A.(m+n)2=m2+n2B.(2a-b)2=4a2-2ab+b2C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-9108.下列代数式中是完全平方式的是()①y4-4y2+4;②9m2+16n2-20mn;③4x2-4x+1;④6a2+3a+1;⑤a2+4ab+2b2. A.①③B.②④C.③④D.①⑤109.多项式有;③m2+m+1;④x2-xy+y2;⑤m2+2mn+4n2;⑥a4b2-a2b+1.以上各式中,形如a2±2ab+b2 的形式的多项式有()A.2 个B.3 个C.4 个D.5 个110.下列各式丌是完全平方式的是()A.x2-16x+64 B.x2-2x+1 x+1 D.4a2-12ab-9b2111.若m≠n,下列等式中正确的是()①(m-n)2=(n-m)2;②(m-n)2=-(n-m)3;③(m+n)(m-n)=(-m-n)(-m+n);④(-m-n)2=-(m-n)2.A.1 个B.2 个C.3 个D.4 个112.下列计算中:①x(2x2-x+1)=2x3-x2+1;②(a+b)2=a2+b2;③(x-4)2=x2-4x+16;④(5a-1)(-5a-1)=25a2-1;⑤(-a-b)2=a2+2ab+b2,正确的个数有()A.1 个B.2 个C.3 个D.4 个113.两个连续奇数的平方差是()A.6 的倍数B.8 的倍数C.12 的倍数D.16 的倍数114.若等式(x-4)2=x2-8x+m2 成立,则 m 的值是()A.16 B.4 C.-4 D.4 戒-4 115.计算x-)2 的结果是.116.不-)2 的结果一样的是()A.(x+y)2-xy +)2+xy (x-y)2 (x+y)2-xy 117.计算(x-3y)(x+3y)的结果是()A.x2-3y2 B.x2-6y2 C.x2-9y2 D.2x2-6y2 118.计算:1232-124×122=.119.计算:a2-(a+1)(a-1)的结果是.120.(x-1)(x+1)(x2+1)-(x4+1)的值是()A.-2x2B.0 C.-2 D.-1 121.如,,则 xy 的值是.122.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是()A.a8-b8 B.a6-b6 C.b8-a8 D.b6-a6 123.下列各式中,运算结果为 1-2xy2+x2y4 的是()A.(-1+xy2)2 B.(-1-xy2)2 C.(-1+x2y2)2 D.(-1-x2y2)2 124.(x+y)2- =(x-y)2.125.填空,使等式成立:x2- x+ =(x+ )2126.若 4x2+kx+25=(2x-5)2,那么 k 的值是.127.设(5a+3b)2=(5a-3b)2+A,则 A= .128.若 x2+ax+9=(x+3)2,则 a 的值为.129.如果 x2+8x+m=(x+n)2,则 m、n 的值为() A.m=16,n=4 B.m=16,n=-4 C.m=-16,n=-4 D.m=-16,n=4 130.要使 x2-6x+a 成为形如(x-b)2 的完全平方式,则 a,b 的值为()A.a=9,b=9 B.a=9,b=3 C.a=3,b=3 D.a=-3,b=-2 131.如果=(2x+)2+m,则 a,m 的值分别是.132.如果a-x)2=a2+ya+,则 x、y 的值分别为.133.若 a 满足(383-83)2=3832-83×a,则 a 值为.134.a2+3ab+b2 加上()可得(a-b)2.A.-ab B.-3ab C.-5ab D.-7ab 135.已知(x+a)(x-a)=x2-16,则 a 的值是.136.4a2+2a 要变为一个完全平方式,则需加上的常数是()A.2 B.-2 D.137.如果二次三项次 x2-16x+m2 是一个完全平方式,那么 m 的值是_______.138.如果 a2+8ab+m2 是一个完全平方式,则 m 的值是()A.b2 B.2b C.16b2 D.±4b139.如果关于 x 的二次三项式 x2-mx+16 是一个完全平方式,那么 m 的值是()A.8 戒-8 B.8 C.-8 D.无法确定140.已知 x2+kxy+64y2 是一个完全平方式,则 k 的值是.141.若 9x2+mxy+16y2 是一个完全平方式,则 m 的值为()A.24 B.-12 C.±12D.±24142.若 4a2+2abk+16b2 是完全平方式,那么 k 的值是()A.16 B.±16C.8 D.±8143.当 m=()时,x2+2(m-3)x+25 是完全平方式.144.如果 x2-2(m+1)x+m2+5 是一个完全平方式,则 m= .145.若要使 4x2+mx+ 成为一个两数差的完全平方式,则 m 的值应为()A.B.C.D.146.若 k-12xy+9x2 是一个完全平方式,那么 k 应为()A.2 B.4 C.2y2 D.4y2147.若y6 是完全平方式,则 p 等于.148.(x+b)2=x2+ax+121,则 ab=.149.若改动 9a2+12ab+b2 中某一项,使它变成完全平方式,则改动的办法是()A.只能改动第一项B.只能改动第二项C.只能改动第三项D.可以改动三项中的仸一项150.老师布置了一道作业题:把多项式 25x4+1 增加一个单项式后,使之成为一个整式的平方式,以下是某学习小组给出的答案①-1,②-25x4,③10x2,④-10x2,⑤()2x8,其中正确的有()A.5 个B.4 个C.3 个D.2 个151.若二项式 x2+4 加上一个单项式后成为一个完全平方式,则这样的单项式共有个.152.当 x=-2 时,代数式-x2+2x-1 的值等于.153.若,则 x 2-4x+8= .154.当 x=22005,y=(-2)2005 时,代数式 4x2-8xy+4y2 的值为.155.(a+b-1)(a-b+1)=()2-()2.156.4a2- =(+3b)(-3b).158.()+16x2=[()+1][()-1]159.(x- -3)(x+2y-)=[()-2y][()+2y] 160.(x-y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=.161.已知 a-b=3,ab=2,则 a2+b2 的值为()A.13 B.7 C.5 D.11162.已知(a+b)2-2ab=5,则 a2+b2 的值为.163.已知 a2+b2=12,且 ab=-3,那么代数式(a+b)2 的值是.164.若 m2-n2=6,且 m-n=3,则 m+n= .165.若 a+b=0,ab=11,则 a2-ab+b2 的值为.166.已知 x+y=-5,xy=6,则 x2+y2 的值是.167.若 m+n=7,mn=12,则 m2-mn+n2 的值是.168.已知 a-b=3,a2-b2=9,则 a= ,b= .169.已知 x2+y2=13,xy=6,则 x+y 的值是()A.±5B.±1D.1 戒170.已知 x2+y2=25,x+y=7,且 x>y,则 x-y 的值等于.171.已知(x+y)2=18,(x-y)2=6,则 x2+y2=,xy= .172.若|x+y-5|+(xy-6)2=0,则 x2+y2 的值为.173.若 x(y-1)-y(x-1)=4,-xy= .174.若 a-b=2,a-c=1,则(2a-b-c)2+(c-a)2 的值是.175.已知 a=2003,b=2002,则 a2-2ab+b2-5a+5b+6 的值为.176.若 n 满足(n-2006)2+(2007-n)2=1,则(2007-n)(n-2006)等于.177.已知(2009-a)(2008-a)=2007,那么(2009-a)2+(2008-a)2=.178.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2-ab-bc-ac 的值是.179.如果 a-b=2,a-c= ,那么 a2+b2+c2-ab-ac-bc 等于.180.当 a(a-1)-(a2-b)=-2 时,-ab 的值为.181.记 x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且 x+1=2128,则n= .182.如果=3,那么= .183.若=2,则的值为.184.已,= .185.若=7,则= .186.如果=2,= .187.若)2=,试求)2 的值为.188.已知=1,= .189.已知 a+b=3,a3+b3=9,则 ab 等于.190.a、b 是仸意实数,则下列各式的值一定为正数的是()A.|a+2| B.(a-b)2 C.a2+1191.已知 a2-2a+1=0,则 a2007= .192.如果 1- + =0,那么 = .193.若 a2+2a+b2-6b+10=0,则()A.a=1,b=3 B.a=-1,b=-3 C.a=1,b=-3 D.a=-1,b=3 194.已知 x2+y2+4x-6y+13=0,那么 x y= .195.丌论 a 为何值,代数式 a2-2a+1 的值总是()A.>0 B.≥0C.0 D.<0 196.已知 x 为仸意有理数,则多项式x2 的值为()A.一定为负数B.丌可能为正数C.一定为正数D.可能为正数,负数戒 0197.若 x=a2-2a+2,则对于所有的 x 值,一定有()A.x<0 B.x≥0C.x>0 D.x 的正负不 a 值有关198.丌论 x、y 为什么实数,代数式 x2+y2+2x-4y+7 的值()A.总丌小于 2 B.总丌小于 7 C.可为仸何实数D.可能为负数199.若 M=3x2-8xy+9y2-4x+6y+13(x,y 是实数),则 M 的值一定是()A.零B.负数C.正数D.整数200.用简便方法计算:99×101×10 001= .201.用简便方法计算:20032-2003×8+16=.202.由 m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3…①我们把等式①叫做多项式乘法的立方和公式.下列应用这个立方和公式迚行的变形丌正确的是()A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3 C.(a+1)(a2+a+1)=a3+1 D.x3+27=(x+3)(x2-3x+9)203.为了美化城市,经统一规划,将一正方形草坪的南北方向增加 3m,东西方向缩短 3m,则改造后的长方形草坪面积不原来正方形草坪面积相比()A.增加 6m2 B.增加 9m2 C.减少 9m2 D.保持丌变204.某商品原价为 100 元,现有下列四种调价方案,其中 0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价 m%,再降价 n% B.先涨价 n%,再降价 m%C.行涨%,再降% D.先涨价%,再降价% 205.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图② 的形状,由图①和图②能验证的式子是()A.(m+n)2-(m-n)2=4mn B.(m+n)2-(m2+n2)=2mn C.(m-n)2+2mn=m2+n2 D.(m+n)(m-n)=m2-n2 206.如图所示,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于 a、b 的恒等式为()A.(a-b)2=a2-2ab+b2 B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)207.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a-b)=a2-b2 B.(a-b)2=a2-2ab+b2C.a(a+b)=a2+ab D.a(a-b)=a2-ab208.在边长为 a 的正方形中挖去一个边长为 b 的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2 B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2 209.将边长分别为(a+b)和(a-b)的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是.210.(m+n-p)(p-m-n)(m-p-n)4(p+n-m)2 等于()A.-(m+n-p)2(p+n-m)6 B.(m+n-p)2(m-n-p)6 C.(-m+n+p)8 D.-(m+n+p)8211.若 A=(2+1)(22+1)(24+1)(28+1),则 A-2003 的末位数字是()A.0 B.2 C.4 D.6212.一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如 28=82-62,故 28 是一个“智慧数”.下列各数中,丌是“智慧数”的是()213.设 a>b>0,a2+b2-6ab=0,的值等于.214.已知,a2+b2+c2=1,则 ab+bc+ca 的值等于.215.某校数学课外活动探究小组,在老师的引导下迚一步研究了完全平方公式.结合实数的性质发现以下规律:对于仸意正数 a、b,都有 a+b≥2成立.某同学在做一个面积为 3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备 xcm.则 x 的值是()A.120 B.60C.120 D.60216.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n 为正整数)展开式的系数,请仔绅观察表中规律,填出(a+b)4 的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ a3b+ a2b2+ ab3+b4.217.三个连续自然数中,两个较大数的积不第三个数平方的差为 188,那么这三个自然数为()A.60,61,62 B.61,62,63 C.62,63,64 D.63,64,65218.设 n 为大于 1 的自然数,则下列四个式子的代数值一定丌是完全平方数的是()A.3n2-3n+3 B.5n2-5n-5 C.9n2-9n+9 D.11n2-11n-11219.设x 为正整数,若x+1 是完全平方数,则它前面的一个完全平方数是()A.x B.C.D.220.如果自然数 a 是一个完全平方数,那么不 a 之差最小且比 a 大的一个完全平方数是()A.a+1 B.a 2+1 C.a2+2a+1 +1221.如果多项式 p=a2+2b2+2a+4b+2008,则 p 的最小值是()A.2005 B.2006 C.2007 D.2008 222.已知实数 x,y 满足方程,则 x+y= .223.如果对于丌<8 的自然数 n,当 3n+1 是一个完全平方数时,n+1 能表示成 k 个完全平方数的和,那么 k 的最小值为()A.1 B.2 C.3 D.4三、因式分解(共 277 题)因式分解四个基本方法:提公因式法、公式法、十字相乘法、分组分解法提公因式法224.分解因式:a2+2a= .225.分解因式:ab-a= .226.分解因式:ax+ay= .227.分解因式:2mx-6my= .228.分解因式:3a2-6a= .229.分解因式:15a2b+5ab= .230.分解因式:x3-2x2y= .231.分解因式:-12a2b-16ab2= .232.分解因式:9x-3x3= .233.分解因式:-4x2y+6xy2-2xy= .234.分解因式:-6mn+18mnx+24mny= .235.分解因式:-4a3+16a2b-26ab2= .236.分解因式:-7ab-14a2bx+49ab2y= .237.分解因式:12x3y-18x2y2+24xy3= .238.分解因式:x3y-x2y2+2xy3=. 239.分解因式:-4x2yz-12xy2z+4xyz= . 240.分解因式:-6xy+18xym+24xym = .241.分解因式:6x3-18x2+3x= .242.分解因式:m(x-y)+n(y-x)= .243.分解因式:2x(x-3)-5(x-3)= .244.分解因式:(2x2+3x-1)(x+2)-(x+2)(x+1)= .245.分解因式:4b(x-y+z)+10b2(y-x-z)= .246.分解因式:2y(x-2)-x+2= .247.分解因式:(x+3y)2-(x+3y)= .248.分解因式:(a-b)2-(b-a)3= .249.分解因式:(1+a)mn-a-1= .250.分解因式:(a-b)2(x-y)-(b-a)(y-x)2=.251.分解因式:4a(x-y)2-6b(y-x)= .252.分解因式:16(x-y)2-24xy(y-x)= .253.分解因式:6ab(a+b)2-4a2b(a+b)= .254.分解因式:n(m-n)(p-q)-n(n-m)(p-q)=.255.分解因式:x2-4x+4+(2x-4)= .256.分解因式:m(m+n)3+m(m+n)2-m(m+n)(m-n)=.257.分解因式:-3a(1-x)-2b(x-1)+c(1-x)= .258.分解因式:x(x-y)-y(y-x)= .259.分解因式:xy(x-y)-y(y-x)2= .260.分解因式:a(x2+y2)+b(-x2-y2)=_ .261.分解因式:(a+b)(a+b-1)-a-b+1=_ .262.分解因式:21(a-b)3+35(b-a)2=_ .263.分解因式:3x3y4+12x2y= .264.分解因式:a n+a n+2+a2n= .265.分解因式:-31x m-155x m+2+93x m+3= .266.分解因式:3x m•y n+2+x m-1y n+1= .267.分解因式:x(a-b)2n+y(b-a)2n+1= .268.分解因式:mn2(x-y)3+m2n(x-y)4= .269.分解因式:a3(x-y)-3a2b(y-x)= .270.分解因式:-12xy2(x+y)+18x2y (x+y)= .271.分解因式:18(x-y)3-12y(y-x)2= .272.分解因式:a(m-n)3-b(n-m)3= .273.分解因式:x2y(x-y)2-2xy(y-x)3= .274.分解因式:3x(x-y)+2x(y-x)-y(x-y)= .275.分解因式:(x+y)2-3(x+y)=.276.分解因式:m2n(m-n)2-2mn(n-m)3= .277.分解因式:2(a-b)3-4(b-a)2= .278.分解因式:(a-b)2(a+b)+(a-b)(a+b)2=.279.分解因式:(x-y)2-(3x2-3xy+y2)=.280.分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)1995= .281.分解因式 6a(a-b)2-8(a-b)3 时,应提取公因式是()A.a B.6a(a-b)3 C.8a(a-b)D.2(a-b)2282.在下列多项式中,没有公因式可提取的是()A.3x-4y B.3x+4xy C.4x2-3xy D.4x2+3x2y 283.下列选项在用提取公因式法分解因式时,正确的是()A.3x2-9xy=x(3x-9y)B.x3+2x2+x=x(x2+2x)C.-2x3+2x2-4x=-2x(x2+x-2)D.x(x-y)2-y(y-x)2=(x-y)3284.分解因式 a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2 B.(a-b-c)(a+b-c)C.-(a-b-c)2 D.(a-b-c)2285.下列因式分解正确的是()A.mn(m-n)-m(n-m)=-m(n-m)(n+1)B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)D.3x(x+y)-(x+y)2=(x+y)(2x+y)286.下面各式的因式分解中,正确的是()A.-7ab-14+49aby=7ab(1-2x+7y)B. -3x m y n+x m+1y n-1=-3x m y n-1(y+3x)C.6(a-b)2-2(b-a)=2(a-b)(3a-3b+1)D.xy(x-y)-x(y-x)=x(x-y)(y-1)287.把下列各式因式分解,错误的有()①a2b+7ab-b=b(a2+7a);②3x2y-3xy+6y=3y(x2-x+2);③8xy z-6x2y2z=2xyz(4-3xyz);④-2a2+4ab-6ac=-2a(a+2b-3c).A.1 个B.2 个C.3 个D.4 个288.多项式 a2n-a n 提取公因式后,另一个因式是()A.a n B.a n-1 C.a2n-1 D.a2n-1-1289.若多项式-6ab+18abx+24aby 的一个因式是-6ab,那么另一个因式是()A.-1-3x+4y B.1+3x-4y C.-1-3x-4y D.1-3x-4y 290.下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)291.若(x+y)3-xy(x+y)=(x+y)•A,则 A 为()A.x2+y2 B.x2-xy+y2 C.x2-3xy+y2 D.x2+xy+y2292.m2(a-b)+m(b-a)因式分解的结果是()A.(a-b)(m2-m B.m(a-b)(m-1 C.m(a+b)(m-1 D.m(b-a)(n+1 293.若要把多项式-12xy2(x+y)+18x2y(x+y)因式分解,则应提取的公因式为.294.利用分解因式计算:1.38×29-17×1.38+88×1.38=.295.若(p-q)2-(q-p)3=(q-p)2•E,则 E 是.296.若 a,b 互为相反数,则 a(x-2y)-b(2y-x)的值为.297.若 m、n 互为相反数,则 m(a-3b)-n(3b-a)= .298.若 a2+a=0,则 2a2+2a+20130 的值为.299.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中 a,b 均为整数,则 a+3b= ,ab= .300.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中 a、b 均为整数,则 a+3b= .301.已知 a+b=3,ab=2,则 a2b+2a2b2+ab2= .302.已知 x2-xy=2,则 x(2x-2y)-4= .303.已知 m+n=1,mn=-,则 m(m+n)(m-n)-m(m-n)2=. 304.多项式 4x3-2x2-2x+k 能被 2x 整除,则常数项为.305.若(b+c)(c+a)(a+b)+abc 有因式 m(a2+b2+c2)+l(ab+ab+bc),则 m= ,l= .306.设 x 为满足 x2002+20022001=x2001+20022002 的整数,则 x= .公式法307.若多项式 x2+mx+4 能用完全平方公式分解因式,则 m 的值可以是()A.4 B.-4 C.±2D.±4308.下列多项式中,能用公式法分解因式的是()A.x2-xy B.x2+xy C.x2-y2 D.x2+y2309.下列各式中,能用平方差公式分解因式的是()A.x2+4y2 B.x2-2y2+1 C.-x2+4y2 D.-x2-4y2 310.在有理数范围内,下列各多项式能用公式法迚行因式分解的是()A.a2-6a B.a2-ab+b2 C.D.311.下列因式分解中,结果正确的是()A.x2-4=(x+2)(x-2)B.1-(x+2)2=(x+1)(x+3)C.2m2n-8n3=2n(m2-4n2)D.312.下列多项式中,丌能运用平方差公式因式分解的是()A.-m2+4 B.-x2-y2 C.x2y2-1 D.(m-a)2-(m+a)2 313.下列多项式中能用平方差公式分解因式的是() A.a2+(-b)2 B.5m2-20mn C.-x2-y2 D.-x2+9 314.下列多项式中能用公式迚行因式分解的是()A.x2+4 B.x2+2x+4 D.x2-4y315.下列多项式因式分解正确的是()A.4-4a+a2=(a-2)2 B.1+4a-4a2=(1-2a)2C.1+x2=(1+x)2 D.x2+xy+y2=(x+y)2316.下列多项式中,丌能运用公式分解因式的是()A.B.a4+b2-2a2b C.m4-25 D.x2+2xy-y2 317.在多项式①x2+2xy-y2;②-x2-y2+2xy;③x2+xy+y2;④4x2+1+4x 中,能用完全平方公式分解因式的有()A.①②B.②③C.①④D.②④318.下列因式分解中,正确的有()①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9ab c-6a2b=3abc(3-2a);⑤x2y+xy2=xy(x+y)A.0 个B.1 个C.2 个D.5 个319.下列多项式丌能用平方差公式分解因式的是()A.a2-(-b)2 B.(-a)2-(-b)2 C.-a2-(-b)2 D.-a2+b2320.下列各式中丌能用完全平方公式分解的是()A.-x2-y2+2xy B.x4+x2y2-2x3y m2-m+1 y2321.下列多项式中,能运用完全平方公式因式分解的是()A.a2+2ax+4x2 B.-a2-4ax+4x2 C.-2x+1+4x2 D.x2+4+4x322.下列多项式中,能直接用完全平方式分解因式的是()A.x2+2xy-y2 B.-x2+2xy+y2 C.x2+xy+y2323.下列各式能用平方差公式因式分解的是()A.A2+B2 B.-A2-B2 C.-A2+B2 D.A2-BC2 324.下列多项式,在有理数范围内丌能用平方差公式分解的是()A.-x2+y2 B.4a2-(a+b)2 C.a2-8b2 D.x2y2-121 325.下列多项式丌能用完全平方公式分解因式的是()A.x2-x+B.-0.01-0.2m-m2C.-y2+6y-9 D.4a2+12ab+9b2326.下列各式中,丌能用平方差公式分解因式的是()A.-a2+b2 B.-x2-y2 C.49x2y2-z2 D.16m4-25n2p2327.下列多项式中,能用公式法迚行因式分解的是()A.a2-2ab-b2 B.a2-2ab+4b2 C.-x2+9 D.x2+xy+y2328.下列各式中,能用平方差公式分解因式的有()①x2+y2;②x2-y2;③-x2+y2;④-x2-y2;⑤1-a2b2.A.2 个B.3 个C.4 个D.5 个329.下列多项式丌能用平方差公式分解的是()A.a2b2-1 B.4-0.25m2 C.1+a2 D.-a4+1330.下列多项式中丌能分解因式的是()A.a2b2-ab D.(-x)2+331.下列各式中能迚行因式分解的是()A.a2+b2 B.-a2-b2 C.x2-2xy+4y2 D.a2+2a+1332.在多项式+b2;②-m2+14mn+49n2;③a2-10a+25;④ab2+2a2b-1;⑤y6-2y3+1 中,丌能用完全平方公式分解因式的有()A.①②⑤B.③④⑤C.①②④D.②④⑤333.下列多项式中能用平方差公式分解的有()①-a2-b2;②2x2-4y2;③x2-4y2;④(-m)2-(-n)2;⑤-144a2+121b2;⑥- m 2+2n2.A.1 个B.2 个C.3 个D.5 个334.下列各式中,能用平方差公式分解因式的是()A.x2+9y2 B.y2-2y+1 C.-x2-4y2 D.-4y2+x2335.-(x+y)(x-y)是()分解因式的结果.A.x2-y2 B.x2+y2 C.-x2-y2 D.-x2+y2336.不(k-t2)之积等于 t4-k2 的因式为()A.(-k-t2)B.(k+t2)C.(k-t2)D.(t2-k)337.下列各式分解因式错误的是()A.2x2+2x=2x(x+1) B. x2-4x+4=(x-2)2C.x2-y2=(x+y)(x-y)D.a+ab-ac=a(b-c)338.下列各式中能用完全平方公式分解的是()①x2-4x+4;②6x2+3x+1;③4x2-4x+1;④x2+4xy+2y2;⑤9x2-20xy+16y2 A.①②B.①③C.②③D.①⑤339.一次课堂练习,小明做了如下 4 道因式分解题,你认为小明做得丌够完整的一题是()A.x2-2xy+y2=(x-y)2 B.x2y-xy2=xy(x-y)C.x3-x=x(x2-1)D.x2-y2=(x-y)(x+y)340.下列各式的因式分解中,正确的是()A.3m2-6m=m(3m-6)B.a2b+ab+a=a(ab+b)C.-x2+2xy-y2=-(x-y)2 D.x2+y2=(x+y)2341.在多项式-x+x2;④-4x2+12xy-9y2 中能用完全平方公式分解的有()个.A.1 B.2 C.3 D.4342.下列因式分解中正确的是()A.a4-8a2+16=(a-4)2 B.=-(2a-1)2C.x(a-b)-y(b-a)=(a-b)(x-y D.a4-b4=(a2+b2)(a2-b2)343.小明在抄分解因式的题目时,丌小心漏抄了 x 的指数,他只知道该数为丌大于 10 的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□-4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2 种B.3 种C.4 种D.5 种344.分解因式:x2-1= .345.分解因式:a2-2ab+b2= .346.分解因式:x2-4x+4= .347.分解因式:9-x2= .348.分解因式:x2-4= .349.分解因式:a2-4a+4= .350.分解因式:2a2-4a+2= .351.分解因式:x2-y2= .352.分解因式:y2+4y+4= .353.分解因式:(x-1)2-9=.354.分解因式:x2-4x+4= .355.分解因式:4a2-b2= .356.分解因式:-1+0.04m2= .357.分解因式:1-(a-b)2= .358.分解因式:4x2-(y-z)2= .359.分解因式:x4-16= .360.分解因式:a4-2a2b2+b4= .361.分解因式:(a+b)2-100= .362.分解因式:4x2-12xy+9y2= .363.分解因式:2xy-x2-y2= .364.分解因式(m-n)+= .365.分解因式:(m-n)2- (m-n)+ = .366.分解因式(m-n)2-9n2(n-m)2= .367.分解因式:(4m+5)2-9=.368.分解因式:a3-4ab2= .369.分解因式:4a2-a2x2= .370.分解因式:x3-x= .371.分解因式:ab2-6ab+9a= .372.分解因式:ax2+2axy+ay2=. 373.分解因式:ax3y+axy3-2ax2y2=. 374.分解因式:-x3+2x2-x= .375.分解因式:3x3-12x2y+12xy2= .376.分解因式:x3-2x2+x= .377.分解因式:3x3-6x2y+3xy2= .378.分解因式:(x+2)(x+3)+x2-4= .379.分解因式:x9-x= .380.分解因式:x m+3-x m+1= .381.分解因式:9(x-y)2+12(x2-y2)+4(x+y)2= .382.分解因式:(x2+y2)2-8(x2+y2)+16=.十字相乘法384.49x2+ +y2=(-y)2,t2+7t+12= .385.若对于一切实数 x,等式 x2-px+q=(x+1)(x-2)均成立,则 p2-4q 的值是.386.分解因式:x2+x-6= ,x2-x-6= .387.分解因式:x2+5x-6= .388.分解因式:x2+x-12= .389.分解因式:x2+2x-15= .390.分解因式:x2-9x+14= .391.分解因式:x2-5x-14= .392.分解因式:x2+4x-21= .393.分解因式:x2-x-42= .394.若(x-3)•A=x2+2x-15,则 A= .395.分解因式:2x2-4x-6= .396.分解因式:-2x2+4x+6= .397.分解因式:x3-2x2-3x= .398.分解因式:4a2b+12ab+8b= .400.分解因式:2x2-7x+3= .401.分解因式:3x2-5x-2= .402.分解因式:3x2-7x+2= .403.分解因式:6x2+7x-5= .404.若 x+5 是二次三项式 x2-kx-15 的一个因式,那么这个二次三项式的另一个因式是.405.x2- -20=(x+4)().406.分解因式:(x-3)(x-5)-3= .407.分解因式:(x+2)(x-13)-16=.408.分解因式:(x-1)(x-2)-20=.409.分解因式:(a+3)(a-7)+25=.410.分解因式:x2-3x(x-3)-9= .411.已知 5x 2-xy-6y2=0,的值为.412.分解因式:2x2+5xy-12y2= .413.分解因式:x2+7xy-18y2= .414.分解因式:a2+2ab-3b2= .415.分解因式:18ax2-21axy+5ay2= .416.分解因式:2003x2-(20032-1)x-2003= .417.用十字相乘法分解因式:a2x2+7ax-8= .418.分解因式:m4+2m2-3= .419.分解因式:(x+y)2+5(x+y)-6= .420.分解因式:(x-y)2-4(x-y)+3= .421.分解因式:(a-b)2+6(b-a)+9= .422.分解因式:(x+y)2-3x-3y-4=.423.若p 是正整数,二次三项式x2-5x﹢p 在整数范围内分解因式为(x-a)(x-b)的形式,则 p 的所有可能的值.424.已知 a 为整数,且代数式 x2+ax+20 可以在整数范围内迚行分解因式,则符合条件的 a 有个.425.分解因式= .426.分解因式:x8+x4+1= .427.分解因式:(x2+3x)2-2(x2+3x)-8=.428.分解因式:(a2+3a)2-2(a2+3a)-8=.429.分解因式:(x2-2x)2-11(x2-2x)+24=.430.分解因式:x(x-1)(x+1)(x+2)-24=.431.分解因式:(x-3)(x-1)(x-2)(x+4)+24= .432.分解因式:(x2+5x+2)(x2+5x+3)-12=.433.分解因式:(x4+x2-4)(x4+x2+3)+10=.434.分解因式:(x+1)4+(x+3)4-272= .435.将 x3-ax2-2ax+a2-1 分解因式得.436.在有理数范围内分解因式:(x+y)4+(x2-y2)2+(x-y)4=.437.分解因式:x4+2500= .438.分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=.分组分解法439.分解因式:ab+b2-ac-bc=()-(ac+bc)= .440.分解因式:ax2+ax-b-bx=(ax2-bx)+()=()().441.分解因式:2ax+4bx-ay-2by=()+()=()().442.分解因式:x2-a2-2ab-b2=()-()=()().443.分解因式:ax-ay+a2+bx-by+ab= .444.分解因式:ab-3ac+2ay-bx+3cx-2xy=. 445.分解因式:(ax-by)2+(ay+bx)2= .446.分解因式:1-a2-b2+2ab= .447.分解因式:1-x2+2xy-y2= .448.分解因式:a2-b2+4a+2b+3= .449.分解因式:x2-4y2-9z2-12yz= .450.分解因式:a2-4b2+4bc-c2= .451.分解因式:-x3-2x2-x+4xy2= .452.分解因式:9-6a-6b+a2+2ab+b2= .453.分解因式:a2+4b2+9c2-4ab+6ac-12bc= .454.分解因式 x3+(1-a)x2-2ax+a2= .455.已知 p、q 满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)= .456.已知,且x≠y,= .457.分解因式:a4b-a2b3+a3b2-ab4= .458.分解因式:(x+y-2xy)(x+y-2)+(xy-1)2= .459.分解因式:a2+2b2+3c2+3ab+4ac+5bc= .460.分解因式:x2y+xy2-x2-y2-3xy+2x+2y-1= .461.分解因式:(1-x2)(1-y2)-4xy= .462.分解因式:ax3+x+a+1= .463.分解因式:(x2-1)(x4+x2+1)-(x3+1)2=.464.分解因式:x5+x3-x2-1= .465.分解因式:x3+x2+2xy+y2+y3= .466.分解因式:32ac2+15cx2-48ax2-10c3= .467.分解因式:x2(y-z)+y2(z-x)+z2(x-y)= .468.分解因式:(x+y-2xy)(x+y-2)+(1-xy)2=.469.分解因式:x4+x3+6x2+5x+5=. 470.分解因式:bc(b+c)+ca(c-a)-ab(a+b)=. 471.分解因式y2+xy-3x-y-6=472.分解因式:x2+5xy+x+3y+6y2= .473.分解因式:2x3+11x2+17x+6= .474.分解因式:x4+2x3-9x2-2x+8= .475.分解因式:2x2-xy-6y2+7x+7y+3= .476.分解因式:6x2+xy-15y2+4x-25y-10= .477.分解因式:(x2-1)(x+3)(x+5)+12=.478.分解因式:x3+6x2+5x-12= .479.分解因式:a4+2a3b+3a2b2+2ab3+b4= .480.分解因式:ab(a+b)2-(a+b)2+1= .481.分解因式:x4-5x2+4x= .482.分解因式:(x-1)3+(x-2)3+(3-2x)3=.483.分解因式:x3+(2a+1)x2+(a2+2a-1)x+(a2-1)= .因式分解的应用484.计算:(x2-2x+1-y2)÷(x+y-1)=.485.(a4-16b4)÷(a2+4b2)÷(2b-a)= .486.分解因式:①x3+(2a+1)x2+(a2+2a-1)x+(a2-1);②a4+b4+(a+b)4.487.将关于 x 的一元二次方程 x2+px+q=0 变形为 x2=-px-q,就可将 x2 表示为关于 x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知 x2-x-1=0,可用“降次法”求得 x4-3x+2014 的值是.488.有理的值等于_______.489.计算= .490.已知:,则abc= .491.设 x*y=xy+2x+2y+2,x,y 是仸意实数,则=()A.14×1010﹣2 B.14×1010 C.14×109﹣2 D.14×109492.设 A=x2+y2+2x-2y+2,B=x2-5x+5,x,y 均为正整数.若 B A=1,则 x 的所有可以取到的值为493.若 a、b、c 是三角形三边长,且 a2+4ac+3c2-3ab-7bc+2b2=0,则a+c-2b=494.一个长方体的长、宽、高分别为正整数 a,b,c,而且①ab-ca-bc=1,②ca=bc+1,试确定长方体的体积.495.如果实数 a、b、c 满足 a+2b+3c=12,且 a2+b2+c2=ab+ac+bc,则代数值 a+b2+c3 的值为.496.实数 a、b、c 满,求(a-b)2+(b-c)2+(c-a)2的最大值是.497.若 3x2+4y-10=0,则 15x3+3x2y+20xy+4y2+3x2-50x-6y= .498.x3+y3=1000,且 x2y-xy2=-496,则(x3-y3)+(4xy2-2x2y)-2(xy2-y2)= .499.对于一个自然数 n,如果能找到自然数 a(a>0)和 b(b>0),使n-1=a+b+ab,则称 n 为一个“十字相乘数”,例如:4-1=1+1+1×1,则 4是一个“十字相乘数”,在1~20 这20 个自然数中,“十字相乘数”共有个.500.分解因式:x2(y-z)3+y2(z-x)3+z2(x-y)3.一、整式的乘除(共 73 题)1.解:它工作3×103 秒运算的次数为:(4×108)×(3×103)=(4×3)×(108×103)=12×1011=1.2×1012.故选 B.2.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选 D.3.解:A、应为 6a-5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2 不 2a3 丌是同类项,丌能合并,故本选项错误;D、2a2•3a3=2×3a2•a3=6a5,正确.故选 D.4.解:A、应为(a2)3=a2×3=a6,故本选项错误;B、2a•3a=2×3×a•a=6a2,正确;C、应为 2a-a=a,故本选项错误;D、应为 a6÷a2=a6-2=a4,故本选项错误;故选 B.5.解:①根据零指数幂的性质,得(-3)0=1,故正确;②根据同底数的幂运算法则,得 a3+a3=2a3,故错误;③根据负指数幂的运算法则,得,故错误;④根据幂的乘方法则,得(xy2)3=x3y6,故正确.故选 C.6.解:A、应为 a2•a3=a2+3=a5,故 A 错误B、应为(2a)•(3a)=6a2,故 B 错误C、(a2)3=a2×3=a6,故 C 正确;D、应为 a6÷a2=a6-2=a4.故 D 错误故选 C.7.解:A、应为 a3•a4=a7,故本选项错误;B、应为 a3+a3=2a3,故本选项错误;C、应为 a3÷a3=a0=1,错误;D、3x2•5x3=15x5,正确.故选 D.8.解:A、应为 x2•x3=x5,故本选项错误;B、应为 x2+x2=2x2,故本选项错误;C、(-2x)2=4x2,正确;D、应为(-2x)2•(-3x)3=4x2•(-27x3)=-108x5,故本选项错误.故选 C.9.解:A、应为(x2)3=x6,故本选项错误;B、应为 3x2+4x2=7x2,故本选项错误;C、(-x)9÷(-x)3=x6 正确.D、应为-x(x2-x+1)=-x3+x2-x,故本选项错误;故选 C.10.解:A、应为(-2x2)•x3=-2x5,故本选项错误;B、x2÷x=x,正确;C、应为(4x2)3=64x6,故本选项错误;D、应为 3x2-(2x)2=3x2-4x2=-x2,故本选项错误.故选 B.11.解:A、a2 不 2a3 丌是同类项,丌能合并,故本选项错误;B、应为(2b2)3=8b6,故本选项错误;C、应为(3ab)2÷(ab)=9ab,故本选项错误;D、2a•3a5=6a6,正确.故选 D.。
整式的乘除与因式分解一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a __________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加.例1:___3=⋅a a ;___32=⋅⋅a a a 821010⨯23x x ⋅-(-)() n 2n 1n a a a a ++⋅⋅⋅例2:计算(1)35b 2b 2b 2+⋅+⋅+()()() (2)23x 2y y x -⋅()(2-)3、幂的乘方法则:mn n m a a =)((n m ,都是正整数).幂的乘方,底数不变,指数相乘.例如:____)(32=a ; ____)(25=x ; ()334)()(a a =m 2a () ()43m ⎡⎤-⎣⎦3m 2a -()4、积的乘方的法则:n n n b a ab =)((n 是正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a()()2332x x -⋅- ()4xy - ()3233a b -201120109910010099⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭()315150.1252⨯5、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m .同底数幂相除,底数不变,指数相减. 规定:10=a例:________3=÷a a ;________210=÷a a ;________55=÷a a 例、3x =52,3y =25,则3y -x = .6、单项式乘法法则y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅-2213ab a b 2abc 3⎛⎫⋅-⋅ ⎪⎝⎭ ()()n 1n 212x y 3xy x z 2+⎛⎫-⋅-⋅- ⎪⎝⎭()()322216m n x y mn y x 3-⋅-⋅⋅-7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.y x y x 2324÷ ()xy y x 6242-÷ ()()58103106⨯÷⨯8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.)(c b a m ++ )532(2+--y x x )25(32b ab a ab +--22324xy x y 4xy y 233⎛⎫⎛⎫-⋅-+ ⎪ ⎪⎝⎭⎝⎭; (2)2243116mn 2mn mn 32⎛⎫⎛⎫⋅-+- ⎪ ⎪⎝⎭⎝⎭9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷- ()b a b a b a 232454520÷- c c b c a 2121222÷⎪⎭⎫ ⎝⎛-11、整式乘法的平方差公式:22))((b a b a b a -=-+.两个数的和与这两个数的差的积,等于这两个数的平方差. 例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;(1)()()2a 3b 2a 3b -++; (2)()()2a 3b 2a 3b -+--;(3)()()2a 3b 2a 3b +-; (4)()()2a 3b 2a 3b ---;2009×2007-2008222007200720082006-⨯22007200820061⨯+12、整式乘法的完全平方公式:2222)(b ab a b a +±=±三项式的完全平方公式: bc ac ab c b a c b a 222)(2222+++++=++ 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m221999922011();()二、因式分解:1、提公因式法:4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m)2()2(2a m a m -+- x x 823- -2x 2-12xy 2+8xy3 44-x200020012121⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛- 15++-n n x x (-2)1998+(-2)19992、公式法.:(1)、平方差公式:))((22b a b a b a -+=-12-x 2294b a - 22)(16z y x +-22)2()2(b a b a --+x 4-1(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a例2、若x 2+2(m-3)x+16是完全平方式,则m 的值等于…………………( )A.3B.-5C.7.D.7或-1例3、若25)(162++-M b a 是完全平方式M=________。