江西省上饶市七年级(上)期末数学试卷
- 格式:docx
- 大小:91.60 KB
- 文档页数:14
江西省上饶市上饶县七年级(上)期末数学试卷一、细心填一填(每小题3分,共30分)1.(3分)数轴上,点A表示﹣2,则到点A距离等于2.5的点所表示的数为.2.(3分)﹣2的相反数是,﹣3的倒数是,绝对值等于5的数是.3.(3分)用“<”、“>”或“=”连接:(1)﹣2 +6(2)0 ﹣1.8(3)4.(3分)写出一个只含有字母a、b,且系数为1的五次单项式.5.(3分)一个锐角的余角是38°28′5′′,则这个角的补角是.6.(3分)写出一个与﹣2xy2是同类项的单项式.7.(3分)我国西部某省近三年来走入“希望小学”读书的失学儿童约有2.4×105人,这个数据是用四舍五入法得到的近似数,精确到位.8.(3分)若干桶方便面摆放在桌面上,如图所给出的是从不同方向看到的图形,从图形上可以看出这堆方便面共有桶.9.(3分)化简(直接写出结果):2(a﹣b)﹣(2a+3b)= .10.(3分)已知x=3是方程11﹣2x=ax﹣1的解,则a= .二、精心选一选(每小题2分,共20分)11.(2分)下列运算正确的()A.2x+2y=2xy B.5x+x=5x2C.﹣3mn+mn=﹣2mn D.8a2b﹣7a2b=112.(2分)下列展开图中,不能围成一个封闭的几何体的是()A.B.C.D.13.(2分)若四个有理数相乘,积为负数,则负因数的个数是()A.1B.2C.3D.1或314.(2分)利用一副三角板上已知度数的角,不能画出的角是()A.15°B.135°C.165°D.100°15.(2分)下列各组运算中,其值最小的是()A.﹣(﹣3﹣2)2B.(﹣3)×(﹣2)C.(﹣3)2÷(﹣2)2D.(﹣3)2÷(﹣2)16.(2分)轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船的方向是()A.南偏东42°B.东偏北48°C.南偏东48°D.东偏南48°17.(2分)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元18.(2分)百位数字是a,十位数字是b,个位数字是c,这个三位数是()A.abc B.a+b+c C.100a+10b+c D.100c+10b+a19.(2分)某工厂一季度的产值为m万元,二季度比一季度增加x%,则二季度的产值为()A.m•x%B.m+x%C.m(1+x%)D.m(1﹣x%)20.(2分)已知a、b、c在数轴上的位置如图所示,化简:|a+b|﹣|c﹣b|的结果是()A.a+2b﹣c B.﹣a﹣2b+c C.﹣a﹣c D.a+c三、耐心求一求(本题有5小题,共32分)21.(5分)计算:(﹣2)2+[18﹣(﹣3)×2]÷4.22.(5分)计算:72°35′÷2+18°33′×4.23.(10分)解下列方程:(1)﹣2(x﹣5)=8﹣(2)﹣=1.24.(6分)化简求值:2(3a2﹣5b)﹣[﹣3(a2﹣3b)],其中a=,b=﹣2.25.(6分)已知:如图,AO⊥BC,DO⊥OE.(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE=35°,求∠BOD的度数.四、开心做一做(共28分,26小题8分,27、28小题各10分)26.(8分)2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.(1)若∠A=60°,求∠BOC的度数;(2)若∠A=100°,则∠BOC的度数是多少?(3)若∠A=120°,则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.28.(10分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?2017-2018学年江西省上饶市上饶县七年级(上)期末数学试卷参考答案与试题解析一、细心填一填(每小题3分,共30分)1.(3分)数轴上,点A表示﹣2,则到点A距离等于2.5的点所表示的数为﹣4.5或0.5 .【分析】数轴上距离某个点是一个定值的点有两个,左右各一个,所以到点A距离等于 2.5的点所表示的数为﹣2﹣2.5=﹣4.5或﹣2+2.5=0.5.【解答】解:若该点在A的左边,则它表示的数为:﹣2﹣2.5=﹣4.5;若该点在A的右边,则它表示的数为:﹣2+2.5=0.5.所以答案为:﹣4.5或0.5.【点评】主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)﹣2的相反数是 2 ,﹣3的倒数是,绝对值等于5的数是±5 .【分析】直接利用互为相反数的定义以及倒数、绝对值的定义分别分析得出答案.【解答】解:﹣2的相反数是:2,﹣3的倒数是:﹣,绝对值等于5的数是:±5.故答案为:2,﹣,±5.【点评】此题主要考查了互为相反数的定义以及倒数、绝对值的定义,正确把握相关定义是解题关键.3.(3分)用“<”、“>”或“=”连接:(1)﹣2 <+6(2)0 >﹣1.8(3)>【分析】(1)直接利用有理数大小比较的法则:正数大于一切负数判断即可;(2)直接利用有理数大小比较的法则:负数都小于0判断即可;(3)直接利用有理数大小比较的法则:两个负数,绝对值大的其值反而小,判断即可.【解答】解:(1)﹣2<+6;故答案为:<;(2)0>﹣1.8;故答案为:>;(3)>.故答案为:>.【点评】此题主要考查了有理数大小比较的法则,正确掌握运算法则是解题关键.4.(3分)写出一个只含有字母a、b,且系数为1的五次单项式ab4(答案不唯一).【分析】根据单项式系数、次数的定义写出所有系数为1且同时含有字母a、b的五次单项式即可.【解答】解:同时含有字母a、b且系数为1的五次单项式有a4b,a3b2,a2b3,ab4.答案不唯一故答案为ab4(答案不唯一).【点评】本题考查了单项式的次数的定义,单项式的次数就是单项式的所有字母指数的和,理解定义是关键.5.(3分)一个锐角的余角是38°28′5′′,则这个角的补角是128°28′5′′.【分析】根据补角和余角的定义列出算式180°﹣(90°﹣38°28′5′′),进一步计算可得.【解答】解:根据题意知这个角的补角是180°﹣(90°﹣38°28′5′′)=90°+38°28′5′′=128°28′5′′,故答案为:128°28′5′′.【点评】本题主要考查余角和补角,解题的关键是掌握补角和余角的定义.6.(3分)写出一个与﹣2xy2是同类项的单项式xy2.【分析】根据所含字母相同且相同字母的指数也相同的项,可得答案.【解答】解:写出一个与﹣2xy2是同类项的单项式xy2,故答案为:xy2.【点评】本题考查了同类项,改变系数就得到该项的同类项.7.(3分)我国西部某省近三年来走入“希望小学”读书的失学儿童约有2.4×105人,这个数据是用四舍五入法得到的近似数,精确到万位.【分析】根据近似数的精确度求解.【解答】解:2.4×105精确到万位.故答案为万.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.8.(3分)若干桶方便面摆放在桌面上,如图所给出的是从不同方向看到的图形,从图形上可以看出这堆方便面共有 6 桶.【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【解答】解:三摞方便面是桶数之和为:3+1+2=6.故答案为:6【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.(3分)化简(直接写出结果):2(a﹣b)﹣(2a+3b)= ﹣5b .【分析】本题考查整式的加减运算,解答时先去括号,再合并同类项即可得出结果.【解答】解:原式=2a﹣2b﹣2a﹣3b=﹣5b.【点评】解决此类题目的关键是熟练运用去括号法则,这是各地中考的常考点.此解注意去括号时不要漏乘.10.(3分)已知x=3是方程11﹣2x=ax﹣1的解,则a= 2 .【分析】将x=3代入方程即可求得a.【解答】解:将x=3代入方程中得:11﹣6=3a﹣1解得:a=2.故填:2.【点评】本题主要考查的是已知原方程的解,求原方程中未知系数.只需把原方程的解代入原方程,把未知系数当成新方程的未知数求解即可.二、精心选一选(每小题2分,共20分)11.(2分)下列运算正确的()A.2x+2y=2xy B.5x+x=5x2C.﹣3mn+mn=﹣2mn D.8a2b﹣7a2b=1【分析】根据同类项的定义、同类项概念、合并同类项概念解答.【解答】解:A、2x+2y不是同类项,不能合并;B、5x+x=6x;C、﹣3mn+mn=﹣2mn;D、8a2b﹣7a2b=a2b.故选:C.【点评】本题考查的知识点为:①同类项的定义:所含字母相同,相同字母的指数相同;②合并同类项的方法:字母和字母的指数不变,只把系数相加减,不是同类项的一定不能合并.12.(2分)下列展开图中,不能围成一个封闭的几何体的是()A.B.C.D.【分析】由平面图形的折叠及圆柱、三棱柱的展开图进行判断即可.【解答】解:A、是圆柱的展开图,能围成封闭几何体,不符合题意;B、是三棱柱的展开图,能围成封闭几何体,不符合题意;C、不能围成封闭几何体,符合题意;D、是三棱柱的展开图,能围成封闭几何体,不符合题意.故选:C.【点评】本题考查了展开图折叠成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.13.(2分)若四个有理数相乘,积为负数,则负因数的个数是()A.1B.2C.3D.1或3【分析】几个不为0的数相乘,积的符号由负因数的个数确定,负因数有奇数个,积为负;负因数有偶数个,积为正.【解答】解:∵abcd<0,∴a,b,c,d中有1个或3个负数,故选:D.【点评】本题考查了几个不等于零的数相乘,积的符号由负因数的个数决定:当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正.14.(2分)利用一副三角板上已知度数的角,不能画出的角是()A.15°B.135°C.165°D.100°【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】解:A、15°的角,45°﹣30°=15°;B、135°的角,45°+90°=135°;C、165°的角,90°+45°+30°=165°;D、100°的角,无法用三角板中角的度数拼出.故选:D.【点评】用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.15.(2分)下列各组运算中,其值最小的是()A.﹣(﹣3﹣2)2B.(﹣3)×(﹣2)C.(﹣3)2÷(﹣2)2D.(﹣3)2÷(﹣2)【分析】先分别计算出四个选项的值,再进行比较,即可得出它们的最小值.【解答】解:A、﹣(﹣3﹣2)2=﹣25;B、(﹣3)×(﹣2)=6;C、(﹣3)2÷(﹣2)2=;D、(﹣3)2÷(﹣2)=﹣;由于A、D均为负数,因此最小值必在这两者之中;由于25>,所以﹣25<﹣,即﹣(﹣3﹣2)2<(﹣3)2÷(﹣2).故选:A.【点评】本题考查的是有理数大小的比较方法,有理数大小的比较法则:1、正数都大于零,负数都小于零,正数大于一切负数;2、两个正数,绝对值大的数大;3、两个负数,绝对值大的数反而小.16.(2分)轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船的方向是()A.南偏东42°B.东偏北48°C.南偏东48°D.东偏南48°【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.【解答】解:轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船在C 处的方向是南偏东48°,故选:C.【点评】此题主要考查了方向角,解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.17.(2分)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【分析】设出洗发水的原价是x元,直接得出有关原价的一元一次方程,再进行求解.【解答】解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.【点评】此题主要考查了一元一次方程的应用中打折问题,设出原价即可列出有关方程.18.(2分)百位数字是a,十位数字是b,个位数字是c,这个三位数是()A.abc B.a+b+c C.100a+10b+c D.100c+10b+a【分析】三位数的表示方法为:百位数字×100+十位数字×10+个位数字.【解答】解:依题意得:这个三位数是100a+10b+c.故选:C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.19.(2分)某工厂一季度的产值为m万元,二季度比一季度增加x%,则二季度的产值为()A.m•x%B.m+x%C.m(1+x%)D.m(1﹣x%)【分析】二季度的产值=一季度的产值•(1+x%),把相关数值代入即可求解.【解答】解:根据题意可得:二季度的产值为;m(1+x%),故选:C.【点评】本题考查列代数式,关键是确定一季度的产值为单位1.20.(2分)已知a、b、c在数轴上的位置如图所示,化简:|a+b|﹣|c﹣b|的结果是()A.a+2b﹣c B.﹣a﹣2b+c C.﹣a﹣c D.a+c【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b与c﹣b的正负,利用绝对值的代数意义化简所求式子,合并同类项即可得到结果.【解答】解:由数轴上点的位置可得:c<b<0<a,且|b|<|a|,∴a+b>0,c﹣b<0,则|a+b|﹣|c﹣b|=a+b+c﹣b=a+c.故选:D.【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.三、耐心求一求(本题有5小题,共32分)21.(5分)计算:(﹣2)2+[18﹣(﹣3)×2]÷4.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=4+24÷4=10.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算.乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级.有括号的先算括号里面的;同级运算按从左到右的顺序.22.(5分)计算:72°35′÷2+18°33′×4.【分析】一个度数除以一个数,则从度位开始除起,余数变为分,分的余数变为秒.两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【解答】解:原式=36° 17′30″+74° 12′=110° 29′30″.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.计算乘法时,秒满60时转化为分,分满60时转化为度.23.(10分)解下列方程:(1)﹣2(x﹣5)=8﹣(2)﹣=1.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:﹣4x+20=16﹣x,移项合并得:﹣3x=﹣4,解得:x=;(2)去分母得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.24.(6分)化简求值:2(3a2﹣5b)﹣[﹣3(a2﹣3b)],其中a=,b=﹣2.【分析】先去括号,再合并同类项,然后代入求值.【解答】解:2(3a2﹣5b)﹣[﹣3(a2﹣3b)],=6a2﹣10b+3(a2﹣3b),=6a2﹣10b+3a2﹣9b,=9a2﹣19b,当a=,b=﹣2时,原式=9×()2﹣19×(﹣2)=39.【点评】本题主要考查了去括号法则,括号前面是负号,去掉负号和括号,括号里面的各项要变号,且先去中括号,再去小括号.25.(6分)已知:如图,AO⊥BC,DO⊥OE.(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE=35°,求∠BOD的度数.【分析】(1)已知AO⊥BC,DO⊥OE,就是已知∠DOE=∠AOB=∠AOC=90°,利用同角或等角的余角相等,从而得到相等的角.(2)由DO⊥OE,∠COE=35°,知∠BOD=180°﹣∠DOE﹣∠COE,故可求解.【解答】解:(1)∵AO⊥BC,DO⊥OE,∴∠DOE=∠AOB=∠AOC=90°,∠BOD+∠AOD=90°,∠AOD+∠AOE=90°,∠AOE+∠COE=90°,∴∠DOA=∠EOC,∠DOB=∠AOE,∠AOB=∠AOC,∠AOB=∠DOE,∠AOC=∠DOE;(2)∵DO⊥OE,∠COE=35°,∴∠BOD=180°﹣∠DOE﹣∠COE=90°﹣35°=55°.【点评】本题主要考查了同角或等角的余角相等这一性质,由垂直的定义得出直角是解决本题的关键.四、开心做一做(共28分,26小题8分,27、28小题各10分)26.(8分)2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.),2007年药品降价金额=2003年药品降价金额×6倍,根据以上两个等量关系,可列出方程组.【解答】解:[解法一]设2003年和2007年的药品降价金额分别为x亿元、y亿元.(1分)根据题意,得解方程组,得答:2003年和2007年的药品降价金额分别为20亿元和120亿元.(1分)[解法二]设2003年的药品降价金额为x亿元,(1分)则2007年的药品降价金额为6x亿元.(2分)根据题意,得54+x+35+40+6x=269.(2分)解方程,得x=20,∴6x=120.(4分)答:2003年和2007年的药品降价金额分别为20亿元和120亿元.(1分)【点评】解题关键是要读懂题目的意思,找到合适的等量关系,列出方程组.本题要注意的是“2007年药品降价金额是2003年药品降价金额的6倍”,再结合表中信息.27.(10分)如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:(1)若∠A=60°,求∠BOC的度数;(2)若∠A=100°,则∠BOC的度数是多少?(3)若∠A=120°,则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.【分析】(1)由三角形内角和定理以及角平分线的定义得出∠CBO+∠BCO=(180°﹣∠A),再由三角形内角和定理即可得出∠BOC的度数.(2)和(3)方法同(1);(4)依据(1)、(2)、(3)的结论,即可得到∠BOC=90°+∠A.【解答】解:(1)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO=(180°﹣∠A)=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;(2)同理,若∠A=100°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=140°;(3)同理,若∠A=120°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=150°;(4)由(1)、(2)、(3),发现:∠BOC=180°﹣(180°﹣∠A)=90°+∠A.【点评】本题考查了三角形内角和定理、角平分线的定义;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.28.(10分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?【分析】(1)设该班购买乒乓球x盒,根据乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.【解答】解:(1)设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时,甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.(3)当购买30盒时,甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.【点评】乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.。
江西省上饶市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共8题;共8分)1. (1分) (2016七上·富宁期中) 据报道,春节期间微信红包收发高达3270000000次,数字3270000000用科学记数法表示为 ________2. (1分)(2020·北京模拟) 如图是一个多面体的表面展开图,如果面在前面,从左面看是面,那么从上面看是面________.(填字母)3. (1分) (2019七上·顺义期中) 写出一个以x=-1为根的一元一次方程________.4. (1分) (2017七下·台山期末) 已知,则 ________.5. (1分)(2020·南充) 计算: ________.6. (1分) (2017七上·灯塔期中) 用度、分、秒表示24.18°= ________7. (1分) (2020七上·盐城期中) 如图,都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,以此规律,第n个团有199个黑棋子,则n=________.8. (1分) (2019八下·松滋期末) 若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为________.二、选择题 (共10题;共20分)9. (2分) (2020七上·上城期末) 下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的自然数是1;A . ①②B . ①②③C . ②③D . ②③④10. (2分)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A .B .C .D .11. (2分)小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A . 1根B . 2根C . 3根D . 4根12. (2分) (2018七上·安达期末) 已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A . ab<0B . b-a>0C . a>bD . a+b>013. (2分)(2018·肇庆模拟) 下面的计算正确的是()A . a3•a2=a6B . (a3)2=a5C . (﹣a3)2=a6D . 5a﹣a=514. (2分) (2017七上·盂县期末) 下列判断正确的是()A . 3a2b与ba2不是同类项B . 不是整式C . 单项式﹣x3y2的系数是﹣1D . 3x2﹣y+5xy2是二次三项式15. (2分)下列定理中没有逆定理的是()A . 内错角相等,两直线平行B . 直角三角形中,两锐角互余C . 等腰三角形两底角相等D . 相反数的绝对值相等16. (2分) (2017七上·洪湖期中) 与a﹣(a﹣b+c)相等的式子是()A . a﹣b+cB . a+b﹣cC . b﹣cD . c﹣b17. (2分)有9人14天完成了一件工作的,而剩下的工作要在4天内完成,则需增加的人数是()A . 12B . 11C . 10D . 818. (2分)某商人一次卖出两件衣服,一件赚了百分之15,一件亏了百分之15,售价都是9775元,在这次生意中,该商人()A . 不赚不赔B . 赚了490元C . 亏了450元D . 亏了490元三、解答题: (共9题;共85分)19. (5分) (2019八上·西安月考) 若实数,,在数轴上的对应点如图所示,试化简:.20. (5分)计算:(1)(﹣)﹣16÷[(﹣2)3+4](2)3(2x﹣4y)﹣4(﹣y+3x)21. (5分)先化简,再求值:(1)2x3+4x-x2-(x-3x2+2x3),其中x=﹣3.(2)(6a2+4ab)-2(3a2+ab-b2),其中a=2,b=1.22. (20分) (2016七上·高密期末) 解下列方程:(1) x﹣2=4+ x(2)﹣2=(3)[x﹣(x﹣1)]= (x﹣)(4)﹣ =1.23. (10分) (2016七上·罗山期末) 小购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求厅的面积比其余房间的总面积多多少平方米?24. (11分) (2020七上·江夏月考) 快递配送员在一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(单位:千米):+10、-3、-5、+4、+6、+5、-3、-6、-4、+10(1)在送快递过程中最远距出发点________千米(2)这天送完最后一个快递时,在出发点的什么方向,距离出发点是多少千米?(3)如果送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?25. (5分) (2018七上·翁牛特旗期末) 广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽,车间70名工人承接了生产丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾正好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?26. (10分) (2020八下·龙泉驿期末) 如图,在等腰△ABC中,AB=AC ,∠BAC=90°,点D是BC上一点,作AE⊥AD交BC延长线于E ,CF⊥BC交AE于F .(1)求证:△ABD≌△ACF;(2)作AG平分∠DAE交BC于G ,求证:AF2=DG•DC .27. (14分) (2017七上·深圳期中) 迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T 恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(30>x).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T 恤需付款________元(用含 x 的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.参考答案一、填空题 (共8题;共8分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、选择题 (共10题;共20分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题: (共9题;共85分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、答案:27-3、考点:解析:。
上饶市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q3.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°4.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .5.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b6.-2的倒数是( ) A .-2B .12-C .12D .27.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .18.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .34 9.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣310.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠211.3的倒数是( ) A .3B .3-C .13D .13-12.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102513.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查14.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .215.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.18.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.19.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 20.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.21.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.22. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm. 23.当a=_____时,分式13a a --的值为0. 24.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.25.已知23,9n mn aa -==,则m a =___________.26.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 27.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.28.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.29.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 30.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.三、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.34.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 35.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.36.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.37.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?38.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B 【解析】 【分析】 【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .3.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.4.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.5.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.6.B解析:B 【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7.D解析:D 【解析】 【分析】根据题意列出算式,计算即可得到结果. 【详解】解:∵A ,B ﹣1,∴A ,B ﹣1)=1; 故选:D . 【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.8.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.9.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.10.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.13.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.14.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.15.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题16.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.18.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150 .【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.19.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.20.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.21.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.23.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.24.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.25.27【解析】【分析】首先根据an =9,求出a2n =81,然后用它除以a2n −m ,即可求出am 的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n −m =81÷3=2解析:27【解析】【分析】首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.【详解】解:∵a n =9,∴a 2n =92=81,∴a m =a 2n ÷a 2n−m =81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.26.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.27.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 28.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.29.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.30.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.三、压轴题31.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,∴∠MOF =12∠COM =82.5°,∠MOE =12∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟) ∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.34.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB ,从而可得到问题的答案;(2)先求得∠AOC 的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON ,∠AOM=90°-∠AON ,然后求得∠AOM 与∠NOC 的差即可;(3)可分为当OM 为∠BOC 的平分线和当OM 的反向延长为∠BOC 的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB =90°.故答案为:90°(2)∠AOM ﹣∠NOC =30°.理由:∵∠AOC :∠BOC =1:2,∠AOC +∠BOC =180°,∴∠AOC =60°.∴∠NOC =60°﹣∠AON .∵∠NOM =90°,∴∠AOM =90°﹣∠AON ,∴∠AOM ﹣∠NOC =(90°﹣∠AON )﹣(60°﹣∠AON )=30°.。
七年级上册上饶数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b -- 2.在有理数2,-1,0,-5中,最大的数是( ) A .2B .C .0D . 3.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mn B .23m n C .3m nD .32m n 4.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2abD .3ab 5.钟面上8:45时,时针与分针形成的角度为( ) A .7.5°B .15°C .30°D .45° 6.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .37.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个8.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°9.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定10.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3--11.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上 12.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .13.把方程213148x x --=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x )C .2(2x -1)=8-3+xD .2(2x -1)=8-3-x14.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c =(c ≠0),则a b = 15.若关于x y 、的单项式33n x y -与22m x y 的和是单项式,则()n m n -的值是 ( )A .-1B .-2C .1D .2二、填空题16.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________.17.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.18.若∠α=70°,则它的补角是 .19.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______.20.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.21.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.22.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.23.单项式345ax y -的次数是__________. 24.观察下面两行数第一行: 1,4,9,16,25,36---⋯第二行: 3,2,11,14,27,34---⋯则第二行中的第8个数是 __________.25.32-的相反数是_________; 三、解答题26.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.27.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 28.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.29.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动. ①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?30.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯- ⎪⎝⎭. 31.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯32.如图所示方格纸中,点,,O A B 三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA 交于格点O ,点C 是直线OB 上的格点,按要求画图并回答问题.(1)过点C 画直线OB 的垂线,交直线OA 于点D ;过点C 画直线OA 的垂线,垂足为E ;在图中找一格点F ,画直线DF ,使得//DF OB(2)线段CE 的长度是点C 到直线 的距离,线段CD 的长度是点 到直线OB 的距离.33.(1)化简:(53)2(2)a a b a b --+-(2)先化简,再求值:222(2)2(2)x xy x xy --+,其中12x =,1y =- 四、压轴题34.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.35.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值; (4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.36.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.37.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.38.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.39.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.40.点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数41.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.42.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据数轴可以判断a 、b 的正负,从而可以解答本题.【详解】解:由数轴可得,∵a<0,b>0, ∴|a |=-a ,|b |=b ,∴=a b -a-b.故选D.【点睛】本题考查绝对值,解答本题的关键是明确绝对值的意义.2.A解析:A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.4.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.5.A解析:A【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为: 4530307.5.60-⨯= 故选A. 6.A解析:A【解析】【分析】根据线段中点的性质,可得MC ,NC 的长,根据线段的和差,可得答案.【详解】解:(1)由点M 、N 分别是线段AC 、BC 的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3.由线段的和差,得:MN=MC+NC=2+3=5;故选:A.【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键.7.B解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.8.A解析:A【解析】由折叠的可知∠OGC=∠OGC′=100°,∴∠OGD=180°-∠OGC=80°,∴∠DGC′=∠OGC′-∠OGD=100°-80°=20°,故选 A.9.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x,依题意得:x(1+25%)=90,解得:x=72,所以赚了解90−72=18元;设第二件衣服的进价为y,依题意得:y(1−25%)=150,解得:y=120,所以赔了120−90=30元,所以两件衣服一共赔了12元.故选:B.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.10.D解析:D【解析】【分析】根据有理数的运算即可依次求解判断.【详解】--=3>0,故错误;A. ()3--=27>0,故错误;B. ()33C. ()23-=9,>0,故错误;--=-3<0,故正确;D. 3故选D.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.11.D解析:D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=90°-20°=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:D.【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.12.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .13.C解析:C【解析】分析:方程两边乘以8去分母得到结果,即可做出判断.详解:方程去分母得:2(2x ﹣1)=8﹣3+x .故选C .点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x 系数化为1,即可求出解.14.C解析:C【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】A 、若x =y ,则x +5=y +5,此选项正确;B 、若x y =,则ax ay =,此选项正确;C 、若x =y ,当a ≠0时x y a a =不成立,故此选项错误; D 、若a b c c=,则a b =(c ≠0),则 a =b ,此选项正确; 故选:C .【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.15.C解析:C【解析】【分析】根据同类项的定义即可求出m 和n 的值,然后代入即可.【详解】解:∵关于x y 、的单项式33n x y -与22m x y 的和是单项式∴33n x y -与22m x y 是同类项,∴m=3,n=2将m=3,n=2代入()nm n -中,得原式=()2312=-故选C .【点睛】此题考查的是同类项的定义,根据同类项的定义求各字母指数中的参数是解决此题的关键. 二、填空题16.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:55.6310⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.确定a×10n (1≤|a|<10,n 为整数)中n 的值,由于4320000有7位,所以可以确定n=7-1=6.【详解】解:563000=5.63×105,故答案为:5.63×105.【点睛】本题考查科学记数法,解题关键是熟记规律:(1)当|a|≥1时,n 的值为a 的整数位数减1;(2)当|a|<1时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0. 17.165【解析】【分析】设书的原价为x 元,根据关系式为:书的原价13=书的原价×0.8+20,列出一元一次方程,解方程即可得到答案.【详解】解:根据题意,设小宇购买这些书的原价是x 元,∴,解析:165【解析】【分析】设书的原价为x 元,根据关系式为:书的原价-13=书的原价×0.8+20,列出一元一次方程,解方程即可得到答案.【详解】解:根据题意,设小宇购买这些书的原价是x 元,∴130.820x x -=+,解得:165x =;故答案为:165.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18.110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.解析:110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.19.【解析】【分析】科学计数法就是把一个数写成的形式,其中,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,,由的范围可知,可得结论.【详解】解:.故答案为解析:62.510⨯【解析】【分析】科学计数法就是把一个数写成10n a ⨯的形式,其中110a ≤<,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,716n ,由 a 的范围可知 2.5a =,可得结论.【详解】解:62500000 2.510=⨯.故答案为:62.510⨯.【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.20.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810⨯【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b解析:b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b-a|-|a+1|=b-a-(-a-1)=b-a+a+1=b+1.故答案为:b+1.【点睛】本题主要考查了关于数轴的知识以及有理数大小的比较,绝对值的知识,正确把握相关知识是解题的关键.22.【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:解得:x =解析:【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =3,答:他们合作整理这批图书的时间是3h .故答案是:3.【点睛】本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.23.5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.解析:5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式345ax y的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.24.-62【解析】【分析】根据数字规律,即可求出第二行中的第个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+解析:-62【解析】【分析】根据数字规律,即可求出第二行中的第8个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+2,故第二行中的第8个数是- 82+2=-62故答案为: -62.【点睛】此题考查的是数字的探索规律题,找到数字的变化规律是解决此题的关键.25..【解析】【分析】利用相反数的概念,可得的相反数等于.【详解】的相反数是.故答案为:.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负解析:32. 【解析】【分析】 利用相反数的概念,可得32-的相反数等于32. 【详解】 32-的相反数是32. 故答案为:32. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 三、解答题26.当12∠∠=时,//DM BC【解析】【分析】根据平行线的性质得到2CBD ∠∠=,等量代换得到1CBD ∠∠=,根据平行线的判定定理得到//GF BC ,证得//MD GF ,根据平行线的性质即可得到结论.【详解】当12∠∠=时,//DM BC ,理由://BD EF ,2CBD ∠∠∴=,12∠∠=,1CBD ∠∠∴=,//GF BC ∴,AMD AGF ∠∠=,//MD GF ∴,//DM BC ∴.【点睛】 本题考查了平行线的判定和性质,解题关键是熟练掌握平行线的判定和性质.27.23x y -+,589【解析】【分析】先把原代数式化简,再根据题意求出x 、y 的值代入化简后的代数式即可解答.【详解】2211312()()2323x x y x y --+-+ 解:原式=22123122323x x y x y -+-+ 21312(2)()2233x y =--++ 23x y =-+ ∵22(2)03x y ++-= ∴x+2=0,y-23=0 解得:x=-2,y=23, 当22,3x y =-=时, 原式223(2)()3=-⨯-+469=+ 589= 【点睛】本题考查化简代数式并求值的方法,解题关键是熟练掌握去括号法则:括号前面是正号,去掉括号不变号,括号前面是负号,去掉括号变符号.28.(1)见详解;(2)CD ;(3)<,垂线段最短.【解析】【分析】(1)连接B 、C 两个端点即可;以A 为端点,过点B 画射线即可;利用方格特点可过点A 画BC 的平行线AM ;(2)根据题意作图,依据点到线的距离即为垂线段的长可得结论;(3)依据直线外一点与直线上各点连接的所有线段中垂线段最短可得线段CD 与CB 的长短.【详解】解:(1)如图,线段BC ,射线AB ,平行线AM 即为所求(2)如图由点到直线的距离即为垂线段的长可知点C 到AB 的距离是线段CD 的长.(3)线段CD 是点C 到直线AB 的垂线段,所以线段CD <线段CB ,理由是垂线段最短.【点睛】本题考查了在网格中作线段、射线、平行线、垂线,同时涉及了点到直线的距离、垂线段的性质,灵活利用网格的特点进行作图是解题的关键.29.(1)9,3;(2)2;(3)①118t =或254;②36 【解析】【分析】(1)由MN 的长及,OM ON 的数量关系可得OM 、ON 的长;(2)由图知MN MC CO ON =++,结合MC CO CN =+及线段MN 、ON 的长可得CO 的长;(3)①分类讨论,分点P 在线段OM 和射线ON 上两种情况,分别用含t 的代数式表示出OP 、OQ 的长,根据24cm OP OQ -=可列出关于t 的方程,求解即可;②点D 运动的时间即为点P 从点O 到停止运动所用的时间,求出点D 运动的时间再乘以其速度即为点D 运动的路程.【详解】 解:(1)12MN =,3OM ON =3412MN OM ON ON ON ON ∴=+=+== 3,39ON OM ON ∴===所以9,3OM cm ON cm ==.(2)如图12MN =,MC CO CN =+3212MN MC CO ON CO CO ON CO ON CO ON ∴=++=++++=+=由(1)知3ON =,3612CO ∴+=2CO ∴=所以CO 的长为2.(3)①如图,当点P 在线段MO 上时,93,32OP t OQ t =-=+,由24OP OQ -=得2(93)(32)4t t --+=解得118t =; 如图,当点P 在射线ON 上时,39,32OP t OQ t =-=+由24OP OQ -=得2(39)(32)4t t --+=解得254t = 综合上述,当118t s =或254s ,24OP OQ cm -=. ②点P 、Q 停止运动时,3122t t -=,解得12t =,点P 经过点O 时,39t =,解得3t =,4(123)36⨯-=所以在此过程中点D 运动的总路程是36cm.【点睛】本题考查了数轴上的动点问题,同时涉及了一元一次方程,灵活的将一元一次方程与数轴相结合是解题的关键.同时分类讨论的数学思想也在本题得以体现.30.(1)-8;(2)60.【解析】【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案;(2)利用乘法分配律进行计算,即可得到答案.【详解】(1)解:原式=4-12=-8;(2)解:原式=-30+40+50=60.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.31.(1)-2;(2)-3【解析】【分析】(1)利用有理数的加减法法则进行运算;(2)运用有理数混合运算法则进行运算.【详解】解:(1)原式=12+8-7-15=20-7-15=13-15=-2;(2)原式=-1+2×9-5×2×2=-1+18-20=-3.【点睛】本题考查有理数的运算,熟练掌握运算法则和运算顺序是关键.32.(1)详见解析;(2)OA,D.【解析】【分析】(1)根据题意画出图象即可.(2)由图象即可得出结论.【详解】(1)由题意画图如下:(2)由图可以看出:线段CE 的长度是点C 到直线OA 的距离,线段CD 的长度是点D 到直线OB 的距离.【点睛】本题考查作图能力,关键在于掌握平行垂直等作图技巧.33.(1)2a b -- ;(2)8xy -,4【解析】【分析】(1)先去括号,然后合并同类项,即可得到答案;(2)先把代数式进行化简,然后把x 、y 的值代入计算,即可得到答案.【详解】解:(1)(53)2(2)a a b a b --+-=5324a a b a b -++-=2a b --;(2)222(2)2(2)x xy x xy --+=222424x xy x xy ---=8xy -; 当12x =,1y =-时, 原式=18(1)42-⨯⨯-=.【点睛】本题考查了整式的化简求值,整式的混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题. 四、压轴题34.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x 元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x 的一元一次方程,解之即可得出结论;(3)设购物总额是x 元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x 元,由题意知x >500,列方程:0.88x =500×0.9+0.8(x -500)∴x =625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x 元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x -500)=482∴x =540∴0.88x =475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.35.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=;③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图。
七年级上学期数学期末试卷一、单选题(共6题;共12分)1.如图几何体的下部是一个三棱柱,下列各多边形与这个几何体的各面(包括底面)形状不相符的是()A. B. C. D.2.我们知道字母可代表任何数,那么对下列各式的叙述一定正确的是()A. 一定是负数B. 一定是负数C. 一定是负数D. 一定是负数3.单项式的系数、次数分别是()A. -3、5B. 、6C. -3、6D. 、54.下列关于0的说法错误的是()A. 任何情况下,0的实际意义就是什么都没有B. 0是偶数不是奇数C. 0不是正数也不是负数D. 0是整数也是有理数5.若方程是一元一次方程,那么m=()A. 3B. 2C. 1D. 2或16.计算:()A. B. C. D.二、填空题(共6题;共6分)7.计算:________.8.相反数仍是它本身的数是________9.中国的领水面积约为370 000 km2,将数370 000用科学记数法表示为:________.10.若式子与式子的值相等,那么________.11.如图,有一个窗户,上部是半圆,下部是正方形,正方形的边长为,此窗户的面积是________.12.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
观察下面关于未知数x的方程:,请写出此方程的解:________。
三、解答题(共10题;共82分)13.如图,A、B、C、D是四边形的四个顶点,根据下列语句画图,并回答问题:①画直线;②在直线上找一点M,使线段与线段之和最小;③指出A、B、C、D四个点与直线的关系.14.先化简再求值:,其中,.15.计算:.16.如图,三条直线、、共点于O,三个交角的关系是、,求、、的大小.17.解关于未知数的方程:.18.(1)在小学我们就学过“三角形的内角和等于”,求四边形的内角和.(2)在下图的四边形中,,平分,平分,求的大小.19.在数轴上有A、B、C、D四个点表示的数分别为:-3、-1、2、4,如下图.(1)计算、、;再观察数轴,写出A、B的距离,C、D两点的距离,和A 、D两点的距离.(2)请用、或填空:A、B的距离________ ,C、D两点的距离________ ,A、D两点的距离________ .(3)如果点P、Q两点表示的数分别为x,y,那么P、Q两点的距离=________.(4)若,数x代表的点R在数轴上什么位置?x介于哪两个数之间?20.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?21.日历上的规律:表格是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角的四个数之和与九宫格中央那个数有什么关系?(2)请你自选一块九宫格进行计算,看四个角上的四个数之和与九宫格中央那个数是否还有这种关系?(3)试说明原理.22.如果把月亮绕地球旋转的轨迹看成一个圆,地心在圆心上。
2017-2018学年江西省上饶市广丰县七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共6小题,共18.0分)1.下列各单项式中,与x 2y 是同类项的是( )A. B. C. D. xy 210x 2x 2yz x 2y 22.下面四个图形中不能围成下边三棱锥的是( )A.B.C.D.3.下列有理数的关系叙述不正确的是( )A. 若,那么B. 倒数等于它自己的数是a <b 1a >1b±1C. 若,那么 D. 相反数等于它自己的数是00<a <1a 3<a 2<a 4.方程x +2=1的解是( )A. 1 B. C. 3 D. −1−35.单项式的系数、次数分别是( )−x 2y z 5A. ,2B. ,4C. ,2D. ,4−1−1−15−156.如图,数轴上AB 两点对应的数分别为a 、b ,那么下列四个关系中正确的是( )A. B. C. D. a <b <−b <−a −a <−b <a <b a <−b <b <−a a <|a |<|b |=b二、填空题(本大题共5小题,共15.0分)7.计算(4a 2b -3ab 2+5b 3)-(-3a 2b +5ab 2)=______8.图中,∠1与∠2的关系是______.9.a 与是互为倒数关系,即a 的倒数,的倒数是a ,据此计算=______1a 1a 1a 11−1210.所谓方程的解就是使方程中等号左右两边相等的未知数的值.观察方程:(x -1)2=4,请写出方程的解:x 1=______,x 2=______.11.整式(a +1)x 2-3x -(a -1)是关于x 的一次式,那么a =______.三、计算题(本大题共4小题,共31.0分)12.x 为何值时,3x -9与-x +4的值相等?1413.已知x 、y 满足关系(x -2)2+|y +2|=0,求y x 的值.14.(1)计算①(1-)×(1+)=______,1-()2=______;有(1-)×(1+)1212121212______,1-()2(用“ =”“<”“>”填空).12②(1-)×(1+)=______,1-()2=______;有(1-)×(1+)______1-()2131313131313(用“ =”“<”“>”填空).③猜测(1-)(1+)与1-()2有关系:(1-)(1+)______1-()2.1n 1n 1n 1n 1n 1n (2)计算:[1-()2]×[1-()2]×[1-()2]×…×[1-()2]121314110015.计算:(-10)3+[(-4)2×2-(1-3)2×4]四、解答题(本大题共5小题,共45.0分)16.如图,假若有两个人造地球卫星,它们的运行轨迹近似于以地球球心为圆心的圆,轨道面与赤道面重合,卫星甲以每小时15°的转速且与地球自转相反的方向绕地球旋转,卫星乙以每小时35°的转速且与地球自转相同的方向绕地球旋转,若2018年1月1日凌晨0点整,它们都恰好分别位于赤道上的某点A的正上方B、C处.当它们第二次又回到点A的正上方分别是什么时候?它们同时回到点A的正上方是什么时候?(注:转速为动点与圆心连结的半径在单位时间内所转的角度)17.有一个三位数,它的百位数上的数字是a,个位上的数字是c,十位上的数字是a+c.(1)这个三位数可表示为______;(2)若把这个数的个位上的数字与百位上的数字互换位置,得到另一个数,这两个数的和一定被11整除,试说明理由.18.(1)我们在小学已经学过:三角形的三个内角的和等于180°.如图1中,△ABC的内角和∠1+∠2+∠3=180°,那么在图2中,四边形的内角和∠1+∠2+∠3+∠4=______.(2)我们知道平角等于180°,图1中∠1+∠4=______;(3)求图1中∠4+∠5+∠6的大小;图2中∠5+∠6+∠7+∠8的大小.19.学校组织同学们去参观博物馆,在一块恐龙化石前,小明对小亮说:“这块化石距今已经230000001年了.”解说员听到后用略带嘲讽的口气对小明说:“小朋友!你比科学家厉害,知道得这么准确!”小明说:“我去年也参观了,去年是你说的,这块化石距今约230000000年了.”(1)用科学记数法表示230000000;(2)小明的说法正确吗?为什么?20.按下列语句画图在直线l上取不同的两点A、B(A左B右),连结AC、BD,并延长相交于P点,连结CD,延长交直线l于Q点.答案和解析1.【答案】D【解析】解:与x2y是同类项,故选:D.根据同类项的定义即可求出答案.本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.2.【答案】A【解析】解:B、C、D都能构成三棱锥,但A将各面折起,出现重叠,不能构成三棱锥,故选:A.对于能构成三棱锥的图形,将各面折起,不能重叠,也不能有空缺,据此进行判断.本题考查了三棱锥的展开图,熟记三棱锥展开图是解决问题的根本.3.【答案】A【解析】解:∵a<0,b>0时,a<b,而<,∴选项A符合题意;∵倒数等于它自己的数是±1,∴选项B不符合题意;∵若0<a<1,那么a3<a2<a,∴选项C不符合题意;∵相反数等于它自己的数是0,∴选项D不符合题意.故选:A.根据有理数大小比较的方法,倒数的含义和求法,以及相反数的含义和求法,逐项判定即可.此题主要考查了有理数大小比较的方法,倒数的含义和求法,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4.【答案】B【解析】解:方程x+2=1,解得:x=-1,故选:B.方程移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.【答案】D【解析】【分析】本题考查单项式的概念,解题的关键是熟练正确理解单项式的概念,本题属于基础题型.根据单项式的系数、次数的概念即可求出答案.【解答】解:该单项式的系数为:,次数为4,故选D.6.【答案】C【解析】解:由数轴可得,a<0<b,|a|>|b|,∴a<-b<b<-a,故选项A、B、D错误,选项C正确,故选:C.根据数轴可以判断a、-a、b、-b的正负和大小,从而可以解答本题.本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.7.【答案】7a2b-3ab2+5b3【解析】解:原式=4a2b-3ab2+5b3+3a2b-5ab2=7a2b-3ab2+5b3,故答案为:7a2b-3ab2+5b3.先去括号,再合并同类项即可得.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.8.【答案】互余【解析】解:如图,∵EB⊥FB,∴∠EBF=90°,∵∠1+∠EBF+∠2=180°,∴∠1+∠2=90°,∴∠1与∠2互余.故答案为互余.如果两个角的和等于90°(直角),就说这两个角互为余角;主要考查了余角的概念.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而做出判断.9.【答案】2【解析】解:由题意得,是1-的倒数,∵1-=,的倒数是2,∴=2.故答案为:2.根据倒数的定义,式子为1-的倒数,然后进行计算即可得解.本题考查了倒数,读懂题目信息,理解倒数的定义是解题的关键.10.【答案】3;-1【解析】解:(x-1)2=4,x-1=±2,则x-1=2,x-1=-2,解得:x 1=3,x 2=-1,故答案为:3;-1.首先两边直接开平方可得x-1=±2,再解一元一次方程即可.此题主要考查了平方根,关键是确定x-1的值.11.【答案】-1【解析】解:∵整式(a+1)x 2-3x-(a-1)是关于x 的一次式,∴a+1=0,解得:a=-1.故答案为:-1.直接利用多项式的定义得出a+1的值.此题主要考查了多项式,正确得出a+1的值是解题关键.12.【答案】解:根据题意知3x -9=-x +4,1412x -36=-x +16,12x +x =16+36,13x =52,x =4,所以当x =4时,3x -9与-x +4的值相等.14【解析】根据题意列出关于x 的方程,根据解一元一次方程的一般步骤:去分母、移项、合并同类项、系数化为1即可得.本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤.13.【答案】解:∵(x -2)2+|y +2|=0,∴x -2=0且y +2=0,解得:x =2、y =-2,∴y x =(-2)2=4.【解析】根据绝对值和偶次乘方为非负数,求出x 、y 的值,代入原式利用乘方的运算法则可得答案.本题考查了非负数的性质,解决本题的关键是熟记绝对值和偶次乘方为非负数.14.【答案】;;=;;;=;=34348989【解析】解:(1)①(1-)×(1+)=,1-()2=;有(1-)×(1+)=1-()2 (用“=”“<”“>”填空).②(1-)×(1+)=,1-()2=;有(1-)×(1+)=1-()2 (用“=”“<”“>”填空).③猜测(1-)(1+)与1-()2有关系:(1-)(1+)=1-()2.故答案为:①、、=;②、、=;③=.(2)原式=(1-)×(1+)×(1-)×(1+)×(1-)×(1+) (1))×(1+)=××××××…××=×=.(1)根据有理数乘方运算法则逐一计算可得;(2)利用所得规律将原式展开,约分即可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数混合运算顺序和运算法则.15.【答案】解:原式=-1000+32-16=-984.【解析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:地球的自转的速度为360÷24=15度/小时,设卫星甲第二次又回到点A 的正上方的时间为x 小时,卫星乙第二次又回到点A 的正上方的时间为y 小时;由题意:(15+15)x =360,(35-15)y =360,解得x =12,y =18,∵12,18的最小公倍数为36,∴到第二天12时,18时两个卫星分别回到点A 的正上方;到第三天12时,它们同时到达点A是正上方,以后每隔一天后的12时,它们同时回到点A的正上方.【解析】设卫星甲第二次又回到点A的正上方的时间为x小时,设卫星甲第二次又回到点A的正上方的时间为x小时,卫星乙第二次又回到点A的正上方的时间为y小时;第二次又回到点A的正上方的时间为y小时;构建方程求出x、y即可解决问题;本题考查17.【答案】110a+11c【解析】解:(1)这个三位数为100a+10(a+c)+c=110a+11c,故答案为:110a+11c;(2)这个数的个位上的数字与百位上的数字互换位置得到的数为100c+10(a+c)+a=110c+11a,则这两个数的和为110a+11c+110c+11a=121a+121c=121(a+c)=112(a+c),即这两个数的和一定被11整除.(1)百位上的数字是a,十位上的数字是(a+c),个位上的数字为c,则这个三位数用代数式可以表示为100a+10(a+c)+c,然后合并即可;(2)先表示出调换位置后的三位数,根据题意列出算式,再整理即可得.本题考查了整式的加减、列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式注意:仔细辨别词义.认真审题,抓住关键词语,仔细辩析词义,分清数量之间的关系.18.【答案】360°;180°【解析】解:(1)由图2知,四边形的内角和∠1+∠2+∠3+∠4=180°×2=360°,故答案为:360°;(2)图1中∠1+∠4=180°,故答案为:180°;(3)∠4+∠5+∠6=180°-∠1+180°-∠2+180°-∠3=180°×3-180°=180°×2=360°,∠5+∠6+∠7+∠8=180°-∠1+180°-∠2+180°-∠3+180°-∠4=180°×4-180°×2=180°×2=360°.(1)将该四边形分割成两个三角形,利用三角形的内角和为180°求解可得;(2)根据平角的定义求解可得;(3)由∠4+∠5+∠6=180°-∠1+180°-∠2+180°-∠3及∠1+∠2+∠3=180°可得,同理得出∠5+∠6+∠7+∠8的度数.此题主要考查了多边形的内角与外角,利用多边形的内角与相邻的外角组成平角求出是解题关键.19.【答案】解:(1)230000000=2.3×108,(2)小明的说法错误,因为解说员说的“这块化石距今已经230000001年”中的230000000是一个近似数,它的精确数位是千万位,增加的这一年是忽略不计的.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【答案】解:如图所示:【解析】根据几何语句分别画出即可.本题考查了直线、射线、线段,主要考查了几何语句转化为图形的能力,是基础题.。
江西省上饶市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2014·淮安) ﹣5的相反数为()A . ﹣B . 5C .D . ﹣52. (2分)从《中华人民共和国2011年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值(结果保留两个有效数字)()A . 3.9×1013B . 4.0×1013C . 3.9×105D . 4.0×1053. (2分)单项式﹣8ab2的系数和次数分别是()A . 8与2B . 8与3C . ﹣8与2D . ﹣8与34. (2分)下列说法不正确的是()A . 对顶角相等B . 过任意一点可作已知直线的一条平行线C . 两点之间线段最短D . 过一点有且只有一条直线与已知直线垂直5. (2分)(2011·宜宾) |﹣5|的值是()A .B . 5C . ﹣5D . -6. (2分) (2017七上·和县期末) 若与kx﹣1=15的解相同,则k的值为()A . 8B . 2C . ﹣2D . 67. (2分)(2020·杭州模拟) 下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程= =1.2中的分母化为整数,得 =12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2017七上·临川月考) 下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温-4.6 3.813.1-19.4(单位℃)A . 北京B . 武汉C . 广州D . 哈尔滨9. (2分)某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中这家商店()A . 赚了8元B . 赔了8元C . 不赔不赚D . 赚了24元10. (2分)如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2 , a3 , a4 ,…,a2010 ,则=()A .B . 2021054C . 2022060D .二、填空题 (共6题;共14分)11. (4分)绝对值等于本身的数是________ .相反数等于本身的数是________ ,绝对值最小的负整数是________ , 绝对值最小的有理数是________ .12. (1分) (2020七上·上海月考) 用代数式表示:x和y的平方和________.13. (1分)将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=________度.14. (6分) (2020七下·唐山期中) 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE ,经研究发现(1)如图2,当AB与DE重合时,∠CDF=________°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=________°;(3)拓展如图4,继续旋转使得AC垂直DE于点G ,此时AC与EF位置关系________,此时∠AED=________°;(4)探究如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=________°,图6中此时∠AED=________°.15. (1分) (2020七上·天心期末) 如图,直线AB、CD相交于点O , OB平分∠EOD ,∠COE=100°,则∠AOC=________°.16. (1分)(2017·揭西模拟) 如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F 是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为________.三、解答题 (共9题;共84分)17. (10分) (2019七上·高县期中) 计算:(1)(2)18. (10分)解方程:(1) 3(2x+3)=11x-6;(2) 3x-6(x-1)=3-2(x+3).19. (5分) (2018七上·安图期末) 计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.20. (5分) (2019七上·鄱阳期中) 若a、b互为相反数,c、d互为倒数,m的绝对值为2,求代数式的值.21. (15分) (2019七下·赣榆期中) 四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.22. (5分)如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?23. (15分) (2018七上·蕲春期中) 如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.24. (8分) (2020七上·福田期末) 有6位同学帮助美术老师装裱美术作品,其中有部分同学装裱过,是熟手,部分同学是生手,每20分钟,熟手可装裱3件,生手可装裱2件,经过2个小时,6位同学共装裱作品84件.(1)如果设熟手为x位,那么生手是________位(用x表示)(2) 2小时熟手共装裱________个,生手共装裱________个,(用含x的代数式表示)(3)列方程,求出熟手和生手各几位?25. (11分)(2020·牡丹江) 在等腰中,,点D,E在射线上,,过点E作,交射线于点F.请解答下列问题:(1)当点E在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点M.)(2)当点E在线段的延长线上,是的角平分线时,如图②;当点E在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则 ________.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共14分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、答案:14-2、答案:14-3、答案:14-4、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共84分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:第21 页共21 页。
A.B.2C.2--A.152B.151C.150D.149二、填空题(本大题共6小题,每小题3分,共18分)()2+-=25(1)如图,已知四个点A 、B ①连接,画射线.②画出一点P ,使P 到A 、理由是______.(1)若,则________(2)若,平分BC AD :4:5AOC BOD ∠∠=BOD ∠=()045AOC αα︒<≤∠=︒ON COD∠(1)当点B与点C相遇时,点A、D在数轴上表示的数分别为【点睛】本题考查了角平分线定义,平角的定义,正确的作出图形是解题的关键.②连接,交点即为点P ;两点之间线段最短,最短,故答案为:两点之间线段最短;BD AC 、 AP PC BP PD ∴+++故答案为:;(2)解:①补全图形如下:∵与互余,,,∵平分,,;②情形一:点D 在内.此时,,依题意可得:,解得:.情形二:点D 在外.在的条件下,补全图形如下:此时,依题意可得:,50︒BOD ∠AOC ∠90BOD AOC ∴∠+∠=︒90COD ∴∠=︒ON COD ∠45CON ∴∠=︒45AON α∴∠=+︒BOC ∠45,90AON COD α∠=+︒∠=︒4590180α+︒+︒=︒45α=︒BOC ∠045α︒<≤︒45,902AON COD α∠=︒∠=︒+45902180α︒+︒+=︒此时点B 在数轴上表示的数为;当点B 在点C 的右侧时,依题意得到:,解得,此时点B 在数轴上表示的数为;综上所述:点B 在数轴上表示的数为4或16.8624-+⨯=()6232t +=4t =86416-+⨯=。
上饶市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 3.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.54.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-7.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =138.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >011.3的倒数是( ) A .3B .3-C .13D .13-12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.若|x |=3,|y |=2,则|x +y |=_____.15.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 16.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 17.把53°24′用度表示为_____. 18.化简:2xy xy +=__________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 20.﹣30×(1223-+45)=_____. 21.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 22.52.42°=_____°___′___″. 23.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.计算:()1()20230---+ ()2()()2242314-÷--⨯-+26.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生; (2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______; (4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数. 27.计算(1)()547-- (2) 213(2)()24-⨯-28.解方程:4x+2(x ﹣2)=12﹣(x+4)29.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6. (1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.30.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体? ()2画出从正面看到的图形; ()3写出涂上颜色部分的总面积.四、压轴题31.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.32.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
江西省上饶市七年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列各数中,不相等的组数有()①(-3)2与-32;②(-3)2与32;③(-2)3与-23;④|-2|3与|-23|;⑤(-2)3与|-2|3 .A . 0组B . 1组C . 2组D . 3组2. (2分) (2020七上·吴兴期末) 吴兴区自2003年成立以来,本着“生态吴兴、经济强区、科技新城、幸福家园”的总战略,全区的经济实力显著增强。
2018年,全区实现年财政总收入146.59亿元,将146.59亿用科学记数法表示正确的是()A . 1.4659×107B . 1.4659×109C . 146.59×108D . 1.4659×10103. (2分)(2013·南京) 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A .B .C .D .4. (2分)(2017·江阴模拟) 如图所示零件的左视图是()A .B .C .D .5. (2分)中午12点15分时,钟表上的时针和分针所成的角是()A . 90ºB . 75ºC . 82.5ºD . 60º6. (2分) (2020七上·西安期末) 下列描述不正确的是()A . 单项式的系数是,次数是3次B . 用一个平面去截一个圆柱,截面的形状可能是一个长方形C . 过七边形的一个顶点有5条对角线D . 五棱柱有7个面,15条棱7. (2分) (2017九下·莒县开学考) 若x=a是关于x的方程3x-4a=2的解,则a的值是()A . 2B . -2C .D . -8. (2分) 2016年全国两会在北京召开,在开会前,工作人员进行会场布置时在主席台上由两人拉着一条绳子,然后以“准绳”使摆放的茶杯整齐,这样做的理由是()A . 两点之间线段最短B . 两点确定一条直线C . 垂线段最短D . 过一点可以作无数条直线9. (2分)下列说法中,正确的是()A . 一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B . 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C . 一组数据8,8,7,10,6,8,9的众数是8D . 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小10. (2分) (2020九上·大名期末) 如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E ,∠A=30°,则扇形BOC的面积为()A .B .C . πD .11. (2分)买一个笔盒需要m元,买一支铅笔需要n元,则买4个笔盒、7支铅笔共需要()元A . 4m+7nB . 28mC . 7m+4nD . 11m12. (2分)(2018·苏州模拟) 如图所示,一动点从半径为2的上的点出发,沿着射线方向运动到上的点处,再向左沿着与射线夹角为的方向运动到上的点处;接着又从点出发,沿着射线方向运动到上的点处,再向左沿着与射线夹角为的方向运动到上的点处;…按此规律运动到点A2018处,则点A2018与点间的距离是()A . 4B .C .D . 0二、填空题 (共4题;共4分)13. (1分) (2019七上·阜宁期末) 用度、分、秒表示:18.36°=________.14. (1分) (2019七上·江门期中) 一天早晨的气温是﹣8℃,中午上升了12℃,午夜又下降了10℃,午夜的气温是________℃.15. (1分)3.76°=________度________分________秒;22°32′24″=________度.16. (1分) (2020八上·长春月考) 如图所示,三角形纸片ABC , AB=10厘米,BC=7厘米,AC=6厘米.沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD ,则△AED的周长为________厘米.三、解答题 (共7题;共56分)17. (10分) (2019七上·新昌月考) 计算下列各题(1) 5﹣(﹣2)(2)(3)(4)(5)(-4)-(+13)+(-5)-(-9)+7(6)18. (10分)(2019·扬中模拟)(1)解方程2(x﹣3)=4x﹣5.(2)解不等式组19. (11分) (2020七下·北京期末) 白色污染(White Pollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭2018年某个月丢弃塑料袋的数量(单位:个):请根据上述数据,解答以下问题:(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值),请将表中空缺的部分补充完整,并补全频数直方图;(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在________组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了右图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出C组对应的扇形圆心角的度数;(4)若小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个家庭个数.20. (10分) (2019七下·昭平期中) 王老师给学生出了一道题:求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=,b=﹣1,同学们看了题目后发表不同的看法.小张说:条件b=﹣1是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若xm等于本題计算的结果,试求x2m的值.21. (7分) (2018七下·市南区期中) 我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)22. (6分)(2012·河南) 某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?23. (2分) (2016七上·阳新期中) 已知:有理数m所表示的点到原点距离4个单位,a、b互为相反数、且都不为零,c,d互为倒数.(1)求m的值;(2)求:2a+2b+(﹣3cd)﹣m的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共56分)17-1、17-2、17-3、17-4、17-5、17-6、18-1、18-2、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.-2019的相反数是()A. 2019B. −2019C. 12019D. −120192.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A. −6℃B. −3℃C. 0℃D. +3℃3.下列运算中,结果正确的是()A. 3a2+4a2=7a4B. 4m2n+2mn2=6m2nC. 2x−12x=32xD. 2a2−a2=24.如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是()A. 0B. 9C. 快D. 乐5.若两个非零的有理数a,b满足:|a|=-a,|b|=b,a+b<0,则在数轴上表示数a,b的点正确的是()A. B. C. D.6.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为-13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A. −1B. 5C. 6D. 87.如图,点O在直线DB上,已知∠1=15°,∠AOC=90°,则∠2的度数为()A. 165∘B. 105∘C. 75∘D. 15∘8.观察下列关于x的单项式,探究其规律:2x,-4x2,6x3,-8x4,10x5,-12x6,…,按照上述规律,第2018个单项式是()A. 2018x2018B. −2018x2018C. −4036x2018D. 4036x2018二、填空题(本大题共8小题,共24.0分)9.请写出一个系数含π,次数为3的单项式,它可以是______.10.光的传播速度约为300000km/s,太阳光照射到地球上大约需要500s,则太阳到地球的距离用科学记数法表示为______km.11.若方程5(x+a)=ax+14的解是x=2,则a=______.12.已知单项式3a m b2与-12a4bn−1的和是单项式,则m+n=______.13.钟面上12点30分,时针与分针的夹角是______度.14.若|a-1|+(b+2)2=0,则(a+b)2019+a2018的值为______.15.定义a※b=a2-b,则(2※3)※1=______.16.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.那么需要多少张餐桌拼在一起可坐90人用餐?若设需要这样的餐桌x张,可列方程为______.三、计算题(本大题共3小题,共19.0分)17.计算:-12-(-2)3÷45+3×|1-(-2)2|18.2x−13−10x−16=2x+14−1.19.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式形式如下:-(a2-4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=12时,求所捂的多项式的值.四、解答题(本大题共4小题,共33.0分)20.列一元一次方程解应用题:社会是一个重要的学校和课堂,生活是一种重要的课程和教材,实践是一种重要的学习方式和途径.参加社会生活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学生在农场进行社会实践活动时,采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?21.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线.(1)求∠DOC的度数;(2)求出射线OC的方向.22.同学们都知道,|4-(-2)|表示4与-2的差的绝对值,实际上也可以理解为4与-2两数在数轴上所对应的两点之间的距离;同理|x-3|也可以理解为x与3两数在数轴上所对应的两点之间的距离,试探索并完成填空.(1)求|8-(-3)|=______;|-3-5|=______.(2)如图,x是0到4之间(包括0,4)的一个数,那么|x-1|+|x-2|+|x-3|+|x-4|的最小值等于多少?23.阅读下面材料:如图1,在数轴上点M表示的数是-6,点N表示的数是3,求线段MN的中点K所示的数.对于求中点表示数的问题,只要用点N所表示的数3,加上点M所表示的数-6,得到的结果再除以2,就可以得到中点K所表示的数;即K点表示的数为3+(−6)2=-1.5利用材料中知识解决下面问题:如图2,已知数轴上有A、B、C、D四点,A点表示数为-6,B点表示的数是-4,线段AD=18,BC=3CD.(1)点D所表示的数是______;(2)若点B以每秒4个单位的速度向右运动,点D以每秒1个单位的速度向左运动,同时运动t秒后,当点C为线段BD的中点时,求t的值;(3)若(2)中点B、点D的运动速度运动方向不变,点A以每秒10个单位的速度向右运动,点C以每秒3个单位的速度向左运动,点P是线段AC的中点,点Q 是线段BD的中点,A、B、C、D四点同时运动,运动时间为t,求线段PQ的长(用含t的式子表示).答案和解析1.【答案】A【解析】解:因为a的相反数是-a,所以-2019的相反数是2019.故选:A.根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解a的相反数是-a,是解决本题的关键.2.【答案】B【解析】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作-3℃.故选:B.根据负数的意义,可得气温上升记为“+”,则气温下降记为“-”,据此解答即可.此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“-”.3.【答案】C【解析】解:A、3a2+4a2=7a2,故选项A不符合题意;B、4m2n与2mn2不是同类项,不能合并,故选项B不符合题意;C、2x-x=x,故选项C符合题意;D、2a2-a2=a2,故选项D不符合题意;故选:C.将选项A,C,D合并同类项,判断出选项B中左边两项不是同类项,不能合并,即可得出结论,此题主要考查了同类项的意义,合并同类项的法则,掌握合并同类项法则是解本题的关键.4.【答案】B【解析】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“9”相对,若图中“2”在正方体的前面,则这个正方体的后面是9.故选:B.利用正方体及其表面展开图的特点解题.本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.5.【答案】A【解析】解:∵a、b是两个非零的有理数满足:|a|=-a,|b|=b,a+b<0,∴a<0,b>0,∵a+b<0,∴|a|>|b|,∴在数轴上表示为:故选:A.根据|a|=-a得出a是负数,根据|b|=b得出b是正数,根据a+b<0得出a的绝对值比b大,在数轴上表示出来即可.本题考查了数轴,绝对值,有理数的加法法则等知识点,关键是确定出a<0,b>0,|a|>|b|.6.【答案】A【解析】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为-13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是-1、5、9.而A、E两点的中点表示的数应该是-0.5,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是-1.故选:A.根据AB=2BC=3CD=4DE的关系,可设AB=x,求出各线段的长,再根据A、E 两点对应值,计算其余三个点所表示的数即可判断.本题考查的是数轴的特点,列方程计算每个线段的长是重点,求出各个点对应的数是关键.7.【答案】B【解析】解:∵∠1=15°,∠AOC=90°,∴∠COB=75°,∴∠2=180°-∠COB=105°.故选:B.根据互余的性质求出∠COB的度数,根据互补的概念求出∠2的度数.本题考查的是余角和补角的概念和性质,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.8.【答案】C【解析】解:第2018个单项式为-4036x2018,故选:C.根据观察,可发现规律:第n项的系数是-2n(n为偶数),字母及指数是x n,可得答案.本题考查了单项式,观察发现规律是解题关键.9.【答案】πxyz【解析】解:这个单项式为:πxyz.故答案为:πxyz.根据单项式的概念求解.本题考查了单项式的知识,数或字母的积组成的式子叫做单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.10.【答案】1.5×108【解析】解:300000×500=150000000,用科学记数法表示为:1.5×108,故答案为:1.5×108.根据科学记数法的表示方法:a×10n,可得答案.本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.11.【答案】43【解析】解:把x=2代入5(x+a)=ax+14,得:5(2+a)=2a+14,解得:a=.根据方程的解的定义,把x=2代入5(x+a)=ax+14,得到一个关于a的方程,求解即可.已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.12.【答案】7【解析】解:由题意,得3a m b2与-是同类项,m=4,n-1═2,解得n=3,m+n=3+4=7,故答案为:7.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.【答案】165【解析】解:12点半时,时针指向1和12中间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,因此12点半时,分针与时针的夹角正好是30°×5+15°=165°.画出图形,利用钟表表盘的特征解答.本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°.借助图形,更容易解决.14.【答案】0【解析】解:由题意得,a-1=0,b+2=0,解得,a=1,b=-2,则(a+b)2019+a2018=(1-2)2019+12018=0,故答案为:0.根据绝对值的非负性、偶次方的非负性列式求出a、b,代入计算即可.本题考查的是非负数的性质,掌握绝对值的非负性、偶次方的非负性是解题的关键.15.【答案】0【解析】解:∵a※b=a2-b,∴(2※3)※1=(22-3)※1=1※1=12-1=0,故答案为:0.根据a※b=a2-b,可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】4x+2=90【解析】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=90.故答案是:4x+2=90.根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.17.【答案】解:-12-(-2)3÷45+3×|1-(-2)2|=-1-(-8)×54+3×|1-4|=-1+10+3×3=-1+10+9=18.【解析】根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】解:去分母得,4(2x-1)-2(10x-1)=3(2x+1)-12,去括号得,8x-4-20x+2=6x+3-12,移项得,8x-20x-6x=3-12+4-2,合并同类项得,-18x=-7,系数化为1得,x=718.【解析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.【答案】解:(1)根据题意得:(a2-4ab+4b2)+(a2-4b2)=a2-4ab+4b2+a2-4b2=2a2-4ab;(2)当a=-1,b=12时,原式=2+2=4.【解析】(1)根据被减数=减数+差,计算即可求出所求;(2)把a与b的值代入原式计算即可求出值.此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)设采摘的黄瓜x千克,则茄子为(80-x)千克,2x+2.4(80-x)=180,解得:x=30,80-30=50(千克),答:采摘的黄瓜30千克,则茄子50千克;(2)(3-2)×30+(4-2.4)×50=30+80=110(元),答:采摘的黄瓜和茄子可赚110元.【解析】(1)根据题意可以列出相应的方程,从而可以求得采摘的黄瓜和茄子各多少千克;(2)根据(1)中的结果和(2)中的结果可以解答本题.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.21.【答案】解:∵OB的方向是北偏西40°,OA的方向是北偏东20°,∴∠AOB=40°+20°=60°,∴∠AOD=180°-60°=120°,∵OC是∠AOD的平分线,∴∠AOC=60°,∴∠DOC=180°-(60°+60°)=60°;∵20°+60°=80°,∴射线OC的方向是北偏东80°.【解析】先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,得出∠DOC的度数,即可确定OC的方向.此题主要考查了方向角的表达,即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.22.【答案】11 8【解析】解:(1)|8-(-3)|=|8+3|=|11|=11;|-3-5|=|-8|=8故答案为11,8.(2)根据|x-1|+|x-2|+|x-3|+|x-4|的几何意义,可得|x-1|+|x-2|+|x-3|+|x-4|表示x到数轴上1,2,3,4四个数的距离之和.∵0≤x≤4,于是可分以下四个区间讨论:①当0≤x≤1时,|x-1|+|x-2|+|x-3|+|x-4|=1-x+2-x+3-x+4-x=10-4x,x取1时得最小值6;②当1<x≤2时,|x-1|+|x-2|+|x-3|+|x-4|=x-1+2-x+3-x+4-x=8-2x.x取2时得最小值4;③当2<x≤3时,|x-1|+|x-2|+|x-3|+|x-4|=x-1+x-2+3-x+4-x=4,此时该式为常数4;④当3<x≤4时,|x-1|+|x-2|+|x-3|+|x-4|=x-1+x-2+x-3+4-x=2x-2>4;综合以上四种情况可知当x是0到4之间(包括0,4)的一个数,那么|x-1|+|x-2|+|x-3|+|x-4|的最小值等于4.答:当x是0到4之间(包括0,4)的一个数,那么|x-1|+|x-2|+|x-3|+|x-4|的最小值等于4.(1)根据绝对值的定义计算即可;(2)根据题意可知x是0到4之间(包括0,4)的一个数.因此对于|x-1|+|x-2|+|x-3|+|x-4|的最小值可以分区间讨论,从每个区间中来找最小值.本题考查的是绝对值的几何意义,重点考查数轴上两点间的距离,分区间讨论是解决本题的重要手段与关键.23.【答案】12【解析】解:(1)∵AD=18,OA=6,∴OD=18-6=12,∴D点表示的数是12;故答案为:12;(2)∵A点表示数为-6,B点表示的数是-4,∴AB=2,∴BD=16,∵BC=3CD,∴BC=12,CD=4,∴OC=12-4=8,∴C(8,0),由题意得:B(-4+4t,0),D(12-t,0),∴=8,t=;(3)运动后:A:-6+10t,C:8-3t,∴P:=,B:-4+4t,D:12-t,∴Q:=,当≥时,t,PQ==2t-3,当<时,t<,PQ=-=3-2t.综上,线段PQ的长为2t-3或3-2t.(1)根据AD的长和OA的长可得OD的长,从而得D的坐标;(2)根据运动的速度和时间表示B和D的坐标,根据中点坐标公式表示D的坐标,列等式可得t的值;(3)表示中点P和Q的坐标,分情况讨论可得线段PQ的长.此题主要考查了数轴,同一坐标轴上两点的距离以及中点坐标公式的运用,解决问题的关键是根据材料理解中点坐标公式并运用,第3问要考虑全面各种情况,不要漏解.。