上海市中考数学试题(含答案)
- 格式:doc
- 大小:637.82 KB
- 文档页数:10
2024届上海市浦东区中考联考数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是()A.B.C.D.2.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.430(4)(4)2x yx y+-=⎧⎨---=⎩B.26(4)(4)2x yx y+=⎧⎨---=⎩C.430(4)(4)2x yy x+-=⎧⎨---=⎩D.4302x yx y-+=⎧⎨-=⎩3.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a74.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①AB CD=;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.45.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF 的长度是()A.3cm B.6cm C.2.5cm D.5cm6.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.7.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.53B.34C.43D.238.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C 的坐标为()A .(2,1)B .(1,2)C .(1,3)D .(3,1)9.下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A .1个B .2个C .3个D .4个10.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125二、填空题(共7小题,每小题3分,满分21分)11.一次函数y=(k ﹣3)x ﹣k+2的图象经过第一、三、四象限.则k 的取值范围是_____.12.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.13.某排水管的截面如图,已知截面圆半径OB=10cm ,水面宽AB 是16cm ,则截面水深CD 为_____.14.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.15.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).16.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).17.如图,点M是反比例函数2yx(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为A.1 B.2 C.4 D.不能确定三、解答题(共7小题,满分69分)18.(10分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
专题11 图形的性质之填空题参考答案与试题解析一.填空题(共65小题)1.(2019•上海)如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=120度.【答案】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【点睛】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.2.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【答案】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴,即2,解得x,∴AD的长为,故答案为.【点睛】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.3.(2019•上海)如图,在正边形ABCDEF中,设,,那么向量用向量、表示为2.【答案】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴2,∵,∴2,故答案为2.【点睛】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.4.(2018•上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是540度.【答案】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.故答案为540.【点睛】本题考查了多边形内角与外角:多边的内角和定理:(n﹣2)•180 (n≥3)且n为整数).此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形.5.(2017•上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【答案】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴cos30°,∴λ6,故答案为.【点睛】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.6.(2019•浦东新区二模)已知一个角的度数为50度,那么这个角的补角等于130°.【答案】解:180°﹣50°=130°.故这个角的补角等于130°.故答案为:130°.【点睛】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.7.(2019•青浦区一模)对于封闭的平面图形,如果图形上或图形内的点S到图形上的任意一点P之间的线段都在图形内或图形上,那么这样的点S称为“亮点”.如图,对于封闭图形ABCDE,S1是“亮点”,S2不是“亮点”,如果AB∥DE,AE∥DC,AB=2,AE=1,∠B=∠C=60°,那么该图形中所有“亮点”组成的图形的面积为.【答案】解:如图,延长DE交BC于点M,延长AE交BC于点N.由题意:该图形中所有“亮点”组成的图形是△EMN,∵AB∥DE,AE∥DC,∴∠EMN=∠B=60°,∠ENM=∠C=60°,∴△EMN,△ABN是等边三角形,∴AN=AB=2,∵AE=1,∴EN=1,∴S△EMN12.【点睛】本题考查平行线的性质,等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(2019•宝山区一模)如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE =2BD,BE=1,那么DC=.【答案】解:∵AB∥DC,∴∠ABD=∠BDC,∵∠ABD=∠CEA,∴∠AEB=∠BDC,∴∠EAB=180°﹣∠AEB﹣∠ABE,∠CBD=180°﹣∠ABD﹣∠ABE,∴∠EAB=∠CBD,∴△AEB∽△BDC,∴,∵3AE=2BD,BE=1,∴CD,故答案为:.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,证得△AEB∽△BDC是解题的关键.9.(2019•青浦区二模)如图,△ABC的中线AD、BE相交于点G,若,,用、表示.【答案】解:如图,连接DE.∵BD=CD,AE=EC,∴DE∥AB,DE AB,∴,∴DG AD,∴,,,∴,∵,∴,故答案为:,【点睛】本题考查三角形的重心,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(2019•嘉定区二模)各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S=a b﹣1,其中a表示多边表内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图格点多边形的面积是6.【答案】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴格点多边形的面积S=a b﹣1=46﹣1=6.故答案为:6.【点睛】本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.11.(2019•长宁区二模)我们规定:一个多边形上任意两点间距离的最大值称为该多边形的“直径”.现有两个全等的三角形,边长分别为4、4、.将这两个三角形相等的边重合拼成对角线互相垂直的凸四边形,那么这个凸四边形的“直径”为6或3.【答案】解:①如图1,由题意得,AB=AC=BD=CD=4,BC=2,∴四边形ABDC是菱形,∴AD⊥BC,BO=CO AC,AO=OD,∴AO3,∴AD=6>2BC,∴这个凸四边形的“直径”为6;②如图2,由题意得,AB=AC=AD=4,BC=CD=2,∴AC垂直平分BD,∴AC⊥BD,BO=DO,设AO=x,则CO=4﹣x,由勾股定理得,AB2﹣AO2=BC2﹣CO2,∴42﹣x2=(2)2﹣(4﹣x)2,解得:x,∴AO,∴BO,∴BD=2BO=3,∵BD=3>4=AC,∴这个凸四边形的“直径”为3,综上所述:这个凸四边形的“直径”为6或3,故答案为:6或3.【点睛】本题考查了全等三角形的性质,线段垂直平分线的判定和性质,菱形的判定和性质,勾股定理,正确的作出图形是解题的关键.12.(2019•黄浦区二模)如图,点O是△ABC的重心,过点O作DE∥AB,分别交AC、BC于点D、E,如果,那么a.(结果用表示).【答案】解:如图,连接CO并延长交AB于点M,∵点O是△ABC的重心,∴M是AB的中点,∵DE∥AB,∴△CDO∽△CAM,∴,∴DO AM a a.故答案为:a.【点睛】本题考查三角形重心的概念和性质,相似三角形的判定和性质.解题的关键是掌握三角形重心的概念和性质.13.(2019•金山区二模)在△ABC中,AB=AC,请你再添加一个条件使得△ABC成为等边三角形,这个条件可以是∠A=60°(只要写出一个即可).【答案】解:在△ABC中,AB=AC,再添加∠A=60°可得△ABC是等边三角形,故答案为:∠A=60°.【点睛】此题主要考查了等边三角形的判定,关键是掌握等边三角形的判定方法:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.14.(2019•奉贤区二模)在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).如果小正方形的面积是25,大正方形的面积为49,直角三角形中较小的锐角为α,那么tanα的值是.【答案】解:∵小正方形的面积是25,∴EB=5,∵△ABC≌△DEB,∴AB=DE,∵大正方形的面积为49,∴AD=7,∴DB+DE=7,设BD=x,则DE=7﹣x,在Rt△BDE中:x2+(7﹣x)2=52,解得:x1=4,x2=3,当x=4时,7﹣x=3,当x=3时,7﹣x=4,∵α为较小的锐角,∴BD=4,DE=3,∴tanα ,故答案为:.【点睛】此题主要考查了勾股定理和锐角三角形函数,关键是掌握勾股定理的应用.15.(2019•杨浦区二模)如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设,,用,表示,那么.【答案】解:连接AG,延长AG交BC于F.∵G是△ABC的重心,DE∥BC,∴BF=CF,,∵,,∴,∵BF=CF,∴DG=GE,∵,,∴,∴,故答案为.【点睛】本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2019•闵行区一模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D、E分别在边AB上,且AD=2,∠DCE=45°,那么DE=.【答案】解:如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,∵∠ACB=90°,AC=BC=4,∴AB=8,∠CAB=∠ABC,∵AD=2,∴BD=6=DE+BE,∵将△BCE绕点C逆时针旋转90°得到△ACF∴△AFC≌△BEC∴AF=BE,CF=EC,∠F AC=∠ABC=45°=∠CAB,∠ACF=∠BCE,∴∠F AD=90°∵∠DCE=45°,∠ACB=90°,∴∠ACD+∠BCE=45°,∴∠ACD+∠FCA=45°=∠DCE,且CF=BC,CD=CD,∴△FCD≌△ECD(SAS)∴DE=DF,在Rt△ADF中,DF2=AD2+AF2,∴DE2=4+(6﹣DE)2,∴DE故答案为【点睛】本题考查了全等三角形判定和性质,等腰三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.17.(2019•松江区一模)如图,在直角坐标平面xOy中,点A坐标为(3,2),∠AOB=90°,∠OAB=30°,AB与x轴交于点C,那么AC:BC的值为.【答案】解:如图所示:作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E.∵A(3,2),∴OA,∵∠OAB=30°,∠AOB=90°,∴,∵∠AOB=90°,∠EOC=90°,∴∠EOB=∠AOD,又∵∠BEO=∠ADO,∴△OEB∽△ODA,∴,即,解得:OE,∵AC:BC=S△AOC:S△OBC=AD:OE=2:,故答案为:.【点睛】本题主要考查的是含30°的直角三角形的性质,相似三角形的判定和性质,证得△OEB∽△ODA 是解答本题的关键.18.(2019•宝山区一模)Rt△ABC中,∠C=90°,AB=2AC,那么sin B=.【答案】解:由题意,得sin B,故答案为:.【点睛】本题考查了锐角三角函数的定义,利用锐角的正弦等于对边比斜边是解题关键.19.(2019•杨浦区模拟)如图,在Rt△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,sin∠ACG ,则BC长为4.【答案】解:延长CG交AB于D,作DE⊥BC于E,∵点G是△ABC的重心,∵CG=2,∴CD=3,点D为AB的中点,∴DC=DB,又DE⊥BC,∴CE=BE BC,∵∠ACG+∠DCE=∠DCE+∠CDE=90°,∴∠ACG=∠CDE,∵sin∠ACG=sin∠CDE,∴CE=2,∴BC=4故答案为:4.【点睛】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.20.(2019•虹口区一模)如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC 于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.【答案】解:连接BG并延长交AC于H,∵G为ABC的重心,∴2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴2,∴BE=8,故答案为:8.【点睛】本题考查了三角形重心的性质,平行线分线段成比例定理,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.21.(2019•长宁区一模)如图,在等腰△ABC中,AB=AC,AD、BE分别是边BC、AC上的中线,AD与BE交于点F,若BE=6,FD=3,则△ABC的面积等于9.【答案】解:过E作EG⊥BC于G,∵AD、BE分别是边BC、AC上的中线,∴点F是△ABC的重心,∴AD=3DF=9,∵AB=AC,AD是边BC上的中线,∴AD⊥BC,BD=CD,∵BE是边AC上的中线,∴AE=CE,∵AD⊥BC,EG⊥BC,∴EG∥AD,∴EG AD,CG CD,∵BE=6,∴BG,∴BC BG=2,∴△ABC的面积9×29,故答案为:9.【点睛】本题考查了三角形的重心,等腰三角形的性质,三角形的面积,平行线分线段成比例定理,正确的作出辅助线是解题的关键.22.(2019•静安区一模)在中△ABC,∠C=90°,AC=8,BC=6,G是重心,那么G到斜边AB中点的距离是.【答案】解:∵∠C=90°,AC=8,BC=6,∴AB10,∵CD为AB边上的中线,∴CD AB=5,∵点G是重心,∴DG CD.故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.23.(2019•青浦区一模)在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE=.【答案】解:如图所示,连接DH,∵AB=AC,AH⊥BC,∴H为BC的中点,又∵D为AC的中点,∴DH为△ABC的中位线,∴DH∥AB,DH AB,∴△DEH∽△BEA,∴,又∵BD=3,∴BE=2,∴Rt△BEH中,EH,∴AE=2EH=2,故答案为:2.【点睛】本题主要考查了等腰三角形的性质以及相似三角形的性质的运用,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.24.(2019•虹口区一模)定义:如果△ABC内有一点P,满足∠P AC=∠PCB=∠PBA,那么称点P为△ABC 的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果P A=2,那么PC=.【答案】解:∵AB=AC,∴∠ACB=∠ABC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,∠∠,∴△ACP∽△CBP,∴,∵AC=5,BC=8,P A=2,∴PC.故答案为.【点睛】本题考查等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是证明△ACP∽△CBP,属于中考常考题型.25.(2019•崇明区一模)已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【答案】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD AB=5,∵G为△ABC的重心,∴CG CD,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.26.(2019•宝山区一模)直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为12cm.【答案】解:由题意得,CG=4,∵点G是△ABC的重心,∴CD CG=6,CD是△ABC的中线,在Rt△ACB中,∠ACB=90°,CD是△ABC的中线,∴AB=2CD=12(cm),故答案为:12cm.【点睛】本题考查的是三角形的重心的概念和性质,直角三角形的性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.27.(2019•杨浦区一模)在△ABC中,AB=AC=5,BC=8,如果点G为重心,那么∠GCB的余切值为4.【答案】解:作AD⊥BC于D,则点G在AD上,连接GC,∵AB=AC,AD⊥BC,∴CD BC=4,由勾股定理得,AD3,∵G为△ABC的重心,∴DG AD=1,∴cot∠GCB4,故答案为:4.【点睛】本题考查的是重心的概念和性质,锐角三角函数的定义,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.28.(2019•杨浦区模拟)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为.【答案】解:∵△ABC的三条中位线组成△A1B1C1,∴A1B1=AC,B1C1=AB,A1C1=BC,∴△A1B1C1的周长△ABC的周长3,依此类推,△A2B2C2的周长△A1B1C1的周长,则△A5B5C5的周长为,故答案为:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.29.(2019•静安区二模)已知△ABC中,G是△ABC的重心,则.【答案】解:设△ABC边AB上的高为h,∵G是△ABC的重心,∴△ABG边AB上的高为h,∴.故答案为:.【点睛】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.30.(2019•杨浦区一模)等边三角形的中位线与高之比为1:.【答案】解:设等边三角形的边长为2a,则中位线长为a,高线的长为a,所以等边三角形的中位线与高之比为a:a=1:,故答案为:1:.【点睛】本题考查了等边三角形的性质和三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.31.(2019•东台市一模)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【答案】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.32.(2019•浦东新区二模)在四边形ABCD中,向量、满足,那么线段AB与CD的位置关系是平行.【答案】解:∵,∴与是共线向量,由于与没有公共点,∴AB∥CD,故答案为:平行.【点睛】本题考查共线向量,解题的关键是熟练运用共线向量的定义,本题属于基础题型.33.(2019•浦东新区二模)已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于7厘米.【答案】解:梯形的中位线长(5+9)=7(厘米)故答案为:7.【点睛】本题考查的是梯形中位线的计算,梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.34.(2019•静安区二模)如图,在平行四边形ABCD中,点E、F是AB的三等分点,点G是AD的中点,联结EC、FG交于点M.已知,,那么向量.(用向量,表示).【答案】解:如图,延长FG交CD的延长线于H.∵四边形ABCD是平行四边形,∴AB∥CH,∴1,∴AF=DH,设AE=EF=FB=a,则AB=CD=3a,AF=DH=2a,CH=5a,∵EF∥CH,∴,∴CM CE,∵,∴,故答案为.【点睛】本题考查平面向量,平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,灵活运用平行线分线段成比例定理解决问题,属于中考常考题型.35.(2019•虹口区二模)如图,AD∥BC,BC=2AD,AC与BD相交于点O,如果,,那么用、表示向量是2.【答案】解:∵AD∥BC,∴△ADO∽△CBO,∴,∴332,故答案为:.【点睛】本题考查平面向量,解题的关键是熟练运用平面向量的运算法则,本题属于基础题型.36.(2019•虹口区二模)我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.如图,矩形ABCD的面积为5,如果变形后的平行四边形A1B1C1D1的面积为3,那么这个平行四边形的变形度为.【答案】解:过A1作A1D⊥B1C1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴ab=5,3=ah,∴b,h,∴B1D,∴,故答案为:.【点睛】本题考查了平行四边形的性质,矩形的性质,三角函数的定义,正确的理解题意是解题的关键.37.(2019•嘉定区二模)如图,平行四边形ABCD的对角线AC、BD交于点O,过点O的线段EF与AD、BC分别交于点E、F,如果AB=4,BC=5,OE,那么四边形EFCD的周长为12.【答案】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF(AAS),∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.【点睛】本题利用了平行四边形的性质,由已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.38.(2019•松江区二模)如图,在△ABC中,D、E分别是边AB、AC的中点.设,,用、表示为2.【答案】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,BC=2DE,∵,∴2,∴2,故答案为2.【点睛】本题考查平面向量,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.39.(2019•长宁区二模)如图,在平行四边形ABCD中,点E是边CD的中点,联结AE、BD交于点F,若,,用、表示.【答案】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴,,∵DE=DC,∴,∴,∵DE∥AB,∴EF:AF=DE:AB=1:2,∴EF AE,∴∴故答案为.【点睛】本题考查平面向量,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.40.(2019•宝山区二模)如图,平行四边形ABCD的对角线AC,BD交于O,过点O的线段EF与AD,BC 分别交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为12.【答案】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.【点睛】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.41.(2019•崇明区二模)如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么∠GCD的正切值为.【答案】解:连接FD,设正多边形的边长为a,∵在△FED中,EF=ED=a,∠FED=120°,∴FD a.∴DG=DF+FG=(1)a.在Rt△GCD中,tan∠GCD.故答案为.【点睛】本题主要考查正多边形的内角和及解直角三角形,解题的关键是在正六边形中求出DF长度.42.(2019•闵行区二模)如图,在△ABC中,点D在边AC上,且CD=2AD.设,,那么.(结果用向量、的式子表示)【答案】解:∵CD=2AD,,∴,∵,∴,故答案为:.【点睛】本题考查平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.43.(2019•崇明区二模)如图,在△ABC中,D、E分别在边AB、AC上,DE∥BC,BD=2AD,,,那么用、表示为:.【答案】解:∵DE∥BC,∴,∵,∴3,∵BD AB,,∴,∵,∴3,故答案为3.【点睛】本题考查平面向量,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.44.(2019•奉贤区二模)已知△ABC,点D、E分别在边AB、AC上,DE∥BC,DE.如果设,,那么.(用向量、的式子表示)【答案】解:如图,∵DE∥BC,DE BC,,∴3,∵,∴3,故答案为3.【点睛】本题考查平面向量,平行向量的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.45.(2019•普陀区二模)如图,AD、BE是△ABC的中线,交于点O,设,,那么向量用向量、表示是2.【答案】解:∵AD、BE是△ABC的中线,交于点O,∴AO=2OD,∴2,∵,∴2,故答案为2.【点睛】本题考查平面向量,三角形法则,三角形的重心的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.46.(2019•金山区二模)如图,在▱ABCD中,E是边BC上的点,AE交BD于点F,,,,那么(用、表示).【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AC=BC,∵BE:BC=2:3,∴BE:AD=2:3,∴AD BE,∵,∴,∵,∴,故答案为.【点睛】本题考查平行四边形的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.47.(2019•崇明区一模)如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC,则线段EF的长为或.【答案】解:作FH⊥AB于点H,连接EF.∵∠AFB=90°,∴∠AFD+∠BFC=90°,∵∠AMD+∠DAM=90°,∴∠DAF=∠BFC又∵∠D=∠C,∴△ADF∽△FCB,∴,即,∴FC=2或3.∵点F,E分别为矩形ABCD边CD,AB上的直角点,∴AE=FC,∴当FC=2时,AE=2,EH=1,∴EF2=FH2+EH2=()2+12=7,∴EF.当FC=3时,此时点E与点H重合,即EF=BC,综上,EF或.故答案为:或.【点睛】此题考查了相似三角形的判定定理及性质和勾股定理,得出△ADF∽△FCB是解题关键.48.(2019•徐汇区一模)如图,在梯形ABCD中,AD∥BC,EF是梯形ABCD的中位线,AH∥CD分别交EF、BC于点G、H,若,,则用、表示.【答案】解:∵在梯形ABCD中,AD∥BC,则AD∥HC,AH∥CD,∴四边形AHCD是平行四边形.∴AD=HC.又EF是梯形ABCD的中位线,∴EF,且GF=AD.∴EG=EF﹣GF AD.∵,,∴.故答案是:.【点睛】考查了平面向量和梯形中位线定理,注意:向量既有大小又有方向.49.(2019•普陀区一模)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD,BC=5,那么DC的长等于2.【答案】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tan C,∴BD CD,由勾股定理得,BD2+CD2=BC2,即(CD)2+CD2=52,解得,CD=2,故答案为:2.【点睛】本题考查的是梯形的性质,正切的定义,勾股定理,掌握梯形的性质,正切的定义是解题的关键.50.(2019•宝山区一模)若2||=3,那么3||=.【答案】解:由2||=3得到:||,故3||=3.故答案是:.【点睛】考查了平面向量的知识,解题时,可以与实数的运算法则联系起来考虑,属于基础题. 51.(2019•嘉定区一模)如果向量、、满足关系式2(3)=4,那么2(用向量、表示).【答案】解:2(3)=42340202故答案是:2.【点睛】考查平面向量,此题是利用方程思想求得向量的值的,难度不大.52.(2019•闵行区一模)化简:()=.【答案】解:()=()(1).故答案是:.【点睛】考查了平面向量的知识,实数的加减运算法则同样适用于平面向量的加减计算.53.(2019•青浦区一模)计算:3(2)﹣2(3)=.【答案】解:3(2)﹣2(3)=3323=(3﹣2)(﹣3+3).故答案是:.【点睛】考查了平面向量,熟练掌握平面向量的加法结合律即可解题,属于基础计算题.54.(2019•浦东新区一模)已知向量与单位向量的方向相反,||=4,那么向量用单位向量表示为﹣4.【答案】解:∵向量与单位向量的方向相反,||=4,∴4.故答案是:﹣4.【点睛】此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.55.(2019•虹口区一模)计算:2(3)=33【答案】解:原式=2333.故答案是:33.【点睛】考查了平面向量,掌握平面向量的加减计算法则即可解题,属于基础计算题.56.(2019•崇明区一模)化简:.【答案】解:原式.故答案是:.【点睛】考查了平面向量,解答此类题目时,直接去括号,然后计算加减法即可.57.(2019•黄浦区一模)如果向量与单位向量方向相反,且长度为2,那么向量﹣2(用单位向量表示).【答案】解:∵的长度为2,向量是单位向量,∴a=2e,∵与单位向量的方向相反,∴2.故答案为:﹣2.【点睛】本题考查的是平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.58.(2019•黄浦区一模)如图,平行四边形ABCD中,点E是BC边上的点,BE:EC=1:2,AE与BD交于点O,如果,,那么()(用向量、表示).【答案】解:∵,,∴.∵在平行四边形ABCD中,AD∥BC,AD=BC,BE:EC=1:2,∴.∴AO AE().故答案是:().【点睛】考查了平面向量和平行四边形的性质,解题时,需要熟练掌握向量的三角形法则,注意向量是有方向的.59.(2019•金山区一模)如图,已知O为△ABC内一点,点D、E分别在边AB、AC上,且,DE ∥BC,设、,那么(用、表示).【答案】解:∵,DE∥BC,∴,∴DE BC.∵、,,∴.故答案是:.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.60.(2019•徐汇区一模)计算:(2)﹣47.【答案】解::(2)﹣4247.故答案是:7.【点睛】本题考查了平面向量的有关概念,是基础题.61.(2019•普陀区一模)化简:3()﹣2()=.【答案】解:3()﹣2()=322(3﹣2)(2).故答案是:.【点睛】考查了平面向量,解题的关键是掌握平面向量的计算法则.62.(2019•奉贤区一模)计算:32()=5.【答案】解:32()=325;故答案为5;【点睛】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.63.(2019•奉贤区一模)如果正n边形的内角是它中心角的两倍,那么边数n的值是6.【答案】解:依题意有2,解得n=6.故答案为:6.【点睛】此题考查了多边形内角与外角,此题比较简单,解答此题的关键是熟知正多边形的内角和公式及中心角的求法.64.(2019•金平区一模)如果多边形的每个外角都是45°,那么这个多边形的边数是8.【答案】解:多边形的边数是:8,故答案为:8.【点睛】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题关键.。
上海市存志中学2024届中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A .8,6 B .7,6 C .7,8 D .8,72.在12,0,-1,12-这四个数中,最小的数是( ) A .12 B .0 C .12-D .-13.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .8815 2.5x x+= B .8184 2.5x x+= C .88152.5x x=+ D .8812.54x x =+ 4.计算232332x y x y xy ⋅÷的结果是( ). A .55xB .46xC .56xD .46x y5.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( ) A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣36.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上7.已知二次函数y=ax 2+bx+c (a≠1)的图象如图所示,则下列结论: ①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b=1;④当y=﹣2时,x 的值只能取1; ⑤当﹣1<x <5时,y <1. 其中,正确的有( )A .2个B .3个C .4个D .5个8.计算:()()223311aa a ---的结果是( )A .()21ax -B .31a -. C .11a - D .31a + 9.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3510.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)二、填空题(共7小题,每小题3分,满分21分)11.如图,∠1,∠2是四边形ABCD 的两个外角,且∠1+∠2=210°,则∠A +∠D =____度.12.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为________.13.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.14.已知一组数据3-,x,﹣2,3,1,6的中位数为1,则其方差为____.15.方程1223x x=+的解为__________.16.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.17.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.19.(5分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).20.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.22.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.23.(12分)解方程式:1x2-- 3 =x12x--24.(14分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.2、D【解题分析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在12,0,-1,12-这四个数中,最小的数是-1,故选D .考点:正负数的大小比较. 3、D 【解题分析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+. 故选D .点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可. 4、D 【解题分析】根据同底数幂的乘除法运算进行计算. 【题目详解】3x 2y 2⋅x 3y 2÷xy 3=6x 5y 4÷xy 3=6x 4y.故答案选D. 【题目点拨】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加. 5、A 【解题分析】方程变形后,配方得到结果,即可做出判断. 【题目详解】 方程2410x x +=﹣, 变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣), 故选A . 【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.6、B【解题分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【题目详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【题目点拨】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.7、A【解题分析】根据二次函数的性质和图象可以判断题目中各个小题是否成立.【题目详解】由函数图象可得,a>1,b<1,即a、b异号,故①错误,x=-1和x=5时,函数值相等,故②错误,∵-1522ba-+==2,得4a+b=1,故③正确,由图象可得,当y=-2时,x=1或x=4,故④错误,由图象可得,当-1<x<5时,y<1,故⑤正确,故选A.【题目点拨】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、B【解题分析】根据分式的运算法则即可求出答案.【题目详解】解:原式=()23-31a a -=()23-11a a -()=31a - 故选;B 【题目点拨】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 9、A 【解题分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率: 【题目详解】 列表如下:∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A.10、A【解题分析】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.二、填空题(共7小题,每小题3分,满分21分)11、210.【解题分析】利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【题目详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【题目点拨】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.12、1【解题分析】如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【题目详解】在Rt△ABC中,由勾股定理.得,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴DE AD BC AB=,∴3=610AD,∴AD=1.故答案为1【题目点拨】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.13、x≥1【解题分析】把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【题目点拨】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14、3【解题分析】试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴112x+=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.考点:3.方差;3.中位数.15、1x=【解题分析】两边同时乘2(3)x x+,得到整式方程,解整式方程后进行检验即可.【题目详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【题目点拨】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.16、1【解题分析】由n 行有n 个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.【题目详解】解:第1行1个数,第2行2个数,第3行3个数,…,∴第9行9个数,∴第10行第8个数为第1+2+3+…+9+8=1个数.又∵第2n ﹣1个数为2n ﹣1,第2n 个数为﹣2n ,∴第10行第8个数应该是1.故答案为:1.【题目点拨】本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.17、m >1.【解题分析】分析:根据反比例函数y =2m x -,当x >0时,y 随x 增大而减小,可得出m ﹣1>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x -,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)BC=;.【解题分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.19、C点到地面AD的距离为:(22+2)m.【解题分析】直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.【题目详解】过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=2m,222m.∴C点到地面AD的距离为:()【题目点拨】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.20、(1)①150;②作图见解析;③13.3%;(2)59. 【解题分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比; (2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.【题目详解】①小明统计的评价一共有:(40+20)÷(1-60%=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:20150×100%=13.3%; (2)列表如下:好 中 差 好好,好 好,中 好,差 中中,好 中,中 中,差 差 差,好 差,中 差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是59. 考点:扇形统计图;条形统计图;列表法与树状图法.21、1x >【解题分析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:3122x x -->,3221x x >--+,1x ->.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.22、(1)y=﹣x 2﹣2x+1;(2)(﹣32 ,154) 【解题分析】(1)将A (-1,0),B (0,1),C (1,0)三点的坐标代入y=ax 2+bx+c ,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB 是等腰直角三角形,得出∠BAO=45°,再证明△PDE 是等腰直角三角形,则PE 越大,△PDE 的周长越大,再运用待定系数法求出直线AB 的解析式为y=x+1,则可设P 点的坐标为(x ,-x 2-2x+1),E 点的坐标为(x ,x+1),那么PE=(-x 2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE 最大,△PDE 的周长也最大.将x=-32代入-x 2-2x+1,进而得到P 点的坐标. 【题目详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (﹣1,0),B (0,1),C (1,0), ∴9a-3b+c=0{c=3a+b+c=0,解得a=-1{b=-2c=3,∴抛物线的解析式为y=﹣x 2﹣2x+1;(2)∵A (﹣1,0),B (0,1),∴OA=OB=1,∴△AOB 是等腰直角三角形,∴∠BAO=45°.∵PF ⊥x 轴,∴∠AEF=90°﹣45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【题目点拨】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.23、x=3【解题分析】先去分母,再解方程,然后验根.【题目详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【题目点拨】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.24、(1)2yx=;1522y x=-+;(2)点P坐标为(114,98).【解题分析】(1)将F(4,12)代入0ny xx=(>),即可求出反比例函数的解析式2yx=;再根据2yx=求出E点坐标,将E、F两点坐标代入y kx b =+,即可求出一次函数解析式; (2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【题目详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为1522y x =+﹣; (2)∵点E 坐标为(1,2),点F 坐标为142(,),∴点B 坐标为(4,2),∴BE=3,BF=32, ∴1139•32224EBF S BE BF ∆==⨯⨯=, ∴94POA EBF S S ∆∆== . 点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣), ∴115942224x ⨯-+=(), 解得114x =, ∴点P 坐标为11948(,). 【题目点拨】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.。
2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。
1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。
1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。
答案:a = 3,b = 7。
2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。
答案:a的值为3。
2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。
答案:m的值为2,n的值为1。
2.3. 题目:若x的值满足|x + 3| = 5,求x的值。
答案:x的值为-8或2。
3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。
- 10和15的最小公倍数为30。
- 12和18的最小公倍数为36。
最大公约数:- 3和6的最大公约数为3。
- 10和15的最大公约数为5。
- 12和18的最大公约数为6。
3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。
答案:两条平行线之间的夹角为0°。
3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。
答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。
以上为2023年上海市数学中考试题及答案,仅供参考。
2020年上海市中考数学试卷参考答案与试题解析一.选择题(共6小题)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A.与的被开方数不相同,故不是同类二次根式;B.,与不是同类二次根式;C.,与被开方数相同,故是同类二次根式;D.,与被开方数不同,故不是同类二次根式.故选:C.2.用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2﹣2y+1=0即可求解.【解答】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图【分析】根据统计图的特点判定即可.【解答】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【分析】已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=,再将点的坐标代入求出待定系数k的值,从而得出答案.【解答】解:设反比例函数解析式为y=,将(2,﹣4)代入,得:﹣4=,解得k=﹣8,所以这个反比例函数解析式为y=﹣,故选:D.5.下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且相等的梯形是等腰梯形,故错误;B、对角线相等且互相垂直的平行四边形是正方形,故错误;C、正确;D、对角线平分一组对角的梯形是菱形,故错误;故选:C.6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【分析】证明平行四边形是平移重合图形即可.【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFCD重合,∵平行四边形ABCD是平移重合图形,故选:A.二.填空题(共12小题)7.计算:2a•3ab=6a2b.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a•3ab=6a2b.故答案为:6a2b.8.已知f(x)=,那么f(3)的值是1.【分析】根据f(x)=,可以求得f(3)的值,本题得以解决.【解答】解:∵f(x)=,∵f(3)==1,故答案为:1.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而减小.(填“增大”或“减小”)【分析】根据正比例函数的性质进行解答即可.【解答】解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是4.【分析】一元二次方程有两个相等的实根,即根的判别式∵=b2﹣4ac=0,即可求m值.【解答】解:依题意,∵方程x2﹣4x+m=0有两个相等的实数根,∵∵=b2﹣4ac=(﹣4)2﹣4m=0,解得m=4,故答案为:4.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是.【分析】根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是5的倍数的数据,再根据概率公式即可得出答案.【解答】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∵取到的数恰好是5的倍数的概率是=.故答案为:.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是y=x2+3.【分析】直接根据抛物线向上平移的规律求解.【解答】解:抛物线y=x2向上平移3个单位得到y=x2+3.故答案为:y=x2+3.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为3150名.【分析】用样本中会游泳的学生人数所占的比例乘总人数即可得出答案.【解答】解:8400×=3150(名).答:估计该区会游泳的六年级学生人数约为3150名.故答案为:3150名.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE =0.2米,那么井深AC为7米.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵BD∵AB,AC∵AB,∵BD∵AC,∵∵ACE∵∵DBE,∵,∵=,∵AC=7(米),答:井深AC为7米.15.如图,AC、BD是平行四边形ABCD的对角线,设=,=,那么向量用向量、表示为2 +.【分析】利用平行四边形的性质,三角形法则求解即可.【解答】解:∵四边形ABCD是平行四边形,∵AD=BC,AD∵BC,AB=CD,AB∵CD,∵==,∵=+=+,∵==+,∵=+,∵=++=2+,故答案为:2+.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s (米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行350米.【分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.【解答】解:当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∵s=70t+400;当t=15时,s=1450,1800﹣1450=350,∵当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.17.如图,在∵ABC中,AB=4,BC=7,∵B=60°,点D在边BC上,CD=3,联结AD.如果将∵ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.【分析】如图,过点E作EH∵BC于H.首先证明∵ABD是等边三角形,解直角三角形求出EH即可.【解答】解:如图,过点E作EH∵BC于H.∵BC=7,CD=3,∵BD=BC﹣CD=4,∵AB=4=BD,∵B=60°,∵∵ABD是等边三角形,∵ADB=60°,∵∵ADC=∵ADE=120°,∵∵EDH=60°,∵EH∵BC,∵∵EHD=90°,∵DE=DC=3,∵EH=DE•sin60°=,∵E到直线BD的距离为,故答案为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD 的各边都没有公共点,那么线段AO长的取值范围是<AO<.【分析】根据勾股定理得到AC=10,如图1,设∵O与AD边相切于E,连接OE,如图2,设∵O与BC边相切于F,连接OF,根据相似三角形的性质即可得到结论.【解答】解:在矩形ABCD中,∵∵D=90°,AB=6,BC=8,∵AC=10,如图1,设∵O与AD边相切于E,连接OE,则OE∵AD,∵OE∵CD,∵∵AOE∵∵ACD,∵,∵=,如图2,设∵O与BC边相切于F,连接OF,则OF∵BC,∵OF∵AB,∵∵COF∵∵CAB,∵=,∵=,∵OC=,∵AO=,∵如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是<AO<,故答案为:<AO<.三.解答题(共7小题)19.计算:27+﹣()﹣2+|3﹣|.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【解答】解:原式=(33)+﹣4+3﹣=3+﹣﹣4+3﹣20.解不等式组:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解不等式∵得x>2,解不等式∵得x<5.故原不等式组的解集是2<x<5.21.如图,在直角梯形ABCD中,AB∵DC,∵DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面积;(2)联结BD,求∵DBC的正切值.【分析】(1)过C作CE∵AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到CE==6,于是得到梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH∵BD于H,根据相似三角形的性质得到,根据勾股定理得到BD===10,BH===6,于是得到结论.【解答】解:(1)过C作CE∵AB于E,∵AB∵DC,∵DAB=90°,∵∵D=90°,∵∵A=∵D=∵AEC=90°,∵四边形ADCE是矩形,∵AD=CE,AE=CD=5,∵BE=AB﹣AE=3,∵BC=3,∵CE==6,∵梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH∵BD于H,∵CD∵AB,∵∵CDB=∵ABD,∵∵CHD=∵A=90°,∵∵CDH∵∵DBA,∵,∵BD===10,∵=,∵CH=3,∵BH===6,∵∵DBC的正切值===.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.23.已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:∵BEC∵∵BCH;(2)如果BE2=AB•AE,求证:AG=DF.【分析】(1)想办法证明∵BCE=∵H即可解决问题.(2)利用平行线分线段成比例定理结合已知条件解决问题即可.【解答】(1)证明:∵四边形ABCD是菱形,∵CD=CB,∵D=∵B,CD∵AB,∵DF=BE,∵∵CDF∵CBE(SAS),∵∵DCF=∵BCE,∵CD∵BH,∵∵H=∵DCF,∵∵BCE=∵H,∵∵B=∵B,∵∵BEC∵∵BCH.(2)证明:∵BE2=AB•AE,∵=,∵AG∵BC,∵=,∵=,∵DF=BE,BC=AB,∵BE=AG=DF,即AG=DF.24.在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于∵AOB内,求a的取值范围.【分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,﹣m+5),则BC=|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=﹣10a,代入抛物线解析式中得出顶点D坐标为(5,﹣25a),即可得出结论.【解答】解:(1)针对于直线y=﹣x+5,令x=0,y=5,∵B(0,5),令y=0,则﹣x+5=0,∵x=10,∵A(10,0),∵AB==5;(2)设点C(m,﹣m+5),∵B(0,5),∵BC==|m|,∵BC=,∵|m|=,∵m=±2,∵点C在线段AB上,∵m=2,∵C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得,∵,∵抛物线y=﹣x2+x;(3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,∵b=﹣10a,∵抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,∵抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣x+5中,得y=﹣×5+5=,∵顶点D位于∵AOB内,∵0<﹣25a<,∵﹣<a<0;25.如图,∵ABC中,AB=AC,∵O是∵ABC的外接圆,BO的延长交边AC于点D.(1)求证:∵BAC=2∵ABD;(2)当∵BCD是等腰三角形时,求∵BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:∵若BD=CB,则∵C=∵BDC=∵ABD+∵BAC=3∵ABD.∵若CD=CB,则∵CBD=∵CDB =3∵ABD.∵若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∵BC交BD的延长线于E.则==,推出==,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解答】(1)证明:连接OA.∵AB=AC,∵=,∵OA∵BC,∵∵BAO=∵CAO,∵OA=OB,∵∵ABD=∵BAO,∵∵BAC=2∵BAD.(2)解:如图2中,延长AO交BC于H.∵若BD=CB,则∵C=∵BDC=∵ABD+∵BAC=3∵ABD,∵AB=AC,∵∵ABC=∵C,∵∵DBC=2∵ABD,∵∵DBC+∵C+∵BDC=180°,∵8∵ABD=180°,∵∵C=3∵ABD=67.5°.∵若CD=CB,则∵CBD=∵CDB=3∵ABD,∵∵C=4∵ABD,∵∵DBC+∵C+∵CDB=180°,∵10∵ABD=180°,∵∵BCD=4∵ABD=72°.∵若DB=DC,则D与A重合,这种情形不存在.综上所述,∵C的值为67.5°或72°.(3)如图3中,作AE∵BC交BD的延长线于E.则==,∵==,设OB=OA=4a,OH=3a,∵BH2=AB2﹣AH2=OB2﹣OH2,∵25﹣49a2=16a2﹣9a2,∵a2=,∵BH=,∵BC=2BH=.。
2019年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.下列运算正确的是()A.2325xx xB.32x xxC. 326x x xD. 2323x x2.如果m n ,那么下列结论错误的是()A.22m n B.22m n C.22m nD.22mn3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.3x yB. 3x yC. 3yxD. 3yx4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图1所示,下列判断正确的是()A.甲的成绩比乙稳定;B.甲的最好成绩比乙高;C.甲的成绩的平均数比乙大;D.甲的成绩的中位数比乙大.5.下列命题中,假命题是()A. 矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知A 与B 外切,C 与A 、B 都内切,且AB =5,AC =6,BC =7,那么C的半径长是()A.11B.10C.9D.8二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:22(2)a = . 8.已知2()1f x x,那么(1)f = .9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x 的方程20xx m 没有实数根,那么实数m 的取值范围是 .(图1)111098765五四三二一乙甲成绩(个数)次序11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数之和大于4的概率是 . 12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。
2021年上海市中考数学试卷一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+34.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=.8.〔4分〕函数y=的定义域是.9.〔4分〕方程=2的解是.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为.11.〔4分〕不等式组的解集是.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.〔精确到1米,参考数据:≈1.73〕18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.20.〔10分〕解方程:﹣=1.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2021年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,应选:D.【点评】此题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.应选A.【点评】此题考查了同类项的知识,解答此题的关键是掌握同类项中相同字母的指数相同的概念.3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.应选C.【点评】此题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次【分析】加权平均数:假设n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,那么〔x1w1+x2w2+…+x n w n〕÷〔w1+w2+…+w n〕叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:〔2×2+3×2+4×10+5×6〕÷20=〔4+6+40+30〕÷20=80÷20=4〔次〕.答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】此题考查的是加权平均数的求法.此题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法那么,求得答案.【解答】解:如下列图:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.应选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法那么的应用是解题关键.6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,应选B.【点评】此题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,那么当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】此题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.〔4分〕函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.〔4分〕方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,那么x=5是原方程的解,故答案为:x=5.【点评】此题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法那么是解此题的关键.11.〔4分〕不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共局部就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,那么不等式组的解集是x<1.故答案是:x<1.【点评】此题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共局部,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=〔﹣3〕2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】此题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.此题属于根底题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程〔不等式或不等式组〕是关键.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】此题考查了概率公式:随机事件A的概率P〔A〕=事件A可能出现的结果数除以所有可能出现的结果数.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=〔〕2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=〔〕2=,故答案为.【点评】此题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.〔精确到1米,参考数据:≈1.73〕【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208〔m〕,故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,那么CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1〔舍去〕,∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】此题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】此题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法那么,难度不大.20.〔10分〕解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】此题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.【分析】〔1〕由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;〔2〕过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:〔1〕∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;〔2〕过点E作EH⊥BC,垂足为点H,如下列图:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】此题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题〔2〕的关键.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕,将点〔1,0〕、〔3,180〕代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;〔2〕设y A关于x的解析式为y A=k1x.将〔3,180〕代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕.将点〔1,0〕、〔3,180〕代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90〔1≤x≤6〕.〔2〕设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300〔千克〕;x=6时,y B=90×6﹣90=450〔千克〕.450﹣300=150〔千克〕.答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】此题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.【分析】〔1〕根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;〔2〕连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:〔1〕在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE〔SAS〕,∴AD=CE;〔2〕连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】此题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】〔1〕先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;〔2〕分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;〔3〕由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:〔1〕∵抛物线y=ax 2+bx ﹣5与y 轴交于点C ,∴C 〔0,﹣5〕,∴OC=5.∵OC=5OB ,∴OB=1,又点B 在x 轴的负半轴上,∴B 〔﹣1,0〕.∵抛物线经过点A 〔4,﹣5〕和点B 〔﹣1,0〕, ∴,解得,∴这条抛物线的表达式为y=x 2﹣4x ﹣5.〔2〕由y=x 2﹣4x ﹣5,得顶点D 的坐标为〔2,﹣9〕.连接AC ,∵点A 的坐标是〔4,﹣5〕,点C 的坐标是〔0,﹣5〕,又S △ABC =×4×5=10,S △ACD =×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18.〔3〕过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =×AB ×CH=10,AB==5, ∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3, ∴tan ∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为〔0,〕.【点评】此题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第〔3〕问,将角度相等转化为对应的正切函数值相等是解答关键.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,那么DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;〔2〕分类讨论:当EA=EG时,那么∠AGE=∠GAE,那么判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,通过证明Rt△AME ∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,那么∠AGE=∠AEG,可证明AE=AD=15,〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,那么利用相似比可表示出EG=,那么可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;〔2〕①EA=EG时,那么∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,那么∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=〔﹣〕:,∴y=〔0<x<〕.【点评】此题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。
2021年上海中考数学试卷逐题解析版一、选择题(本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()A.12B.13C.14D.152.下列单项式中,23a b的同类项是()32A.a b23B.3a b2C.a b3D.ab3.将函数2y a bx c(a0)x的图像向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变B.y随x的变化情况不变 D.与y轴的交点不变4.商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包5.如图,已知AB a,AD b,E为AB中点,则1a b2=()A.ECB.CEC.EDD.DE6.如图长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.计算:72x x.8.已知6f(x)x,那么f3).9.已知x 43,则x= .10.不等式2x-12<0的解集是 . 11.70°的余角是 °.12. 若一元二次方程22-3x+c=0x 无解,则c 的取值范围为 .13. 已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 .14. 已知函数y kx 的图像经过二、四象限,且不经过(-1,1),请写出一个符合条件的函数解析式 . 15. 某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,挣得 元.16如图所示,已知在梯形ABCD 中,AD ∥BC ,ABD BCD 1=2S S △△,则BOC BCD=S S △△ .17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为 .18.定义:平面上一点到图形的最短距离为d,如图,OP=2, 正方形ABCD 的边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,d 的取值范围是 .三、解答题(本大题共7题,满分78分) 19.计算:112+|12|892---16. 解方程组:22x y 340yx -21.如图,已知在△ABD 中,AC ⊥BD ,BC=8,CD=4,4cos ABC 5,BF 为AD 边上的中线. (1)求AC 的长;(2)求tan ∠FBD 的值.22. 现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月的生产情况如下图.(1) 求3月份生产了多少部手机?(2) 5G 手机速度很快,比4G 下载速度每秒多95MB, 下载一部1000MB 的电影,5G 比4G 要快190秒, 求5G 手机的下载速度.23.已知:在圆O 内,弦AD 与弦BC 相交于点G,AD=CB ,M 、N 分别是CB 和AD 的中点,联结MN 、OG.(1)证明:OG ⊥MN;(2)联结AB 、AM 、BN ,若BN ∥OG ,证明:四边形ABNM 为矩形。
上海市2003年中考数学试卷一、填空题(本大题共14题,每题2分,满分28分) 1.8的平方根是________. 2.在6,8,21,4中,是最简二次根式的是________. 3.已知函数xx x f 1)(+=,那么)12(-f ________. 4.分解因式:1222+--a b a ________. 5.函数xxy -=1的定义域是________. 6.方程x x =-++22的根是________.7.上海浦东磁悬浮铁路全长30千米,单程运行时间约8分钟,那么磁悬浮列车的平均速度用科学记数法表示约________米/分钟.8.在平面直角坐标系内,从反比例函数)0(>=k xk y 的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是________.9.某公司今年5月份的纯利润是a 万元,如果每个月份纯利润的增长率都是x ,那么预计7月份的纯利润将达到________万元(用代数式表示).10.已知圆O 的弦AB =8,相应的弦心距OC =3,那么圆O 的半径长等于________. 11.在△ABC 中,点D 、E 分别在边AB 、AC 上,CD 平分∠ACB ,DE ∥B C .如果AC =10,AE =4,那么BC =________.12.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为________.13.正方形ABCD 的边长为1.如果将线段BD 绕着点B 旋转后,点D 落在BC 延长线上的点D ′处,那么tan ∠BAD ′=________.14.矩形ABCD 中,AB =5,BC =12.如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围是________.二、多项选择题(本大题共4题,每题3分,满分12分.每题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣1分,直至扣完为止)15.下列命题中正确的是( ). A .有限小数是有理数 B .无限小数是无理数C .数轴上的点与有理数一一对应D .数轴上的点与实数一一对应16.已知0<b <a ,那么下列不等式组中无解的是( ). A .⎩⎨⎧b x a x <>, B .⎩⎨⎧bx a x <->-,C .⎩⎨⎧b x a x <->,D .⎩⎨⎧b x a x <>-,17.下列命题中正确的是( ).A .三点确定一个圆B .两个等圆不可能内切C .一个三角形有且只有一个内切圆D .一个圆有且只有一个外切三角形18.如图,已知AC 平分∠P AQ ,点B 、B ′分别在边AP 、AQ 上.如果添加一个条件,即可推出AB =AB ′,那么该条件可以是( ).A .BB '⊥AC B .BC =B 'CC .∠ACB =∠ACB 'D .∠ABC =∠AB 'C三、(本大题共4题,每题7分,满分28分)19.已知222=-x x ,将下式先化简,再求值:1)3)((3)3)((1)(2--+-++-x x x x x .20.解方程组21.将两块三角板如图放置,其中∠C =∠EDB =90°,∠A =45°,∠E =30°,AB =DE =6.求重叠部分四边形DBCF 的面积.22.某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是________,培训后考分的中位数所在的等级是________;(2)这32名学生经过培训,考分等级“不合格”的百分比由________下降到________;(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有________名;(4)你认为上述估计合理吗?理由是什么?答:________,理由:_________________________.四、(本大题共4题,每题10分,满分40分)23.已知:如图,一条直线经过点A(0,4)、点B(2,0),将这条直线向左平移与x 轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求以直线CD为图象的函数解析式.24.已知:如图,△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.求证:(1)G是CE的中点;(2)∠B=2∠BCE.25.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB=5 cm,拱高OC=0.9 cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1 cm作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12≈,计算结果精确到1米).26.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数; (3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值.五、(本大题只有1题,满分12分,(1)、(2)、(3)题满分均为4分) 27.如图(1),在正方形ABCD 中,AB =1,是以点B 为圆心,AB 长为半径的圆的一段弧,点E 是边AD 上的任意一点(点E 与点A 、D 不重合),过E 作所在圆的切线,交边DC 于点F ,G 为切点.(1)当∠DEF =45°时,求证点G 为线段EF 的中点;(2)设AE =x ,FC =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)将DEF 沿直线EF 翻折后得EF D 1∆,如图(2),当65=EF 时,讨论D AD 1∆与F ED 1∆是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(1) (2) (3)(备用图)参考答案一、填空题(本大题共14题,每题2分,满分28分)1.22± 2.6 3.22+ 4.(a -b -1)(a +b -1) 5.x ≤1且x ≠0 6.x =-2 7.31075.3⨯ 8.xy 12=9.2)1(x a + 10.5 11.15 12.222- 13.2 14.1<r <8或18<r <25二、多项选择题(本大题共4题,每题3分,满分12分.错选或不选得0分,否则每漏选一个扣1分,直至扣完为止)15.A 、D 16.A 、C 17.B 、C 18.A 、C 、D 三、(本大题共4题,每题7分,满分28分)19.解:原式=34912222+-++-x x x x x -+……………………………………3分 5632--=x x …………………………………………………………………………………1分解法一:5)2(32--=x x .………………………………………………………2分 ∵ 222=-x x ,∴ 原式=3×2-5=1.………………………………………1分解法二:从222=-x x 中解得31±=x ,1分 分别代入,答案正确. (1)20.解:由①,得(2x +y )(2x -y )=0, ∴ 2x +y =0,2x -y =0.…………1分,1分它们与方程②分别组成两个方程组:⎩⎨⎧;04,022=+-=+xy x y x (*)……………………………………………………………………1分⎩⎨⎧-.04,022=+-=xy x y x (**)…………………………………………………………………1分分别解这两个方程组,可知方程组(*)无解;………………………………………1分 方程组(**)的解是⎩⎨⎧==;4,211y x ⎩⎨⎧-=-=.4,222y x ………………………………………1分,1分 所以原方程组的解是⎩⎨⎧==;4,211y x ⎩⎨⎧-=-=.4,222y x 21.解:在△EDB 中,∵ ∠EDB =90°,∠E =30°,DE =6, ∴ 3233630tan ==⨯=︒⋅DE DB .……………………………………………1分 ∴ 326--==DB AB AD .又∵ ∠A =45°,∴ ∠AFD =45°,得FD =AD .∴ 31224)326(212122-=-=⨯=∆AD S ADF .…………………………………2分 在等腰直角三角形ABC 中,斜边AB =6,所以9412=∆AB S ABC =.…………… 2分∴ )31224(9--==四边形ADF ABC DBCF S S S ∆∆-=15312-……………………2分 22.解:(1)不合格,合格;(2)75%,25%;(3)240;(4)合理,该样本是随机样本(或该样本具有代表性).………………………………………………………每个空格1分 四、(本大题共4题,每题10分,满分40分)23.解:设以直线AB 为图象的一次函数解析式为y =kx +b . 因为直线AB 经过点(0,4)、点(2,0),所以得方程组⎩⎨⎧=.20,4b k b +=……………………………………………………………………………1分解得⎩⎨⎧-=.4,2=b k …………………………………………………………………………2分所以以直线AB 为图象的一次函数解析式为y =-2x +4.由于CD ∥AB ,设以直线CD 为图象的一次函数解析式为y =-2x +b '.………2分 解法一:由于DB =DC ,DO ⊥CB ,∴ OC OB =.………………………… 2分 所以点C 的坐标是(-2,0),得b '=-4.…………………………………1分,1分所以以直线CD 为图象的一次函数解析式为y =-2x -4.………………………1分解法二:由题意,得点D 的坐标是(0,b '),点C 的坐标是(2b ',0). ∵ DB =DC ,∴2222)2()()(2b b b '''+=+.………………………………………………………2分 解得4±'=b .……………………………………………………………………………1分因为点D '与点A 不重合,所以4=b '舍去.…………………………………………1分 因此以直线CD 为图象的一次函数解析式为y =-2x -4.……………………………1分 24.证明:(1)如图,连结DE .………………………………………………………1分 ∵ ∠ADB =90°,E 是AB 的中点,∴ DE =AE =BE .………………………………………………………………………2分 又∵ DC =BE ,∴ DC =DE .………………………………………………………1分 又因为DG ⊥CE ,所以G 是CE 中点.…………………………………………………2分 (2)∵DE =DC ,∴ ∠DCE =∠DEC .……………………………………………1分 ∴ ∠EDB =∠DEC +∠DCE =2∠BCE .……………………………………………1分 又∵ DE =BE ,∴ ∠B =∠EDB .………………………………………………… 1分∴ ∠B =2∠BCE .………………………………………………………………………1分25.解:(1)由于顶点C 在y 轴上,所以设以这部分抛物线为图象的函数解析式为1092+=ax y .……………………………………………………………………………1分 因为点A (25-,0)(或B (25,0))在抛物线上,所以109)25(02+=-⋅a ,得12518=-a .……………………………………………1分因此所求函数解析式为)2525(109125182≤≤-x x y +=-.……………………………………………1分,1分 (2)因为点D 、E 的纵坐标为209,……………………………………………………1分所以109125182092+-x =,得245±=x ……………………………………………2分所以点D 的坐标为(245-,209),点E 的坐标为(245,209). 所以225)245(245=-=-DE .…………………………………………………1分 因此卢浦大桥拱内实际桥长为385227501.011000225≈⨯⨯=(米).…………………………………………2分 26.(1)解:a 、c 同号.………………………………………………………………2分 或当a >0时,c >0;……………………………………………………………………1分 当a <0时,c <0.……………………………………………………………………1分 (2)证明:设点A 的坐标为(1x ,0),点B 的坐标为(2x ,0),则210x x <<. ∴ 1x OA =,2x OB =,c OC =.…………………………………………………1分据题意,1x 、2x 是方程)0(02≠=a c bx ax ++的两个根.…………………………1分∴ acx x =⋅21.…………………………………………………………………………1分 由题意,得2OC OB OA =⋅,即22c c ac ==.………………………………………1分所以当线段OC 长是线段OA 、OB 长的比例中项时,a 、c 互为倒数.(3)解:当4-=b 时,由(2)知,0421>==-+aa b x x ,∴ a >0.…………1分 解法一:AB =OB -OA =21221124)(x x x x x x -+=-, ∴ aa ac a c a AB 32416)(4)4(22=-==-.……………………………………1分 ∵ 34=AB ,∴3432=a .得21=a .∴ c =2. ……………………………………………1分 解法二:由求根公式,aa a ac x 322416424164±-±-±===,∴ ax 321-=,a x 322+=.∴ aa a x x OA OB AB 32323212=--=-=-=+.………………………1分 ∵ 34=AB ,∴ 3432=a ,得21=a .∴ c =2…………………………………………………………………………………1分五、(本大题只有1题,满分12分) 27.(1)证明:∵ ∠DEF =45°,得∠DFE =90°-∠DEF =45°,∴ ∠DFE =∠DEF . ∴ DE =DF .又∵ AD =DC ,∴ AE =FC .…………1分 因为AB 是圆B 的半径,AD ⊥AB ,所以AD 切圆B 于点A ;………………………1分 同理,CD 切圆B 于点C .又因为EF 切圆B 于点G ,所以AE =EG ,FC =FG .………………………………1分因此EG =FG ,即点G 为线段EF 的中点.……………………………………………1分(2)解:∵ EG =AE =x ,FG =CF =y ,∴ ED =1-x ,FD =1-y . 在R t △DEF 中,由222EF FD ED =+,得222)()1()1(y x y x +-+-= .…………………………………………………………2分 ∴ )10(11<<+-=x xxy .………………………………………………………1分,1分 (3)解:当65=EF 时,由(2)得6511=+-+x x x FC AE FG EG EF =+=+=.得311=x 或212=x ,即31=AE 或21=AE .①当21=AE 时,D AD 1∆∽F ED 1∆.………………………………………………1分证明如下:设直线EF 交线段1DD 于点H ,如图. 据题意,△EDF ≌F ED 1∆;1DD EF ⊥且H D DH 1=. ∴ 21=AE ,AD =1,得AE =ED ,∴ EH ∥1AD .∴ 11FED FED AD D ∠∠∠==,……………………………………………………1分 ︒∠∠901==EHD D AD . 又∵ ︒=∠=∠901EDF F ED ,∴ D AD F ED 11∠=∠.………………………………………………………………1分 ∴ D AD 1∆∽F ED 1∆.②当31=AE 时,D AD 1∆与F ED 1∆不相似.…………………………………………1分G图12004年上海市中等学校高中阶段招生文化考试数学试卷(满分120分,考试时间120分钟)一、填空题:(本大题共14题,每题2分,共28分)1.计算:(2)(2)__________a b a b -+=.2.不等式组230320x x -<⎧⎨+>⎩的整数解是______________.3.函数y =的定义域是__________________. 41x =-的根是________________. 5.用换元法解22114x x x x +++=,可设1y x x=+,则原方程可化为关于y 的方程是______________.6.一个射箭运动员连续射靶5次,所得的环数分别是8,6,10,7,9,则这个运动员所得环数的标准差为__________.7.已知0a b <<,则点A (,)a b b -在第________象限.8.正六边形是轴对称图形,它有_______条对称轴.9.在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,AD=1,BD =2,则:ADE ABC S S ∆∆=__________.10.在△ABC 中,∠A =90°,设∠B =θ,AC =b ,则AB =________(用b 和θ的三角比表示).11.某山路坡面坡度i =沿此山路向上前进200米,升高了__________米.12.在△ABC 中,点G 是重心,若BC 边上的高为6,则点G 到BC 的距离为______________. 13.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆的半径等于_______________. 14.如图1,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到的正方形EFCG ,EF 交AD 与点H ,那么DH 的长为___________.二、 多项选择题:(本大题共4题,每题3分,共12分)【每题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣一分,直至扣完为止】C图215.下列运算,计算结果正确的是……………………………………………( )(A ) 437a a a =; (B ) 632a a a ÷=; (C ) 325()a a =; (D ) 333()a b a b =.16.如图2,在△ABC 中,AB=AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC 那么在下列三角形中,与相似的三角形是……………………( (A ) △DBE ; (B ) △ADE ; (C ) △ABD ; (D ) △BDC . 17.下列命题中,正确的是…………………………( )(A )一个点到圆心的距离大于这个圆的半径,这个点在圆外; (B )一条直线垂直于圆的半径,这条直线一定是圆的切线;(C )两个圆的圆心距等于它们的半径之和,这两个圆有三条公切线; (D )圆心到一条直线的距离小于这个圆的半径,这条直线与圆有两个交点. 18.在函数(0)ky k x=>的图像上有三点111(,)A x y 、222(,)A x y 、333(,)A x y ,已知1230x x x <<<,则下列各式中,正确的是…………………………( )(A ) 130y y <<; (B ) 310y y <<; (C ) 213y y y <<; (D ) 312y y y <<.三、(本大题共4题,每题7分,共28分)19-20.关于x 的一元二次方程2(31)210mx m x m --+-=,其根的判别式的值为1,求m 的值及该方程的根.21.如图3,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交AB 、BC 于点F 、E .若AD=2,BC =8, 求:(1)BE 的长; (2)∠CDE 的正切值.22.某区从参加数学质量检测的8000名学生中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得表一;随后汇总成样本数据,得到部分结果,如表二.(1)样本中,学生的数学成绩的平均分数约为_________分(结果精确到0.1分); (2)样本中,数学成绩在[)84,96分数段的频数________,等第为A 的人数占抽样学生总数的百分比为_________,中位数所在的分数段为______________;(3)估计这8000名学生成绩的平均分数约为__________分(结果精确到0.1分).四、(本大题共4题,每题10分,共40分)23.在平面直角坐标系中,点O 是坐标原点,二次函数)4()5(2+--+=k x k x y 的图像交x 轴于A )0,(1x 、B )0,(2x ,且8)1)(1(21-=++x x .图4 (1)求二次函数的解析式;(2)将上述二次函数的图像沿x 轴向右平移2个单位,设平移后的图像与y 轴的交点为C ,顶点为P ,求△POC 的面积.24.如图4,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =21AB ,点E 、F 分别为边BC 、AC 的中点. (1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于点G ,求证:AG=DG25.为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固.由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?A BCO图5如图6,在平面直角坐标系中,O 为坐标原点,A 点的坐标为(1,0),点B 在x 轴上,且在点A 的右侧,AB=OA ,过点A 和B 作x 轴的垂线,分别交二次函数2x y =的图像于点C和D ,直线OC 交BD 于点M ,直线CD 交y 轴于点H ,记点C 、D 的的横坐标分别为C x 、D x ,点H 的纵坐标为H y .26.在△ABC 中,∠BAC =90°,AB=AC=22,⊙A 的半径为1,如图5所示.若点O 在BC 上运动(与点B 、C 不重合),设BO =x ,△AOC 的面积为y(1)求关于的函数解析式,并写出函数的定义域;(2)以点O 为圆心,BO 长为半径作⊙O ,求当⊙O 与⊙A 相切时,△AOC 的面积.五、(本大题只有1题,满分12分,(1)小题满分6分,(2)(3)小题满分均为3分)27.数学课上,老师出示图6和下面框中的条件.同学发现两个结论:①3:2:ABMC =梯形S S CMD ∆ ②数值相等关系:H D C y x x -=∙ (1)请你验证结论①和结论②成立;(2)请你研究:如果上述框中的条件“A 的坐标(1,0)”改为“A 的坐标(t ,0) (t>0)”,其他条件不变,结论①是否仍成立?(请说明理由)(3)进一步研究:如果上述框中的条件“A 的坐标(1,0)”改为“A 的坐标(t ,0) (t>0)”,又将条件“2x y =”改为“)0(2>=a ax y ”, 其他条件不变,那么C x 、D x 与H y 有怎样的数值关系?写出结果并说明由)12005年上海市初中毕业生统一学业考试数学试卷一、填空题(本大题共14题,满分42分) 1、 计算:()22x=2、 分解因式:22a a -= 3、计算:)11=4、函数y =的定义域是5、 如果函数()1f x x =+,那么()1f =6、 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是7、 如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是8、 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程) 9、 如果关于x 的方程240x x a ++=有两个相等的实数根,那么a = 10、 一个梯形的两底长分别为6和8,这个梯形的中位线长为 11、 在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =2,DB =4,AE =3,那么EC = 12、 如图1,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角比表示).13、 如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是 14、 在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE 的长为二选择题:(本大题共4题,满分12分) 15、 在下列实数中,是无理数的为 ( ) A 、0 B 、-3.5 C D 16、 六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为 ( )A 、3B 、4C 、5D 、6图117、 已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A 、2sin 3B =B 、2cos 3B =C 、23tgB =D 、23ctgB = 18、 在下列命题中,真命题是 ( )A 、两个钝角三角形一定相似B 、两个等腰三角形一定相似C 、两个直角三角形一定相似D 、两个等边三角形一定相似 三、(本大题共3题,满分24分) 19、 (本题满分8分) 解不等式组:()315216x xx x +>-⎧⎨+-<⎩,并把解集在数轴上表示出来.20、(本题满分8分)解方程:228124x x x x x +-=+--21、 (本题满分8分,每小题满分各为4分)(1)在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ; (2)在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1x-5-4-3-2-15432O1四、(本大题共4题,满分42分) 22、 (本题满分10分,每小题满分各为5分)在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与x 轴的负半轴相交于点C (如图5),点C 的坐标为(0,-3),且BO =CO (1) 求这个二次函数的解析式; (2) 设这个二次函数的图象的顶点为M ,求AM 的长.23、 (本题满分10分)已知:如图6,圆O 是△ABC 的外接圆,圆心O 在这个三角形的高CD 上,E 、F 分别是边AC 和BC 的中点,求证:四边形CEDF 是菱形.24、 (本题满分10分,第(1)、(2)、(3)小题满分各为2分,第(4)小题满分4分) 小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图7),同时将前4个月的用电量和相应电费制成表格(如表1) 根据上述信息,解答下列问题:(1) 计算5月份的用电量和相应电费,将所得结果填入表1中; (2) 小明家这5个月的月平均用电量为 度;(3) 小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4) 小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25、 (本题满分12分,每小题满分各为4分)在△ABC 中,∠ABC =90°,AB =4,BC =3,O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E ,作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F 。
2020年上海市中考数学试卷一、选择题(共6小题).1.(4( )A B C D 2.(4分)用换元法解方程22121x x x x ++=+时,若设21x y x+=,则原方程可化为关于y 的方程是( )A .2210y y -+=B .2210y y ++=C .220y y ++=D .220y y +-=3.(4分)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A .条形图B .扇形图C .折线图D .频数分布直方图4.(4分)已知反比例函数的图象经过点(2,4)-,那么这个反比例函数的解析式是( )A .2y x =B .2y x =-C .8y x =D .8y x=- 5.(4分)下列命题中,真命题是( )A .对角线互相垂直的梯形是等腰梯形B .对角线互相垂直的平行四边形是正方形C .对角线平分一组对角的平行四边形是菱形D .对角线平分一组对角的梯形是直角梯形6.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )A .平行四边形B .等腰梯形C .正六边形D .圆二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:23a ab = .8.(4分)已知2()1f x x =-,那么f (3)的值是 . 9.(4分)已知正比例函数(y kx k =是常数,0)k ≠的图象经过第二、四象限,那么y 的值随着x 的值增大而 .(填“增大”或“减小” )10.(4分)如果关于x 的方程240x x m -+=有两个相等的实数根,那么m 的值是 .11.(4分)如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是 .12.(4分)如果将抛物线2y x =向上平移3个单位,那么所得新抛物线的表达式是 .13.(4分)为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为 .14.(4分)《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得 1.6AB =米,1BD =米,0.2BE =米,那么井深AC 为 米.15.(4分)如图,AC 、BD 是平行四边形ABCD 的对角线,设BC a =,CA b =,那么向量BD 用向量a 、b 表示为 .16.(4分)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 米.17.(4分)如图,在ABC ∆中,4AB =,7BC =,60B ∠=︒,点D 在边BC 上,3CD =,联结AD .如果将ACD ∆沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为 .18.(4分)在矩形ABCD 中,6AB =,8BC =,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 .三、解答题:(本大题共7题,满分78分)19.(10分)计算:1231127()|35|252-+-+-+. 20.(10分)解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩21.(10分)如图,在直角梯形ABCD 中,//AB DC ,90DAB ∠=︒,8AB =,5CD =,35BC =.(1)求梯形ABCD 的面积;(2)联结BD ,求DBC ∠的正切值.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.(12分)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:BEC BCH ∆∆∽;(2)如果2BE AB AE =,求证:AG DF =.24.(12分)在平面直角坐标系xOy 中,直线152y x =-+与x 轴、y 轴分别交于点A 、B (如图).抛物线2(0)y ax bx a =+≠经过点A .(1)求线段AB 的长;(2)如果抛物线2y ax bx =+经过线段AB 上的另一点C ,且5BC =,求这条抛物线的表达式;(3)如果抛物线2y ax bx =+的顶点D 位于AOB ∆内,求a 的取值范围.25.(14分)如图,ABC ∆中,AB AC =,O 是ABC ∆的外接圆,BO 的延长线交边AC 于点D .(1)求证:2BAC ABD ∠=∠;(2)当BCD ∆是等腰三角形时,求BCD ∠的大小;(3)当2AD =,3CD =时,求边BC 的长.2020年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4()A B C D解:3=不是同类二次根式;C=被开方数相同,故是同类二次根式;D=被开方数不同,故不是同类二次根式.故选:C.2.(4分)用换元法解方程22121x xx x++=+时,若设21xyx+=,则原方程可化为关于y的方程是()A.2210y y-+=B.2210y y++=C.220y y++=D.220y y+-=解:把21xyx+=代入原方程得:12yy+=,转化为整式方程为2210y y-+=.故选:A.3.(4分)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.4.(4分)已知反比例函数的图象经过点(2,4)-,那么这个反比例函数的解析式是() A.2yx=B.2yx=-C.8yx=D.8yx=-解:设反比例函数解析式为k y x =, 将(2,4)-代入,得:42k -=, 解得8k =-, 所以这个反比例函数解析式为8y x=-, 故选:D . 5.(4分)下列命题中,真命题是( )A .对角线互相垂直的梯形是等腰梯形B .对角线互相垂直的平行四边形是正方形C .对角线平分一组对角的平行四边形是菱形D .对角线平分一组对角的梯形是直角梯形解:A 、对角线相等的梯形是等腰梯形,故错误;B 、对角线互相垂直的平行四边形是菱形,故错误;C 、正确;D 、对角线平分一组对角的梯形是菱形,故错误;故选:C .6.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )A .平行四边形B .等腰梯形C .正六边形D .圆解:如图,平行四边形ABCD 中,取BC ,AD 的中点E ,F ,连接EF .四边形ABEF 向右平移可以与四边形EFCD 重合,∴平行四边形ABCD 是平移重合图形,故选:A .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:23a ab = 26a b .解:2236a ab a b =.故答案为:26a b .8.(4分)已知2()1f x x =-,那么f (3)的值是 1 . 解:2()1f x x =-, f ∴(3)2131==-, 故答案为:1.9.(4分)已知正比例函数(y kx k =是常数,0)k ≠的图象经过第二、四象限,那么y 的值随着x 的值增大而 减小 .(填“增大”或“减小” )解:函数(0)y kx k =≠的图象经过第二、四象限,那么y 的值随x 的值增大而减小, 故答案为:减小.10.(4分)如果关于x 的方程240x x m -+=有两个相等的实数根,那么m 的值是 4 . 解:依题意,方程240x x m -+=有两个相等的实数根,∴△224(4)40b ac m =-=--=,解得4m =,故答案为:4.11.(4分)如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5 解:从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∴取到的数恰好是5的倍数的概率是21105=. 故答案为:15. 12.(4分)如果将抛物线2y x =向上平移3个单位,那么所得新抛物线的表达式是 23y x =+ .解:抛物线2y x =向上平移3个单位得到23y x =+.故答案为:23y x =+.13.(4分)为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为 3150名 . 解:15084003150400⨯=(名). 答:估计该区会游泳的六年级学生人数约为3150名.故答案为:3150名.14.(4分)《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得 1.6AB =米,1BD =米,0.2BE =米,那么井深AC 为 7 米.解:BD AB ⊥,AC AB ⊥,//BD AC ∴,ACE BDE ∴∆∆∽,∴AC AE BD BE =, ∴ 1.410.2AC =, 7AC ∴=(米),答:井深AC 为7米.15.(4分)如图,AC 、BD 是平行四边形ABCD 的对角线,设BC a =,CA b =,那么向量BD 用向量a 、b 表示为 2a b + .解:四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,AB CD =,//AB CD ,∴AD BC a ==,CD CA AD b a =+=+,∴BA CD b a ==+,BD BA AD =+,∴2BD b a a a b =++=+,故答案为:2a b +.16.(4分)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 350 米.解:当820t 时,设s kt b =+,将(8,960)、(20,1800)代入,得:8960201800k b k b +=⎧⎨+=⎩, 解得:70400k b =⎧⎨=⎩, 70400s t ∴=+;当15t =时,1450s =,180********-=,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米, 故答案为:350.17.(4分)如图,在ABC ∆中,4AB =,7BC =,60B ∠=︒,点D 在边BC 上,3CD =,联结AD .如果将ACD ∆沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为 332. 解:如图,过点E 作EH BC ⊥于H .7BC =,3CD =,4BD BC CD ∴=-=,4AB BD ==,60B ∠=︒,ABD ∴∆是等边三角形,60ADB ∴=︒,120ADC ADE ∴∠=∠=︒,60EDH ∴∠=︒,EH BC ⊥,90EHD ∴∠=︒,3DE DC ==,33sin 602EH DE ∴=︒=, E ∴到直线BD 332, 332. 18.(4分)在矩形ABCD 中,6AB =,8BC =,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 102033AO << . 解:在矩形ABCD 中,90D ∠=︒,6AB =,8BC =,10AC ∴=,如图1,设O 与AD 边相切于E ,连接OE ,则OE AD ⊥,//OE CD ∴,AOE ACD ∴∆∆∽, ∴OE AO CD AC =, ∴2106AO =, 103AO ∴=, 如图2,设O 与BC 边相切于F ,连接OF ,则OF BC ⊥,//OF AB ∴,COF CAB ∴∆∆∽,∴OC OF AC AB =, ∴2106OC =, 103OC ∴=, 203AO ∴=, ∴如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是102033AO <<, 故答案为:102033AO <<.三、解答题:(本大题共7题,满分78分)19.(10分)计算:1231127()|35|252-+-+-+. 解:原式133(3)52435=+--+-352435=+--+-0=.20.(10分)解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②,解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.21.(10分)如图,在直角梯形ABCD 中,//AB DC ,90DAB ∠=︒,8AB =,5CD =,35BC =.(1)求梯形ABCD 的面积;(2)联结BD ,求DBC ∠的正切值.解:(1)过C 作CE AB ⊥于E ,//AB DC ,90DAB ∠=︒,90D ∴∠=︒,90A D AEC ∴∠=∠=∠=︒,∴四边形ADCE 是矩形,AD CE ∴=,5AE CD ==,3BE AB AE ∴=-=,35BC=,226 CE BC BE∴=-=,∴梯形ABCD的面积1(58)6392=⨯+⨯=;(2)过C作CH BD⊥于H,//CD AB,CDB ABD∴∠=∠,90CHD A∠=∠=︒,CDH DBA∴∆∆∽,∴CH CDAD BD=,22228610 BD AB AD=+=+=,∴5 610 CH=,3CH∴=,2222(35)36 BH BC CH∴=-=-=,DBC∴∠的正切值3162 CHBH===.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.解:(1)45045012%504+⨯=(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:2350(1)504x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.23.(12分)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:BEC BCH ∆∆∽;(2)如果2BE AB AE =,求证:AG DF =.【解答】(1)证明:四边形ABCD 是菱形,CD CB ∴=,D B ∠=∠,//CD AB ,DF BE =,()CDF CBE SAS ∴∆≅,DCF BCE ∴∠=∠,//CD BH ,H DCF ∴∠=∠,BCE H ∴∠=∠,B B ∠=∠,BEC BCH ∴∆∆∽.(2)证明:2BE AB AE =, ∴BE AE AB EB=, //AG BC , ∴AE AG BE BC =, ∴BE AG AB BC=, DF BE =,BC AB =,BE AG DF ∴==,即AG DF =.24.(12分)在平面直角坐标系xOy 中,直线152y x =-+与x 轴、y 轴分别交于点A 、B (如图).抛物线2(0)y ax bx a =+≠经过点A .(1)求线段AB 的长; (2)如果抛物线2y ax bx =+经过线段AB 上的另一点C ,且5BC =,求这条抛物线的表达式;(3)如果抛物线2y ax bx =+的顶点D 位于AOB ∆内,求a 的取值范围.解:(1)针对于直线152y x =-+, 令0x =,5y =, (0,5)B ∴,令0y =,则1502x -+=, 10x ∴=,(10,0)A ∴,2251055AB ∴=+=(2)设点1(,5)2C m m -+, (0,5)B ,2215(55)|22BC m m m ∴=+-+-=, 5BC =,∴5|52m =,2m ∴=±,点C 在线段AB 上,2m ∴=,(2,4)C ∴,将点(10,0)A ,(2,4)C 代入抛物线2(0)y ax bx a =+≠中,得100100424a b a b +=⎧⎨+=⎩, ∴1452a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线21542y x x =-+;(3)点(10,0)A 在抛物线2y ax bx =+中,得100100a b +=, 10b a ∴=-,∴抛物线的解析式为2210(5)25y ax ax a x a =-=--,∴抛物线的顶点D 坐标为(5,25)a -,将5x =代入152y x =-+中,得155522y =-⨯+=, 顶点D 位于AOB ∆内,50252a ∴<-<, 1010a ∴-<<; 25.(14分)如图,ABC ∆中,AB AC =,O 是ABC ∆的外接圆,BO 的延长线交边AC 于点D .(1)求证:2BAC ABD ∠=∠;(2)当BCD ∆是等腰三角形时,求BCD ∠的大小;(3)当2AD =,3CD =时,求边BC 的长.【解答】(1)证明:连接OA.=,AB AC=,∴AB AC∴⊥,OA BC∴∠=∠,BAO CAO=,OA OBABD BAO∴∠=∠,∴∠=∠.2BAC BAD(2)解:如图2中,延长AO交BC于H.①若BD CB∠=∠=∠+∠=∠,=,则3C BDC ABD BAC ABD=,AB ACABC C∴∠=∠,∴∠=∠,2DBC ABD180DBC C BDC ∠+∠+∠=︒, 8180ABD ∴∠=︒,367.5C ABD ∴∠=∠=︒.②若CD CB =,则3CBD CDB ABD ∠=∠=∠, 4C ABD ∴∠=∠,180DBC C CDB ∠+∠+∠=︒, 10180ABD ∴∠=︒,472BCD ABD ∴∠=∠=︒.③若DB DC =,则D 与A 重合,这种情形不存在. 综上所述,C ∠的值为67.5︒或72︒.(3)如图3中,作//AE BC 交BD 的延长线于E .则23AE AD BC DC ==, ∴43AO E OH BH ==,设4OB OA a ==,3OH a =, 22222BH AB AH OB OH =-=-, 2222549169a a a ∴-=-,22556a ∴=, 524BH ∴ 5222BC BH ∴==.。
上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。
2019-2021年上海市数学中考题分类汇编——解答题一、解答题1.(上海市2021年中考数学真题)计算:&#ξΦ020;1129|12-+-2.(上海市2021年中考数学真题)解方程组:22340x y x y +=⎧⎨-=⎩3.(上海市2021年中考数学真题)已知在ABD △中,,8,4AC BD BC CD ⊥==,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.4.(上海市2021年中考数学真题)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.5.(上海市2021年中考数学真题)已知:在圆O 内,弦AD 与弦BC 交于点,,,G AD CB M N =分别是CB 和AD 的中点,联结,MN OG .(1)求证:OG MN ⊥;(2)联结,,AC AM CN ,当//CN OG 时,求证:四边形ACNM 为矩形.6.(上海市2021年中考数学真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式; (2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC . ①若A 与Q 重合,求C 到抛物线对称轴的距离;①若C 落在抛物线上,求C 的坐标.7.(上海市2021年中考数学真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;①若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.8.(上海市2020年中考数学试题)计算:1327(12)﹣2+|3. 9.(上海市2020年中考数学试题)解不等式组:1076713x x x x >+⎧⎪+⎨-<⎪⎩10.(上海市2020年中考数学试题)如图,在直角梯形ABCD 中,//AB DC ,①DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求①DBC 的正切值.11.(上海市2020年中考数学试题)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.12.(上海市2020年中考数学试题)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:①BEC ①①BCH ;(2)如果BE 2=AB •AE ,求证:AG =DF .13.(上海市2020年中考数学试题)在平面直角坐标系xOy 中,直线y =﹣12x +5与x 轴、y 轴分别交于点A 、B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC (3)如果抛物线y =ax 2+bx 的顶点D 位于①AOB 内,求a 的取值范围.14.(上海市2020年中考数学试题)如图,①ABC 中,AB =AC ,①O 是①ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:①BAC =2①ABD ;(2)当①BCD 是等腰三角形时,求①BCD 的大小;(3)当AD =2,CD =3时,求边BC 的长.15.(上海市20192318- 16.(上海市2019年中考数学试题)解分式方程:228122-=--x x x x. 17.(上海市2019年中考数学试题)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.18.(上海市2019年中考数学试题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.19.(上海市2019年中考数学试题)已知:如图,AB 、AC 是①O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交①O 于点E ,联结CD 并延长交①O 于点F.(1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.20.(上海市2019年中考数学试题)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y =x 2-2x 的“不动点”的坐标;①平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.21.(上海市2019年中考数学试题)如图1,AD 、BD 分别是ABC 的内角①BAC 、①ABC 的平分线,过点A 作AE①AD ,交BD 的延长线于点E .(1)求证:12E C ∠=∠; (2)如图2,如果AE=AB ,且BD :DE=2:3,求BC :AB 的值;(3)如果①ABC 是锐角,且ABC 与ADE 相似,求①ABC 的度数,并直接写出ADE ABC SS 的值.参考答案:1.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+-(112-⨯=31=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩ 【分析】由第一个方程得到3x y =-,再代入第二个方程中,解一元二次方程方程即可求出y ,再回代第一个方程中即可求出x .【详解】解:由题意:223(1)40(2)x y x y +=⎧⎨-=⎩, 由方程(1)得到:3x y =-,再代入方程(2)中:得到:22(3)40y y ,进一步整理为:32y y 或32y y , 解得11y =,23y =-,再回代方程(1)中,解得对应的12x =,26x =,故方程组的解为:21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩.【点睛】本题考查了代入消元法解方程及一元二次方程的解法,熟练掌握代入消元法,运算过程中细心即可. 3.(1)6AC =;(2)310 【分析】(1)在Rt ①ABC 中,利用三角函数即可求出AB ,故可得到AC 的长;(2)过点F 作FG ①BD ,利用中位线的性质得到FG ,CG ,再根据正切的定义即可求解.【详解】(1)①AC BD ⊥,4cos 5ABC ∠=①cos 45ABC BC AB ∠== ①AB =10①AC 6;(2)过点F 作FG ①BD ,①BF 为AD 边上的中线.①F 是AD 中点①FG ①BD ,AC BD ⊥①//FG AC①FG 是①ACD 的中位线①FG =1=2AC 3 CG=1=22CD ①在Rt ①BFG 中,tan FBD ∠=338210FG BG ==+.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.4.(1)36万部;(2)100MB /秒【分析】(1)根据扇形统计图求出3月份的百分比,再利用80万×3月份的百分比求出三月份共生产的手机数; (2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,根据下载一部1000MB 的电影,5G 比4G 要快190秒列方程求解.【详解】(1)3月份的百分比=130%25%45%--=三月份共生产的手机数=8045%=36⨯(万部)答:三月份共生产了36万部手机.(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒, 由题意可知:1000100019095x x-=- 解得:100x =检验:当100x =时,()950x x ⋅-≠①100x =是原分式方程的解.答:5G 手机的下载速度为100MB /秒.【点睛】本题考查实际问题与分式方程.求解分式方程时,需要检验最简公分母是否为0.5.(1)见解析;(2)见解析【分析】(1)连结,OM ON ,由M 、N 分别是CB 和AD 的中点,可得OM ①BC ,ON ①AD ,由AB CD =,可得OM ON =,可证()Rt EOP Rt FOP HL ∆∆≌,MG NG MGO NGO =∠=∠,,根据等腰三角形三线合一性质OG MN ⊥; (2)设OG 交MN 于E ,由Rt EOP Rt FOP ∆∆≌,可得MG NG =,可得CMN ANM ∠=∠,1122CM CB AD AN ===,可证CMN ANM ≌可得AM CN =,由CN∥OG ,可得90AMN CNM ∠=∠=︒,由+=180AMN CNM ∠∠︒可得AM∥CN ,可证ACNM 是平行四边形,再由90AMN∠=︒可证四边形ACNM是矩形.【详解】证明:(1)连结,OM ON ,①M 、N 分别是CB 和AD 的中点,①OM ,ON 为弦心距,①OM ①BC ,ON ①AD , 90GMO GNO ∴∠=∠=︒, 在O 中,AB CD =, OM ON ∴=,在Rt △OMG 和Rt △ONG 中, OM ONOG OG =⎧⎨=⎩, ()Rt GOM Rt GON HL ∴∆∆≌, ①MG NG MGO NGO =∠=∠,, OG MN ∴⊥;(2)设OG 交MN 于E , ()Rt GOM Rt GON HL ∆∆≌, ①MG NG =,①GMN GNM ∠=∠,即CMN ANM ∠=∠, 1122CM CB AD AN ===,在①CMN 和①ANM 中 CM ANCMN ANM MN NM=⎧⎪∠=∠⎨⎪=⎩, CMN ANM ∴≌,,AM CN AMN CNM ∴=∠=∠, ①CN∥OG,90CNM GEM ∴∠=∠=︒,90AMN CNM ∴∠=∠=︒,+90+90=180AMN CNM ∴∠∠=︒︒︒,①AM∥CN ,ACNM ∴是平行四边形,90AMN ∠=︒,①四边形ACNM 是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.6.(1)21922y x =-+;(2)①1;①点C 的坐标是52,2⎛⎫- ⎪⎝⎭ 【分析】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩,解方程组即可; (2)①根据AB =4,斜边上的高为2,Q 的横坐标为1,计算点C 的横坐标为-1,即到y 轴的距离为1;①根据直线PQ 的解析式,设点A (m ,-2m +6),三角形ABC 是等腰直角三角形,用含有m 的代数式表示点C 的坐标,代入抛物线解析式求解即可.【详解】解:(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩ 解得19,22a c =-=. 所以抛物线的解析式是21922y x =-+. (2)①如图2,抛物线的对称轴是y 轴,当点A 与点(1,4)Q 重合时,4AB =,作CH AB ⊥于H .①ABC 是等腰直角三角形,①CBH 和CAH 也是等腰直角三角形,①2CH AH BH ===,①点C 到抛物线的对称轴的距离等于1.①如图3,设直线PQ 的解析式为y =kx +b ,由(3,0)(1,4)P Q 、,得30,4,k b k b +=⎧⎨+=⎩解得2,6,k b =-⎧⎨=⎩ ①直线PQ 的解析式为26y x =-+,设(,26)A m m -+,①26AB m =-+,所以3CH BH AH m ===-+.所以3,(3)23C C y m x m m m =-+=--+-=-.将点(23,3)C m m --+代入21922y x =-+, 得2193(23)22m m -+=--+. 整理,得22730m m -+=.因式分解,得(21)(3)0m m --=. 解得12m =,或3m =(与点P 重合,舍去). 当12m =时,1523132,3322m m -=-=--+=-+=. 所以点C 的坐标是52,2⎛⎫- ⎪⎝⎭. 【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.7.(1)①见解析;①23;(2)13【分析】(1)①根据已知条件、平行线性质以及直角三角形斜边上的中线等于斜边的一半可推导,DAC DCA OBC OCB ∠=∠=∠=∠,由此可得DAC OBC ∽;①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒,作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.根据30所对直角边是斜边的一半可知CH m =,由此可得AD BC 的值. (2)①当点E 在AD 上时,可得四边形ABCE 是矩形,设AD CD x ==,在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-求解即可.①当点E 在CD 上时,设AD CD x ==,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m =;由EOC ECB ∽得EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+,解出x 的值即可. 【详解】(1)①由AD CD =,得12∠=∠.由//AD BC ,得13∠=∠. 因为BO 是Rt ABC △斜边上的中线,所以OB OC =.所以34∠=∠.所以1234∠=∠=∠=∠.所以DAC OBC ∽.①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒.作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.在Rt DCH △中,60,2DCH DC m ∠=︒=,所以CH m =.所以3BC BH CH m =+=. 所以2233AD m BC m ==. (2)①如图5,当点E 在AD 上时,由//,AD BC O 是AC 的中点,可得OB OE =,所以四边形ABCE 是平行四边形.又因为90ABC ∠=︒,所以四边形ABCE 是矩形,设AD CD x ==,已知2DE =,所以2AE x .已知3OE =,所以6AC =.在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-.解得1x =+1x = 舍去负值).①如图6,当点E 在CD 上时,设AD CD x ==,已知2DE =,所以2CE x =-.设OB OC m ==,已知3OE =,那么3EB m =+.一方面,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m=, 另一方面,由24BEC ∠=∠∠,是公共角,得EOC ECB ∽. 所以EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+. 等量代换,得32232x x x m m -==-+.由322x x m =-,得226x x m -=. 将226x x m -=代入3223x x m -=-+,整理,得26100x x --=.解得3x =3x =.【点睛】本题主要考查相似三角形的判定与性质,斜边上的中线,勾股定理等,能够运用相似三角形边的关系列方程是解题的关键.8.0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+2﹣4+32﹣4+3=0.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.9.2<x<5.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【详解】解:由题意知:1076713①②>+⎧⎪⎨+-<⎪⎩x xxx,解不等式①,移项得:3x>6,系数化为1得:x>2,解不等式①,去分母得:3x-3<x+7.移项得:2x<10,系数化为1得:x<5,①原不等式组的解集是2<x<5.故答案为:2<x<5.【点睛】本题考查解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(1)39;(2)12.【分析】(1)过C作CE①AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到6CE,即可求出梯形的面积;(2) 过C作CH①BD于H,根据相似三角形的性质得到CH CDAD BD=,根据勾股定理得到10,6即可求解.【详解】解:(1)过C作CE①AB于E,如下图所示:①AB//DC,①DAB=90°,①①D=90°,①①A=①D=①AEC=90°,①四边形ADCE是矩形,①AD=CE,AE=CD=5,①BE=AB﹣AE=3.①BC①CE,①梯形ABCD的面积=12×(5+8)×6=39,故答案为:39.(2)过C作CH①BD于H,如下图所示:①CD//AB,①①CDB=①ABD.①①CHD=①A=90°,①①CDH①①DBA,①CH CD AD BD=,①BD,①5610CH=,①CH=3,①BH,①①DBC的正切值=CHBH=36=12.故答案为:12.【点睛】本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.11.(1)504万元;(2)20%.【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.【详解】解:(1)第七天的营业额是450×12%=54(万元),故这七天的总营业额是450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【点睛】本题考查了一元二次方程的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键.12.(1)证明见解析;(2)证明见解析.【分析】(1)先证明①CDF①①CBE,进而得到①DCF=①BCE,再由菱形对边CD//BH,得到①H=①DCF,进而①BCE=①H 即可求解.(2)由BE2=AB•AE,得到BEAB=AEEB,再利用AG//BC,平行线分线段成比例定理得到BEAB=AGBC,再结合已知条件即可求解.【详解】解:(1)①四边形ABCD是菱形,①CD=CB,①D=①B,CD//AB.①DF=BE,①①CDF①△CBE(SAS),①①DCF=①BCE.①CD//BH,①①H=①DCF,①①BCE=①H.且①B=①B,①①BEC①①BCH.(2)①BE2=AB•AE,①BEAB=AEEB,①AG//BC,①AEBE=AGBC,①BEAB=AGBC,①DF=BE,BC=AB,①BE=AG=DF,即AG=DF.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(1)(2)y=﹣14x2+52x;(3)﹣110<a<0.【分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,-12m+5),则|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=-10a,代入抛物线解析式中得出顶点D坐标为(5,-25a),即可得出结论.【详解】(1)针对于直线y=﹣12x+5,令x=0,y=5,①B(0,5),令y=0,则﹣12x+5=0,①x=10,①A(10,0),①AB(2)设点C(m,﹣12m+5).①B(0,5),①BC|m|.①BC|m①m=±2.①点C在线段AB上,①m=2,①C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得100100 424a ba b+=⎧⎨+=⎩,①1452ab⎧=-⎪⎪⎨⎪=⎪⎩,①抛物线y=﹣14x2+52x;(3)①点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,①b=﹣10a,①抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,①抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣12x+5中,得y=﹣12×5+5=52,①顶点D位于①AOB内,①0<﹣25a<52,①﹣110<a<0.【点睛】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.14.(1)证明见解析;(2)①BCD的值为67.5°或72°;(3【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①若CD=CB,则①CBD=①CDB=3①ABD.①若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3) 如图3中,作AE//BC交BD的延长线于E.则23==AE ADBC DC,进而得到34==AO AEOH BH,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.【详解】解:(1)连接OA,如下图1所示:①AB=AC,①AB=AC,①OA①BC,①①BAO=①CAO.①OA=OB,①①ABD=①BAO,①①BAC=2①ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①AB=AC,①①ABC=①C,①①DBC=2①ABD.①①DBC+①C+①BDC=180°,①8①ABD=180°,①①C=3①ABD=67.5°.①若CD=CB,则①CBD=①CDB=3①ABD,①①C=4①ABD.①①DBC+①C+①CDB=180°,①10①ABD=180°,①①BCD=4①ABD=72°.①若DB=DC,则D与A重合,这种情形不存在.综上所述:①C的值为67.5°或72°.(3)如图3中,过A点作AE//BC交BD的延长线于E.则AEBC=ADDC=23,且BC=2BH,①AOOH=AEBH=43,设OB=OA=4a,OH=3a.则在Rt①ABH和Rt①OBH中,①BH2=AB2﹣AH2=OB2﹣OH2,①25 - 49a2=16a2﹣9a2,①a2=25 56,①BH①BC=2BH.【点睛】本题属于圆的综合题,考查了垂径定理,等腰三角形的性质,勾股定理解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.15.-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.【详解】2318124-=-3.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.16.x=-4.【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.【详解】去分母得2x2-8=x2-2x,移项、整理得x2+2x-8=0,解得:x1=2,x2=-4.经检验:x=2是增根,舍去;x=-4是原方程的根.①原方程的根是x=-4.【点睛】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.17.(1)122y x=+;(2)点C的坐标是(0,12-)【分析】(1)设一次函数解析式为y=kx+b(k=0),把A坐标代入即可解答(2)先求出点B坐标,设点C的坐标为(0,y),由AC=BC利用勾股定理求出y即可解答【详解】(1)设一次函数解析式为y=kx+b(k=0).一次函数的图像平行于直线12y x=,①12k=又①一次函数的图像经过点A(2,3),①1322b=⨯+,解得b=2.所以,所求一次函数的解析式是122y x=+(2)由y=122x+,令y=0,得号122x+=0,解得x=-4.①一次函数的图像与x轴的交点为B(-4,0).①点C在y轴上,.设点C的坐标为(0,y).由AC=BC y=1 2 -经检验:y=12-是原方程的根.①点C的坐标是(0,12 -)【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于利用勾股定理进行计算18.(1)点D′到BC的距离为()厘米;(2)E、E′两点的距离是【分析】(1)过点D′作D′H①BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,①DAD′=60°,利用矩形的性质可得出①AFD′=①BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,①EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE 可得出E、E′两点的距离.【详解】解:(1)过点D′作D′H①BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,①DAD′=60°.①四边形ABCD是矩形,①AD①BC,①①AFD′=①BHD′=90°.在Rt△AD′F中,又①CE=40厘米,DE=30厘米,①FH=DC=DE+CE=70厘米,①D′H=D′F+FH=()厘米.答:点D′到BC的距离为()厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,①EAE′=60°,①①AEE′是等边三角形,①EE′=AE.①四边形ABCD是矩形,①①ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,①AE=厘米.答:E、E′两点的距离是【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.19.(1)见解析;(2)见解析.【分析】(1)连接BC,根据垂直平分线的性质即可解答(2)连接OB,先求出①ABO①①ADB,再利用相似的性质,求出四边形ABDC的四边相等,即可解答【详解】(1)连接BC,在①O中,①AB=AC,①①ABC为等腰三角形又①AD经过圆心O,①AD垂直平分BC①BD=CD.(2)连接OB.①AB2=AO·AD,AB AD AO AB又①①BAO=①DAB,①①ABO①①ADB①①OBA =①BDA ①OA =OB , ①①OBA =①OAB. ①①OAB =①BDA ①AB =BD.又①AB =AC ,BD =CD , ①AB =AC =BD =CD. ①四边形ABDC 是菱形. 【点睛】此题考查垂直平分线的性质,三角形相似的判定与性质,菱形的判定,解题关键在于作辅助线20.(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ①新抛物线的表达式是y =(x +1)2-1. 【分析】 (1)10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;①新抛物线顶点B 为“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y轴左侧,而点()1,1A -,点(),B m m ,则1m =-,即可求解. 【详解】 (l)10a =>,抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的. (2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t). 则t =t 2-2t ,解得t 1=0,t 2=3.所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3). ①①新抛物线的顶点B 是其“不动点”,①设点B 的坐标为(m ,m) ①新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0) ①四边形OABC 是梯形, ①直线x =m 在y 轴左侧. ①BC 与OA 不平行①OC①AB.又①点A 的坐标为(1,一1),点B 的坐标为(m ,m),∴m =-1.①新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的, ①新抛物线的表达式是y =(x +1)2-1. 【点睛】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可. 21.(1)详见解析;(2)43;(3)①ABC=30°或者①ABC=45°,2ADE ABCS S =2ADE ABCSS=【分析】(1)先根据题意证明12BAD BAC ∠=∠以及12ABD ABC ∠=∠,再适当变形即可得到答案;(2)先根据角平分线的性质和直线平行的性质证明①BAF①①CAF ,再根据全等三角形的性质得到BF=CF ,再根据BD :DE=2:3,计算即可得到答案;(3)根据①ABC 与①ADE 相似,①DAE=90°,因此①ABC 中必有一个内角为90°,再根据①ABC 是锐角,得到①ABC≠90°,再分情况讨论即可得到答案; 【详解】(1)证明:如图1中,①AE①AD ,①①DAE=90°,①E=90°-①ADE , ①AD 平分①BAC , ①12BAD BAC ∠=∠ ,同理可得:12ABD ABC ∠=∠ ,①180ADE BAD DBA BAC ABC C ∠=∠+∠∠+∠=︒-∠,, 11()9022ADE ABC BAC C ∠=∠+∠=︒-∠ ,11909022E C C ∠=︒-︒-∠=∠().(2)解:延长AD 交BC 于点F .①AD 是①BAC 的平分线, ①①BAD=①CAD , ①AB=AE , ①①ABE=①E , BE 平分①ABC , ①①ABE=①EBC , ①①E=①CBE , ①AE①BC ,①①AFB=①EAD=90°,BF BDAE DE= ①①AFB=①AFC=90°, 在①BAF 和①CAF 中,BAD CAD AD ADAFB AFC ∠=∠⎧⎪=⎨⎪∠=∠⎩①①BAF①①CAF(ASA),①BF=CF (全等三角形对应边相等), ①BD :DE=2:3 ①23BF BD AE DE ==, ①43BC BF CF AE AE +==; (3) ①①ABC 与①ADE 相似,①DAE=90°, ①①ABC 中必有一个内角为90° ①①ABC 是锐角,①①ABC≠90°.①当①BAC=①DAE=90°时, ①12E C ∠=∠(由(1)知), ①①ABC+①C=90°, ①①ABC=30°, ①此时2ADE ABCS S=-①当①C=①DAE=90°时,1452E C ==︒∠∠,①①EDA=45°,①①ABC 与①ADE 相似, ①①ABC=45°,此时2ADE ABCS S=综上,①ABC=30°或者①ABC=45°,2ADE ABCS S=-2ADE ABCS S=【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质、全等三角形的判定与性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2021年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.的结果是( )A. 4B.3C.D.2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根 3.下列对二次函数2y x x =-的图像的描述,正确的是( ) A.开口向下 B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A 与直线OP 相切,半径长为3的B 与A 相交,那么OB 的取值范围是( )A. 59OB <<B. 49OB <<C. 37OB <<D. 27OB <<二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示). 11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值范围是 .12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从2,,7π选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而 (填“增大”或“减小”)15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度. 17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图y金额(元)图2图4图3 图5图6形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 . 三、解答题(共7题,满分78分)19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.20.先化简,再求值:2221211aa a a a a +⎛⎫-÷ ⎪-+-⎝⎭,其中a =21.如图7,已知ABC ∆中,AB =BC =5,3tan 4ABC ∠=. (1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图像如图8所示.(1)求y 关于x 的函数关系式(不需要写定义域);(2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?图8CBA图723.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F .(1)求证:EF =AE -BE ; (2)联结BF ,若AF DFBF AD=,求证:EF =EP .24.在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C . 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.图10图9PFEDCBA25. 已知O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F .(1)如图11,如果AC =BD ,求弦AC 的长;(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值; (3)联结BC 、CD 、DA ,如果BC 是O 的内接正n 边形的一边,CD 是O 的内接正(n +4)边形的一边,求ACD ∆的面积.图12图11 备用图OF EDCB AOFEDCBA参考答案2021中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午,2021年上海市初中毕业统一学业考试数学科目顺利开考。
2021年上海市初中毕业生统一考试(中考)数学试卷一.选择题1.(2021•上海)下列实数中,有理数是( )A .12B .13C .14D .152.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A .ECB .CEC .ED D .DE6.(2021•上海)如图,长方形ABCD 中,4AB =,3AD =,圆B 半径为1,圆A 与圆B 内切,则点C 、D 与圆A 的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二.填空题7.(2021•上海)计算:72x x÷=.8.(2021•上海)已知6()f xx=,那么(3)f=.9.(2021•上海)已知43x+=,则x=.10.(2021•上海)不等式2120x-<的解集是.11.(2021•上海)70︒的余角是.12.(2021•上海)若一元二次方程2230x x c-+=无解,则c的取值范围为.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为.14.(2021•上海)已知函数y kx=经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得元.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 .三.解答题19.(2021•上海)计算:1129|12|28-+--⨯.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC的值; (2)若2DE =,3OE =,求CD 的长.2021年上海市初中毕业生统一考试(中考)数学试卷参考答案与试题解析一.选择题1.(2021•上海)下列实数中,有理数是( )A B C D 【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=,不是有理数,不合题意;B =12C =,是有理数,符合题意;D = 故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab【分析】依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【解答】解:A 、字母a 、b 的次数不相同,不是同类项,故本选项不符合题意;B 、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C 、字母b 的次数不相同,不是同类项,故本选项不符合题意;D 、相同字母a 的次数不相同,不是同类项,故本选项不符合题意;故选:B .【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变【分析】由于抛物线平移后的形状不变,对称轴不变,a 不变,抛物线的增减性不变.【解答】解:A 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,a 不变,开口方向不变,故不符合题意.B 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,抛物线的性质不变,自变量x 不变,则y 随x 的变化情况不变,故不符合题意.D 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,与y 轴的交点也向下平移两个单位,故符合题意.故选:D .【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质,注意:抛物线平移后的形状不变,开口方向不变,顶点坐标改变.4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【解答】解:由图知这组数据的众数为1.5~2.5kg kg ,取其组中值2kg ,故选:A .【点评】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A.EC B.CE C.ED D.DE 【分析】根据相等向量的几何意义和三角形法则解答.【解答】解:AB a=,∴12a EB=,四边形ABCD是平行四边形,∴BC AD b==,∴12a b EB BC EC+=+=,故选:A.【点评】本题考查平面向量,三角形法则,平行四边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.6.(2021•上海)如图,长方形ABCD中,4AB=,3AD=,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外【分析】两圆内切,圆心距等于半径之差的绝对值,得圆A的半径等于5,由勾股定理得5AC=,由点与圆的位置关系,可得结论.【解答】解:两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则:1AB R=-,4AB =,圆B 半径为1,5R ∴=,即圆A 的半径等于5,4AB =,3BC AD ==,由勾股定理可知5AC =,5AC R ∴==,3AD R =<,∴点C 在圆上,点D 在圆内,故选:C .【点评】本题考查了点与圆的位置关系、圆与圆的位置关系勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.二.填空题7.(2021•上海)计算:72x x ÷= 5x .【分析】根据同底数幂的除法法则进行解答即可.【解答】解:72725x x x x -÷==,故答案为:5x .【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键.8.(2021•上海)已知6()f x x=,那么f =【分析】将x ==【解答】解:由题意将x ==则有:f ==故答案为:【点评】本题考查函数求值问题,只需将自变量的取值代入函数表达式.9.(20213=,则x = 5 .【分析】根据算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 进行解答即可.【解答】解:3=,49x ∴+= 5x ∴=.故答案为:5.【点评】此题考查的是算术平方根的概念,掌握其概念是解决此题关键.10.(2021•上海)不等式2120x -<的解集是 6x < .【分析】不等式移项,把x 系数化为1,即可求出解集.【解答】解:移项,得:212x <,系数化为1,得:6x <,故答案为6x <.【点评】此题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.11.(2021•上海)70︒的余角是 20︒ .【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70︒,则它的余角度数是907020︒-︒=︒,故答案为,20︒.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,12.(2021•上海)若一元二次方程2230x x c -+=无解,则c 的取值范围为 98c > . 【分析】根据根的判别式的意义得到△224(1)0a =-⨯⨯-<,然后求出a 的取值范围. 【解答】解:一元二次方程2230x x c -+=无解,△2(3)420c =--⨯⨯<, 解得98c >, c ∴的取值范围是98c >. 故答案为:98c >. 【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式△24b ac =-:当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 13. 【分析】用偶数的个数除以数的总数即可求得答案. 【解答】解:共有9个数据,其中偶数有3个,∴从这些数据中选取一个数据,得到偶数的概率为3193=,故答案为:13. 【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.14.(2021•上海)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式 2y x =- .【分析】根据正比例函数的性质以及正比例函数图象是点的坐标特征限即可求解.【解答】解:函数y kx =经过二、四象限,0k ∴<.若函数y kx =经过(1,1)-,则1k =-,即1k =-,故函数y kx =经过二、四象限,且函数不经过(1,1)-时,0k <且1k ≠-, ∴函数解析式为2y x =-,故答案为2y x =-.【点评】考查了正比例函数图象上点的坐标特征,熟练掌握正比例函数的性质是解题的关键.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得 335k 元.【分析】根据图像求出函数关系式,计算售价为8元时卖出的苹果数量,即可求解.【解答】解:设卖出的苹果数量y 与售价x 之间的函数关系式为y mx n =+,5410m n k m n k +=⎧⎨+=⎩, 解得:357m k n k⎧=-⎪⎨⎪=⎩,375y kx k ∴=-+, 8x =时,3118755y k k k ==-⨯+=, ∴现以8元卖出,挣得1133(85)55k k -⨯=,故答案为:335k.【点评】此题主要考查了函数图象,能够得出卖出的苹果数量y与售价x之间的函数关系式是解题关键.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=23.【分析】过D作DM BC⊥于M,过B作BN AD⊥于N,由四边形BMDN是矩形,可得DM BN=,12ADBC=,根据//AD BC,可得12OD ADOB BC==,23OBBD=,即可得到23BOCBCDSS∆∆=.【解答】解:过D作DM BC⊥于M,过B作BN AD⊥于N,如图://AD BC,DM BC⊥,BN AD⊥,∴四边形BMDN是矩形,DM BN=,12ABDBCDSS∆∆=,∴112122AD BNBC DM⋅=⋅,∴12ADBC=,//AD BC,∴12OD ADOB BC==,∴23OBBD=,∴23BOCBCDSS∆∆=,故答案为:23.【点评】本题考查三角形的面积,涉及基本的相似三角形判定与性质,掌握同(等)底三角形面积比等于高之比,同(等)高的三角形面积比等于底之比是解题的关键.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 332.【分析】利用ABG BCH ∆≅∆得到AG BH =,再根据含30度的直角三角形三边的关系得到2BG AG =,接着证明HG AG =可得结论.【解答】解:如图,ABG BCH ∆≅∆,AG BH ∴=,30ABG ∠=︒,2BG AG ∴=,即2BH HG AG +=,1HG AG ∴==,∴小两个正六边形的面积23336142=⨯⨯=, 故答案为:332.【点评】本题考查了含30度角的直角三角形:在直角三角形中,30︒角所对的直角边等于斜边的一半.也考查了正多边形与圆,解题的关键是求出HG .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 221d .【分析】由题意以及正方形的性质得OP 过正方形ABCD 各边的中点时,d 最大,OP 过正方形ABCD 的顶点时,d 最小,分别求出d 的值即可得出答案.【解答】解:如图:设AB 的中点是E ,OP 过点E 时,点O 与边AB 上所有点的连线中,OE 最小,此时d PE =最大,OP 过顶点A 时,点O 与边AB 上所有点的连线中,OA 最大,此时d PA =最小,如图①:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,1OE ∴=,2OP =,1d PE ∴==;如图②:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,2OA ∴=2OP =,22d PA ∴==;d ∴的取值范围为221d . 故答案为:221d .【点评】本题考查正方形的性质,旋转的性质,根据题意得出d 最大、最小时点P 的位置是解题的关键.三.解答题19.(2021•上海)计算:1129|12-+--【分析】直接利用算术平方根、负整数指数幂、绝对值的性质分别化简得出答案.【解答】解:119122-⨯1912=+182=. 【点评】此题主要考查了实数的混合运算,正确掌握相关运算法则是解题关键.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 【分析】解方程组的中心思想是消元,在本题中,只能用代入消元法解题.【解答】解:22340x y x y +=⎧⎨-=⎩①②, 由①得:3y x =-,把3y x =-代入②,得:224(3)0x x --=,化简得:(2)(6)0x x --=,解得:12x =,26x =.把12x =,26x =依次代入3y x =-得:11y =,23y =-,∴原方程组的解为121226,13x x y y ==⎧⎧⎨⎨==-⎩⎩. 【点评】本题以解高次方程组为背景,旨在考查学生对消元法的灵活应用能力.21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.【分析】(1)解锐角三角函数可得解;(2)连接CF ,过F 作BD 的垂线,垂足为E ,根据直角三角形斜边中线等于斜边一半,可得CF FD =,由勾股定理可得213AD =,2EF =,即可求tan FBD ∠.【解答】解:(1)4cos 5BC ABC AB ∠==, 8BC =,10AB ∴=,AC BD ⊥, 在Rt ACB ∆中,由勾股定理得,22221086AC AB BC =-=-=,即AC 的长为6; (2)如图,连接CF ,过F 点作BD 的垂线,垂足E ,BF 为AD 边上的中线,即F 为AD 的中点,12CF AD FD ∴==, 在Rt ACD ∆中,由勾股定理得,222264213AD AC CD =+=+=三角形CFD 为等腰三角形,FE CD ⊥,122CE CD ∴==, 在Rt EFC ∆中,221343EF CF CE =-=-=,33tan 10FE FBD BE BC CE ∴∠===+. 【点评】本题考查解直角三角形,解本题关键根据题意作辅助线,熟练掌握解直角三角函数和勾股定理等基本知识点.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.【分析】(1)先根据扇形统计图求出三月份所占百分比,即可利用总数乘以三月份所占百分比求解;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.根据“下载一部1000MB 的电影,5G 比4G 要快190秒”,列方程求解即可. 【解答】解:(1)80(130%25%)36⨯--=(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.1000100019095x x +=-, 解得:1100x =,25x =-(不合题意,舍去),经检验,1100x =是原方程的解,答:5G 手机的下载速度是每秒100MB .【点评】此题主要考查的是如何观察扇形统计图并且从统计图中获取信息,分式方程的应用,理解题意,找出正确的等量关系列出方程是解题的关键.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.【分析】(1)(3,0)P 、(1,4)Q 代入2y ax c =+即可得抛物线的解析式为21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,A 与(1,4)Q 重合时,4AB =,1GH =,由ABC ∆是等腰直角三角形,得122CH AH BH AB ====,C 到抛物线对称轴的距离是1CG =; ②过C 作CH AB ⊥于H ,先求出直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,3C y m =-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+解得12m =或3m = (与P 重合,舍去),即可求出5(2,)2C -. 【解答】解:(1)(3,0)P 、(1,4)Q 代入2y ax c =+得:094a c a c =+⎧⎨=+⎩,解得1292a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,如图:当A 与(1,4)Q 重合时,4AB =,1GH =,ABC ∆是等腰直角三角形,ACH ∴∆和BCH ∆也是等腰直角三角形,122CH AH BH AB ∴====, 1CG CH GH ∴=-=,而抛物线21922y x =-+的对称轴是y 轴(0)x =, C ∴到抛物线对称轴的距离是1CG =;②过C 作CH AB ⊥于H ,如图:设直线PQ 解析式为y kx b =+,将(3,0)P 、(1,4)Q 代入得:034k b k b =+⎧⎨=+⎩,解得26k b =-⎧⎨=⎩, ∴直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,132CH AH BH AB m ∴====-+, 3C y m ∴=-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+得: 2193(23)22m m -+=--+, 解得12m =或3m = (与P 重合,舍去), 12m ∴=,232m -=-,532m -+=, 5(2,)2C ∴-. 【点评】本题考查二次函数综合应用,涉及解析式、对称轴、等腰直角三角形、一次函数等知识,解题的关键是用含字母的代数式表示C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC 的值; (2)若2DE =,3OE =,求CD 的长.【分析】(1)①由等腰三角形的性质得出DAC DCA ∠=∠,由平行线的性质得出DAC ACB ∠=∠,由直角三角形的性质得出OBC OCB ∠=∠,根据相似三角形的判定定理可得出结论;②得出30OCE OCB EBC ∠=∠=∠=︒.过点D 作DH BC ⊥于点H ,设2AD CD m ==,则2BH AD m ==,则可得出答案;(2)①如图3,当点E 在AD 上时,证明四边形ABCE 是矩形.设AD CD x ==,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,由相似三角形的性质得出2x OC m BC =,证明EOC ECB ∆∆∽,得出比例线段OE EC OC EC EB CB ==,可得出方程3223x OC x m CB -==-+,解方程可得出答案.【解答】(1)①证明:如图1,AD CD =,DAC DCA ∴∠=∠.//AD BC ,DAC ACB ∴∠=∠.BO 是Rt ABC ∆斜边AC 上的中线,OB OC ∴=,OBC OCB ∴∠=∠,DAC DCA ACB OBC ∴∠=∠=∠=∠,DAC OBC∴∆∆∽;②解:如图2,若BE CD⊥,在Rt BCE∆中,OCE OCB EBC∠=∠=∠,30OCE OCB EBC∴∠=∠=∠=︒.过点D作DH BC⊥于点H,设2AD CD m==,则2BH AD m==,在Rt DCH∆中,2DC m=,CH m∴=,3BC BH CH m∴=+=,∴2233 AD mBC m==;(2)①如图3,当点E在AD上时,//AD BC,EAO BCO∴∠=∠,AEO CBO∠=∠,O是AC的中点,OA OC∴=,()AOE COB AAS∴∆≅∆,OB OE∴=,∴四边形ABCE是平行四边形,又90ABC∠=︒,∴四边形ABCE是矩形.设AD CD x ==,2DE =,2AE x ∴=-,3OE =,6AC ∴=,在Rt ACE ∆和Rt DCE ∆中, 222CE AC AE =-,222CE CD DE =-,22226(2)2x x ∴--=-, 解得119x =+,或119x =- (舍去).119CD ∴=+.②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,3OE =,3EB m ∴=+,DAC OBC ∆∆∽,∴DC AC OC BC =, ∴2x OC m BC =, ∴2OC x BC m=. 又EBC OCE ∠=∠,BEC OEC ∠=∠,EOC ECB ∴∆∆∽,∴OE EC OC EC EB CB ==, ∴3223x OC x m CB -==-+, ∴32232x x x m m-==-+, 226x x m -∴=,将226x xm-=代入3223xx m-=-+,整理得,26100x x--=,解得3x=+,或3x=(舍去).3CD∴=综合以上可得CD的长为13+【点评】本题是相似形综合题,考查了等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.。
2024届上海市存志中学中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3)B.(4,3)C.(﹣1,3)D.(3,4)2.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则().A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为163.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形4.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A .40°B .43°C .46°D .54°6.如图,等边△ABC 内接于⊙O ,已知⊙O 的半径为2,则图中的阴影部分面积为( )A .8233π-B .433π-C .8333π-D .9344π- 7.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -时,与其对应的函数值y 的最小值为4,则h 的值为( )A .1或5B .5-或3C .3-或1D .3-或58.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )A .12B .13C .23D .349.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( )A .3B .4C .5D .7 10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 11.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种12.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个多边形每个内角为140°,则这个多边形的边数是________.14.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.15.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC 与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.17.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.18.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB 的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?20.(6分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.21.(6分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)22.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.23.(8分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨?目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?24.(10分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);画出点C关于y 轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.25.(10分)解方程式:1x2-- 3 =x12x--26.(12分)计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.27.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C '(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.2、D【解题分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.①当三边为3、4、1时,其周长为3+4+1=13;②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D.【题目点拨】本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.3、D【解题分析】连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.【题目详解】连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=12∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,{ADE BDF AD BDA DBF∠=∠=∠=∠,∴△ADE≌△BDF(ASA),∴DE=DF,AE=BF,故A正确;∵∠EDF=60°,∴△EDF是等边三角形,∴C正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°-∠A=120°,∴∠ADE=∠BEF;故B正确.∵△ADE≌△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故D错误.故选D.【题目点拨】本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.4、A【解题分析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.5、C【解题分析】根据DE∥AB可求得∠CDE=∠B解答即可.【题目详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【题目点拨】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.6、A【解题分析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.∵△ABC 是等边三角形,∴BH 33OH =1,∴△OBC 的面积= 12×BC ×OH 3则△OBA 的面积=△OAC 的面积=△OBC 的面积3BOC =120°,∴图中的阴影部分面积=2240223360π⨯-8233π-A . 点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.7、D【解题分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h <时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可.【题目详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上,∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4,∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍).综上所述,h 的值为-3或5,故选:D .【题目点拨】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.8、D【解题分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【题目详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,故选:D.【题目点拨】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.9、C【解题分析】如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=4,OD⊥AB,∴BD=12AB=12×4=2,在Rt△BOD中,OD2222325OB BD-=-=故选C.10、C【解题分析】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.11、B【解题分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【题目详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选B.【题目点拨】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.12、C【解题分析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a =->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x =图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、九【解题分析】根据多边形的内角和定理:180°•(n-2)进行求解即可.【题目详解】由题意可得:180°⋅(n−2)=140°⋅n ,解得n=9,故多边形是九边形.故答案为9.【题目点拨】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.14、13【解题分析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【题目详解】∵共有15个方格,其中黑色方格占5个, ∴这粒豆子落在黑色方格中的概率是515=13, 故答案为13. 【题目点拨】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.15、20310(140)33cm π-+ 【解题分析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO 1,线段O 1O 2,圆弧23O O ,线段O 3O 4四部分构成.其中O 1E ⊥AB ,O 1F ⊥BC ,O 2C ⊥BC ,O 3C ⊥CD ,O 4D ⊥CD .∵BC 与AB 延长线的夹角为60°,O 1是圆盘在AB 上滚动到与BC 相切时的圆心位置,∴此时⊙O 1与AB 和BC 都相切.则∠O 1BE =∠O 1BF =60度.此时Rt △O 1BE 和Rt △O 1BF 全等,在Rt △O 1BE 中,BE 103cm . ∴OO 1=AB-BE =(103)cm . ∵BF=BE 103cm , ∴O 1O 2=BC-BF =(40-33)cm . ∵AB ∥CD ,BC 与水平夹角为60°,∴∠BCD =120度.又∵∠O 2CB=∠O 3CD =90°,∴∠O 2CO 3=60度.则圆盘在C 点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm 的圆弧23O O .∴23O O 的长=60360×2π×10=103πcm . ∵四边形O 3O 4DC 是矩形,∴O 3O 4=CD =40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是:(60-1033)+(40-1033)+103π+40=(140-2033+103π)cm.16、25°.【解题分析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.17、﹣1 C.【解题分析】∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C 表示的数为﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的数为:x﹣1=﹣1﹣1=﹣6,点B表示的数为:2x+1=2×(﹣1)+1=﹣5,即等边三角形ABC边长为1,数字2012对应的点与﹣4的距离为:2012+4=2016,∵2016÷1=672,C从出发到2012点滚动672周,∴数字2012对应的点将与△ABC的顶点C重合.故答案为﹣1,C.点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.18、k>2【解题分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【题目详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【题目点拨】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)S=﹣3x1+14x,143≤x< 8;(1)5m;(3)46.67m1【解题分析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x 的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【题目详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴1483x≤<;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴1483x≤<,∵对称轴x=4,开口向下,∴当x=143m,有最大面积的花圃.【题目点拨】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.km h20、15/【解题分析】试题分析:设骑车学生的速度为xkm/h,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为xkm/h,由题意得10101-=,23x x=.解得x15=是原方程的解.经检验x15答: 骑车学生的速度为15km/h.21、(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解题分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【题目详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【题目点拨】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.22、m 的值是12.1.【解题分析】根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m 的值【题目详解】由题意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%) 解得,m 1=0(舍去),m 2=12.1,即m 的值是12.1.【题目点拨】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m 的值,注意解答中是m%,最终求得的是m 的值.23、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解题分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【题目详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得: 34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩. 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得:4m+32(10-m)≥33m≥0 10-m≥0解得:365≤m≤10,∴m=8,9,10;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,∵k=30〉0,∴W随x的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【题目点拨】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.24、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.【解题分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【题目详解】(1)如图所示,△A1B1C1即为所求.A 1(﹣1,﹣1)B 1(﹣3,﹣3),C 1(﹣1,﹣2).故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC 1C 2的面积是12 2×1=1. 故答案为:1.【题目点拨】本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.25、x=3【解题分析】先去分母,再解方程,然后验根.【题目详解】解:去分母,得1-3(x-2)=1-x ,1-3x+6=1-x ,x=3,经检验,x=3是原方程的根.【题目点拨】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.26、-1【解题分析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案. 详解:解:30﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1. 点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.27、(1)证明见解析;(22933()22cm . 【解题分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【题目详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:3.∴图中阴影部分的面积221603933333()236022 ODP DOBS S S cm 扇形。
2023年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,共24分)1.(4分)下列运算正确的是()A.a5÷a2=a3B.a3+a3=a6C.(a3)2=a5D.=a2.(4分)在分式方程+=5中,设=y,可得到关于y的整式方程为()A.y2+5y+5=0B.y2﹣5y+5=0C.y2+5y+1=0D.y2﹣5y+1=0 3.(4分)下列函数中,函数值y随x的增大而减小的是()A.y=6x B.y=﹣6x C.y=D.y=﹣4.(4分)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同5.(4分)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是()A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D 6.(4分)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题:(本大题共12题,每题4分,共48分)7.(4分)分解因式:n2﹣9=.8.(4分)化简:﹣的结果为.9.(4分)已知关于x的方程=2,则x=.10.(4分)函数f(x)=的定义域为.11.(4分)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.12.(4分)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.(4分)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.14.(4分)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.(4分)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示=.16.(4分)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.(4分)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α=.18.(4分)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.三、解答题:(本大题共7题,共78分)19.(10分)计算:+﹣()﹣2+|﹣3|.20.(10分)解不等式组:.21.(10分)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.22.(10分)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.(12分)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.24.(12分)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.(14分)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.2023年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,共24分)1.【分析】根据合并同类项,同底数幂的除法,幂的乘方法则,二次根式的性质进行计算,逐一判断即可解答.【解答】解:A、a5÷a2=a3,故A符合题意;B、a3+a3=2a3,故B不符合题意;C、(a3)2=a6,故C不符合题意;D、=|a|,故D不符合题意;故选:A.【点评】本题考查了合并同类项,同底数幂的除法,幂的乘方与积的乘方,二次根式的性质与化简,准确熟练地进行计算是解题的关键.2.【分析】设=y,则=,原方程可变为:y+=5,再去分母得y2+1=5y,即可得出结论.【解答】解:设=y,则=,分式方程+=5可变为:y+=5,去分母得:y2+1=5y,整理得:y2﹣5y+1=0,故选:D.【点评】本题考查换元法解分式方程,熟练掌握换元法是解题的关键.3.【分析】根据反比例函数的性质和正比例函数的性质分别判断即可.【解答】解:A选项,y=6x的函数值随着x增大而增大,故A不符合题意;B选项,y=﹣6x的函数值随着x增大而减小,故B符合题意;C选项,在每一个象限内,y=的函数值随着x增大而减小,故C不符合题意;D选项,在每一个象限内,y=﹣的函数值随着x增大而增大,故D不符合题意,故选:B.【点评】本题考查了反比例函数的性质,正比例函数的性质,熟练掌握这些性质是解题的关键.4.【分析】观察图象,再逐项判断各选项即可.【解答】解:观察小车与公车的车流量图可知,小车的车流量在每个时段都大于公车的车流量,∴小车的车流量的平均数较大,选项B正确;而选项A,C,D都与图象不相符合,故选:B.【点评】本题考查折线统计图,解题的关键是能从图象中获取有用的信息.5.【分析】由矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项A不符合题意;B、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB⊥AD,AB⊥BC,∴AB的长为AD与BC间的距离,∵AB=CD,∴CD⊥AD,CD⊥BC,∴∠C=∠D=90°,∴四边形ABCD是矩形,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠D,∴∠B=∠C,∵AB=CD,∴四边形ABCD是等腰梯形,故选项D不符合题意;故选:C.【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.6.【分析】根据题意,作出图形,若梯形ABCD为等腰梯形,可得①;②,其余情况得不出这样的结论,从而得到答案.【解答】解:过B作BE∥CA,交BC延长线于E,如图所示:若AD=BC,AB∥CD,则四边形ACEB是平行四边形,∴CE=AB,AC=BE,∴AB∥DC,∴∠DAB=∠CBA,∵AB=AB,∴△DAB≌△CBA(SAS),∴AC=BD,即BD=BE,∵AC⊥BD,∴BE⊥BD,在Rt△BDE中,BD=BE,AB=a,CD=b,∴DE=DC+CE=b+a,∴,此时①正确;过B作BF⊥DE于F,如图所示:在Rt△BFC中,BD=BE,AB=a,CD=b,DE=b+a,∴,,∴BC==,此时②正确;但已知中,梯形ABCD是否为等腰梯形,并未确定;梯形ABCD是AB∥CD还是AD∥BC,并未确定,∴无法保证①②正确,故选:D.【点评】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,孰练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)7.【分析】利用平方差公式分解因式即可得到答案.【解答】解:n2﹣9=(n+3)(n﹣3),故答案为:(n+3)(n﹣3).【点评】本题考查了因式分解,平方差公式,熟练掌握公式法分解因式是解题关键.8.【分析】根据分式的运算法则进行计算即可.【解答】解:原式===2,故答案为:2.【点评】本题考查分式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.9.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.10.【分析】根据函数有意义的条件求解即可.【解答】解:函数f(x)=有意义,则x﹣23≠0,解得x≠23,故答案为:x≠23.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数有意义的条件是解题的关键.11.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.12.【分析】从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,再根据概率公式求解即可.【解答】解:由题意知,从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,所以从中随机摸出一个球是绿球的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.13.【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.【点评】本题考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键.14.【分析】根据二次函数的图象与系数的关系求解(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【点评】本题考查了二次函数的图象与系数的关系,掌握数形结合思想是解题的关键.15.【分析】由三角形法则求得的值;然后结合平行线截线段成比例求得线段DE的长度,继而求得向量的值.【解答】解:在△ABC中,=,=,则=﹣=﹣.∵2AD=BD,DE∥BC,∴===.∴DE=BC.∴=,即=﹣.故答案为:﹣.【点评】本题主要考查了平面向量和平行线截线段成比例.注意:平面向量既有大小又有方向.16.【分析】先用60除以可回收垃圾所占百分比,得到该市试点区域的垃圾总量,乘以10得到全市垃圾总量,然后乘以干垃圾所占的百分比即可.【解答】解:该市试点区域的垃圾总量为60÷(1﹣50%﹣29%﹣1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).故答案为:1500吨.【点评】本题考查的是扇形统计图,利用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.17.【分析】由AB=AD,∠BAD=α及角平分线的定义得∠CAD=∠BAD=α,根据三角形外角性质得∠ADB=35°+α,即有∠B=∠ADB=35°+α,由三角形的内角和定理求解即可.【解答】解:如图,∵AB=AD,∠BAD=α,AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,在△ABC中,∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:;故答案为:.【点评】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质及三角形的内角和等知识,孰练掌握相关图形的性质是解题的关键.18.【分析】先画出图形,连接BE,利用勾股定理可得,,从而可得<r≤2,再根据⊙B与⊙E有公共点列不等式,用二次函数与一元二次方程,一元二次不等式的关系解答.【解答】解:连接BE,如图:∵⊙B过点A,且AB=7,∴⊙B的半径为7,∵⊙E过点D,它的半径为r,且CD=DE,∴CE=CD+DE=2r,∵BC=3,∠C=90°,∴BE==,,∵D在边AC上,点E在CA延长线上,∴,∴<r≤2,∵⊙B与⊙E有公共点,∴AB﹣DE≤BE≤AB+DE,∴,由①得:3r2﹣14r﹣40≤0,解方程3r2﹣14r﹣40=0得:r=﹣2或,画出函数y=3r2﹣14r﹣40的大致图象如下:同理可得:不等式②的解集为r≥2或,∴不等式组的解集为,又∵,∴⊙E半径r的取值范围是.故答案为:.【点评】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+﹣9+3﹣=﹣6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.20.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.【点评】本题考查了解一元一次不等式组,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键,同大取大,同小取小,大大小小取不了,小大大小取中间.21.【分析】(1)过点O作OD⊥AB,垂足为D,根据垂径定理可得AD=BD=4,然后在Rt△OBD中,利用锐角三角函数的定义求出OB的长,即可解答;(2)过点C作CE⊥AB,垂足为E,根据已知可得BC=OB=7.5,再利用平行线分线段成比例可得=,从而求出BE的长,进而求出AE的长,然后在Rt△BCE中,利用勾股定理求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点O作OD⊥AB,垂足为D,∵AB=8,∴AD=BD=AB=4,在Rt△OBD中,cos∠ABC=,∴OB===5,∴⊙O的半径为5;(2)过点C作CE⊥AB,垂足为E,∵OC=OB,OB=5,∴BC=OB=7.5,∵OD⊥AB,∴OD∥CE,∴=,∴=,∴BE=6,∴AE=AB﹣BE=8﹣6=2,在Rt△BCE中,CE===4.5,在Rt△ACE中,tan∠BAC===,∴∠BAC的正切值为.【点评】本题考查了垂径定理,勾股定理,解直角三角形,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)根据打九折列出算式,计算即可;(2)根据每一升油,油的单价降低0.30元知:y=0.9(x﹣0.30);(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x﹣y)元,计算求解即可.【解答】解:(1)由题意知,1000×0.9=900(元),答:实际花了900元购买会员卡;(2)由题意知,y=0.9(x﹣0.30),整理得y=0.9x﹣0.27,∴y关于x的函数解析式为y=0.9x﹣0.27;(3)当x=7.30时,y=0.9×7.30﹣0.27=6.30,∵7.30﹣6.30=1.00,∴优惠后油的单价比原价便宜1.00元.【点评】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用,解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.【分析】(1)证明△ACF≌△ADE(ASA),即可解决问题;(2)证明△ABF∽△CDE,得AF•DE=BF•CE,结合(1)AF=DE,即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△ADE(ASA),∴AF=DE;(2)∵△ACF≌△ADE,∴∠AFC=∠DEA,∴∠AFB=∠DEC,∵∠ABC=∠CDE,∴△ABF∽△CDE,∴=,∴AF•DE=BF•CE,∵AF=DE,∴AF2=BF•CE.【点评】本题考查了相似三角形的性质和判定,梯形,勾股定理,熟练运用相似三角形的性质和判定是本题的关键.24.【分析】(1)根据题意,分别将x=0,y=0代入直线即可求得;(2)设,得到抛物线的顶点式为,将B(0,6)代入可求得,进而可得到抛物线解析式为,即可求得b,c;(3)根据题意,设P(p,0),,根据平移的性质可得点B,点C向下平移的距离相同,列式求得m=﹣4,,然后得到抛物线N解析式为:,将B(0,6)代入可得,即可得到答案.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.【点评】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,涉及平移的性质,二次函数的图性质等,解题的关键是根据的平移性质求出m和a的值.25.【分析】(1)由∠ABC=∠C,∠ODB=∠ABC,即得∠C=∠ODB,OD∥AC,根据F 是OB的中点,OG=DG,知FG是△OBD的中位线,故FG∥BC,即可得证;(2)设∠OFE=∠DOE=α,OF=FB=a,有OE=OB=2a,由(1)可得OD∥AC,故∠AEO=∠DOE=α,得出∠OFE=∠AEO=α,进而证明△AEO∽△AFE,AE2=AO﹣AF,由AE2=EO2﹣AO2,有EO2﹣AO2=AO×AF,解方程即可答案;(3)△OBG是以OB为腰的等腰三角形,①当OG=OB时,②当BG=OB时,证明△BGOCD△BPA,得出,设OG=2k,AP=3k,根据OG∥AE,得出△FOG∽△FEE,即得AE=2OG=4k,PE=AE﹣AP=k,连接OE交PG于点Q,证明△QPE∽△QGO,在△PQE与△BQO中,,,得出==,可得△POE∽△OQB,根据相似三角形的性质得出a=2k,进而即可求得答案.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEDG是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2﹣AO2,∴EO2﹣AO2=AO×AF,∴(2a)2﹣42=4×(4+a),解得:或(舍去),∴OB=2a=1+;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE﹣AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为.【点评】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定是解题的关键。
2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1).(A) (B) (C) ;(D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是____________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个). 15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a = ,BC b =,那么DE =_______________(结果用a 、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示) .三、解答题(本题共7题,满分78分)19.(本题满分101382+-.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长; (2)联结AP ,当AP //CG 时,求弦EF 的长; (3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图参考答案: 1-6, BCCAAB,7,2a a + 8,1x ≠ 9,34x 10,352 11,1k 12,26 13,1314,1(0y k x=- 即可) 15,23a b -16,乙 17,-918,19,=20,0;1(x x ==舍) 21,(1) 1.2529.75y x =+, (2)37.52,sinB sinCAE B DCB CAE ∠=∠=∠∴==cos 4;sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23,求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABDCDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF ADDF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24,2517、(本小题满分13分)已知二次函数()y f x =的图像经过坐标原点,其导函数为()62f x x '=-。
数列{}n a 的前n 项和为n S ,点*(,)()n n S n N ∈均在函数()y f x =的图像上。
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有*n N ∈都成立的最小正整数m 。
17、本小题主要考查二次函数、等差数列、数列求和、不等式等基础和基本的运算技能,考查分析问题的能力和推理能力。
解:(I )依题意可设2()(0),f x ax bx a =+≠则`()2f x ax b =+ 由`()62f x x =- 得 3,2,a b ==-所以2()32.f x x x =-又由点(,)n n S (*)n N ∈ 均在函数()y f x =的图像上得232n S n n =-当 2n ≥时221323(1)2(1)65n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当 1n =时2113121615a S ==⨯-⨯=⨯- 所以*65()n a n n N =-∈(II )带入a n 的值之后,考虑用拆项相消即可。
由(I )得[]133111(),(65)6(1)526561n n n b a a n n n n +===--+--+ 故,111111(1)()()277136561n T n n ⎡⎤=-+-++-⎢⎥-+⎣⎦一定要写上关键步骤,多写几步,防止出错,保证得分。
=11(1).261n =-+ 因此使得*11(1)()26120m n N n -<∈+成立的m 必须且必须满足1,220m≤放缩法求值, 即10m ≥故满足最小的正整数m 为10 。
(19)(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T . 解析:(1)124,,S S S 成等比数列,所以 s2*s2 =s1*s3 ;S4 = 4a1 + (上底加下底)×高/2 = 寻找关于a 的关系式,解方程 即可。
(2)显然,需要利用拆项相消法。
又因为无法确定正负,所以需要对n 的取值进行分类讨论。
应该确保满分。