最新苏科版七年级下期末模拟试题2
- 格式:doc
- 大小:190.50 KB
- 文档页数:14
最新苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE2.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩3.把多项式228x -分解因式,结果正确的是( ) A .22(8)x - B .22(2)x - C .D .42()x x x-4.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +5.若a >b ,则下列结论错误的是( ) A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b6.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( ) A .2cmB .3cmC .8cmD .15cm7.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案. A .0B .1C .2D .38.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0)9.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣110.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD 11.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4 B .5 C .6 D .8 12.七边形的内角和是( )A .360°B .540°C .720°D .900°二、填空题13.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____. 14.已知方程组,则x+y=_____.15.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______. 16.已知5x m =,4y m =,则2x y m +=______________. 17.已知2m+5n ﹣3=0,则4m ×32n 的值为____18.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .21.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.22.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____. 23.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.24.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______. 三、解答题25.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2. (1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.26.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数. (1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。
苏科版七年级数学第二学期学期期末考试模拟试卷一、选择题:1、下列计算中,结果正确的是( )A .2x 2+3x 3=5x 5B .2x 3•3x 2=6x 6C .2x 3÷x 2=2xD .(2x 2)3=2x 62、若a >b ,则下列结论正确的是( )A .a+2<b+2B .a ﹣5<b ﹣5C .<D .3a >3b3、下列命题是真命题的是( )A .内错角相等B .如果a 2=b 2,那么a 3=b 3C .三角形的一个外角大于任何一个内角D .平行于同一直线的两条直线平行4、在人体血液中,红细胞的直径约为7.7-4⨯10cm, 7.7-4⨯10用小数表示为( )A. 0.000077B. 0. 00077C. -0.00077D. 0.00775、下列各式从左到右的变形属于因式分解且分解正确的是( )A .(x +1)(x -1)=x 2-1B .2x 2-y 2=(2x +y )(2x -y )C .a 2+2a +1=a (a +2)+1D .-a 2+4a -4=-(a -2)26、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 作射线OC .由此做法得△MOC ≌△NOC 的依据是( )A .AASB .SASC .ASAD .SSS7、不等式组的解集在数轴上表示正确的是( )A .B .C .D .8、关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( )A .﹣3<b <﹣2B .﹣3<b≤﹣2C .﹣3≤b≤﹣2D .﹣3≤b <﹣29、某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品( )A. 5件B. 6件C. 7件D. 8件10、如图,用四个完全一样的长、宽分别为x 、y 的长方形纸片围成一个大正方形ABCD ,中间是空的小正方形EFGH .若AB =a ,EF =b ,判断以下关系式:① x + y =a ;② x -y =b ;③ a 2-b 2=2xy ④ x 2-y 2=ab ;⑤ x 2 + y 2=222a b+,其中正确的个数有( )A .2个B .3个C .4个D .5个二、填空题:11、若一个多边形的内角和等于720°,则这个多边形是 边形.12、若a ﹣b=1,ab=﹣2,则(a ﹣2)(b+2)=______.13、若代数式x 2+(a ﹣1)x+16是一个完全平方式,则a= .14、已知4a b -=,则228a b a --的值为 .15、如图,将一副三角板的两个直角重合,使点B 在EC 上,点D 在AC上,已知∠A =45°,∠E =30°,则∠BFD 的度数是 .16、甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱 元.17、如图,点O 是△ABC 的两条角平分线的交点,若∠BOC=110°,则∠A=______°.18、将一副三角板如图放置.若AE ∥BC ,则∠AFD= °.19、已知关于x 的不等式ax + b >0的解集为x<12,则不等式bx + a <0的解集是 .(结果中不含a 、b )20、如图,ABC ADE ∆≅∆,BC 的延长线交DE 于点G ,若24,54,16B CAB DAC ∠=︒∠=︒∠=︒,则DGB ∠= .三、解答题:21、计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a ﹣3)22、将下列各式分解因式:(1) 21245x x --; (2) 32363x x x -+; (3) 29()4()a x y x y ---.23、如图,若AE 是△ABC 边上的高,∠EAC 的角平分线AD 交BC 于D ,∠ACB=40°,求∠ADE .24、如图:在正方形网格中有一个格点三角形ABC ,(即△ABC 的各顶点都在格点上),按要求进行下列作图:(1)画出△ABC 中AB 边上的高CD ;(提醒:别忘了标注字母!)(2)画出将△ABC 先向右平移5格,再向上平移3格后的△A′B′C′;(3)画一个锐角格点三角形MNP ,使其面积等于△ABC 的面积.25、高速公路建设正在紧张地进行,现有大量的沙石需要运输.车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.26、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.(1) 当∠BAD=60°时,求∠CDE的度数;(2) 当点D在BC (点B、C除外) 边上运动时,试探究∠BAD与∠CDE的数量关系;(3) 深入探究:如图②,若∠B=∠C,但∠C≠45°,其它条件不变,试继续探究∠BAD与∠CD E的数量关系.。
新苏科版七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c2.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠2 3.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( )A .4B .8C .-8D .±8 4.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 5.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 6.下列各式由左边到右边的变形,是因式分解的是( ) A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭ 7.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13- 8.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±8 9.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-410.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±11.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A .0个B .1个C .2个D .3个12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题13.若等式0(2)1x -=成立,则x 的取值范围是_________. 14.()a b -+(__________) =22a b -.15.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.16.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .17.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.18.已知5m a =,3n a =,则2m n a -的值是_________.19.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.20.已知22a b -=,则24a b ÷的值是____.21.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .22.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .23.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 24.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.三、解答题25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE= °(直接用m 、n 表示).26.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 27.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.28.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.29.计算:(1)(y 3)3÷y 6;(2)2021()(3)2π--+-.30.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.31.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值32.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.33.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.34.已知:如图EF ∥CD ,∠1+∠2=180°.(1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.35.解不等数组:3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集. 36.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B错误;C. 把一个多项式转化成几个整式积,故C正确;D. 没把一个多项式转化成几个整式积,故D错误;故选C.2.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB∥DC(内错角相等,两直线平行).故选A.【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.3.D解析:D【解析】试题分析:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.考点:完全平方式.4.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.5.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.6.B解析:B【分析】根据因式分解的意义求解即可.【详解】A、从左边到右边的变形不属于因式分解,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、从左边到右边的变形不属于因式分解,故C不符合题意;D、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D不符合题意.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7.A解析:A【分析】先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a -b =2-(﹣11)=13.故选:A .【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.8.D解析:D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵216x kx ++是完全平方式,∴8k =±,故选:D .【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.9.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.10.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;11.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A .【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.12.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x 轴上,为偶数时,从x 轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题13.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.14.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 15.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD =45°,∠BDC =60°,∴∠COB =∠ECD +∠BDC =45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.16.或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则解析:或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则第三边为:10-1×2=8(cm ),1+1<8,不符合题意; 相等的两边的长为2cm ,则第三边为:10-2×2=6(cm ),2+2<6,不符合题意;相等的两边的长为3cm ,则第三边为:10-3×2=4(cm ),3+3>4,符合题意; 相等的两边的长为4cm ,则第三边为:10-4×2=2(cm ),2+4>4,符合题意. 故第三边长为4或2cm .故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.17.80°【解析】∵BC∥DE ,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC ∥DE ,∴∠ADE =∠B =50°,∵∠EDF =∠ADE =50°,∴∠BDF =180°-50°-50°=80°.故答案为80°.18.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,∴,故答案为:.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:22m n m n a a a -=÷,∵5m a =,∴22525m a ==, ∴22252533m n m n a a a -=÷=÷=,故答案为:253.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.19.7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHO解析:7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得:S四边形DHOG=7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.20.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.21.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把14x y =-⎧⎨=⎩代入方程得:-3+4a=5, 解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.22.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩ ∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 23.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键.24.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.三、解答题25.(1)20°;(2)1122n m - 【分析】(1)根据∠DAE =∠EAC ﹣∠DAC ,求出∠EAC ,∠DAC 即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)3214xy⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211xy⎧=⎪⎪⎨⎪=-⎪⎩.【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x yx y+=⎧⎨-=⎩①②,由①+②,得46x=,∴32x=,把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组. 27.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.28.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠ 1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.29.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y9÷y6=y3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.30.4xy﹣8y2,﹣20【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.【详解】(x﹣2y)(x+2y)﹣(x﹣2y)2=x2﹣4y2﹣(x2﹣4xy+4y2)=x2﹣4y2﹣x2+4xy﹣4y2=4xy﹣8y2,当x=3,y=﹣1时,原式=4×3×(﹣1)﹣8×(﹣1)2=﹣20.【点睛】本题考查整式的化简求值,涉及平方差公式、完全平方公式、合并同类项等知识,熟练掌握整式的乘法运算法则和乘法公式的运用是解答的关键.31.①6;②8 9【解析】解:①②32.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.33.△ABC是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c,则△ABC是等边三角形.【详解】解:△ABC是等边三角形,理由如下:∵a2+c2=2ab+2bc-2b2∴a2-2ab+ b2+ b2-2bc +c2=0∴(a-b)2+(b-c)2=0∴a-b=0,b-c=0,∴a=b,b=c,∴a=b=c∴△ABC是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.34.(1)见解析;(2)∠ACB=80°【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=40°=∠ACD,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA;(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.35.解集为1≤x﹤4,数轴表示见解析【分析】分别解两个不等式的解集,它们的公共部分即为不等式组的解集,然后把解集表示在数轴上即可.【详解】3(2)41213x x x x --≤-⎧⎪⎨+>-⎪⎩①② 解不等式①得:x ≥1,解不等式②得:x ﹤4,∴不等式组的解集为1≤x ﹤4,在数轴上表示为:.【点睛】本题考查一元一次不等式组和在数轴上表示不等式的解集,正确求出每个不等式的解集是解答的关键.36.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++ 故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2323(2)a a a a a--=-- C .245(4)5a a a a --=-- D .22()()a b a b a b -=+-2.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD3.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠CB .∠A+∠B=2∠CC .∠A-∠B=30°D .∠A=12∠B=13∠C 4.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠16.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( ) A .0B .1C .3D .77.一元一次不等式312x -->的解集在数轴上表示为( ) A .B .C .D .8.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩9.下列各式中,能用平方差公式计算的是( ) A .(p +q )(p +q ) B .(p ﹣q )(p ﹣q ) C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q )10.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110° 11.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 812.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题13.若24x mx ++是完全平方式,则m =______. 14.若x +3y -4=0,则2x •8y =_________.15.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.16.如果9-mx+x2是一个完全平方式,则m的值为__________.17.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于_____cm218.已知一个多边形的每一个外角都等于,则这个多边形的边数是.19.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=_____.20.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.21.科学家发现2019nCoV-冠状肺炎病毒颗粒平均直径约为0.00000012m,数据0.00000012用科学记数法表示_______.22.若a m=2,a n=3,则a m+n的值是_____.三、解答题23.已和,如图,BE平分∠ABC,∠1=∠2,请说明∠AED=∠C.根据提示填空.∵BE平分∠ABC(已知)∴∠1=∠3,()又∵∠1=∠2,(已知)∴=∠2,()∴ ∥ ,( ) ∴∠AED = .( ) 24.计算:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+ (3)4(2)(2)x x -+-(4)2(2)(2)a b a a b ---25.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.26.如图,一个三角形的纸片ABC ,其中∠A=∠C ,(1)把△ABC 纸片按 (如图1) 所示折叠,使点A 落在BC 边上的点F 处,DE 是折痕.说明 BC ∥DF ;(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时 (如图2),探索∠C 与∠1+∠2之间的大小关系,并说明理由;(3)当点A 落在四边形BCED 外时 (如图3),探索∠C 与∠1、∠2之间的大小关系.(直接写出结论)27.已知关于x 的方程3m x +=的解满足325x y ax y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围. 28.计算:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭;(2)m 2•m 4+(﹣m 3)2; (3)(x +y )(2x ﹣3y ); (4)(x +3)2﹣(x +1)(x ﹣1). 29.解方程组(1)24 31 y xx y=-⎧⎨+=⎩(2)121632(1)13(2)x yx y--⎧-=⎪⎨⎪-=-+⎩.30.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32aa--不是整式,错误;D是正确的故选:D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.2.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A、错误.由∠1=∠4应该推出AB∥CD.B、错误.由∠2=∠3,应该推出BC//AD.C、正确.D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,故选:C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.4.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.5.D解析:D直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.A解析:A【分析】观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.【详解】解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,发现规律:末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,所以2020÷4=505,而3+9+7+1=20,20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0.故选:A.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.7.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B . 【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.8.C解析:C 【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组. 【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.9.C解析:C 【分析】利用完全平方公式和平方差公式对各选项进行判断. 【详解】(p +q )(p +q )=(p +q )2=p 2+2pq +q 2; (p ﹣q )(p ﹣q )=(p ﹣q )2=p 2﹣2pq +q 2; (p +q )(p ﹣q )=p 2﹣q 2;(p +q )(﹣p ﹣q )=﹣(p +q )2=﹣p 2﹣2pq ﹣q 2. 故选:C . 【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.10.C解析:C 【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可. 【详解】解:∵△ACB 是等腰直角三角形,∴∠BAC =45°, ∵CF //AB ,∴∠ACF =∠BAC =45°, ∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°, 故选:C . 【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.11.B解析:B 【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 . 【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意; ∵624a a a ÷=,∴选项B 计算不正确,符合题意; 2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B . 【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .12.D解析:D 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程. 【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意; 故选:D . 【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题13.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,m=±,故4±.故答案为:4【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.15.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE ,∵在线段AC 同侧作 解析:40392 【分析】 先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM , ∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392.此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S与n 的关系是解题关键.16.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.17.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.18.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.19.10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,解析:10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC−AB=2cm,即AC−8cm=2cm,∴AC=10cm,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.20.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.21.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.22.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m +n =a m •a n =2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m +n =a m •a n 是解题的关键;三、解答题23.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.24.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b --- ()()222442a ab b a ab =-+--222442a ab b a ab =-+-+224ab b +=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.25.见解析【分析】由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF ∥AC ,∴∠BFD=∠A.∵∠BFD=∠CED ,∴∠A=∠CED.∴DE ∥AB ,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.26.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED (设为α),∠A′DE=∠ADE (设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A ,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A ,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C ,∴∠DFE=∠C ,∴BC ∥DF ;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED =180°, ∠2+2∠ADE =180°,∴∠1+∠2+2(∠ADE +∠AED)=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED +∠1=180°,2∠ADE -∠2=180°,∴2(∠ADE +∠AED)+∠1-∠2=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.27.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.28.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=312⎛⎫-⎪⎝⎭18=-;(2)m2•m4+(﹣m3)2=m6+m6=2m6;(3)(x+y)(2x﹣3y)=2x2﹣3xy+2xy﹣3y2=2x2﹣xy﹣3y2;(4)(x+3)2﹣(x+1)(x﹣1)=x2+6x+9﹣x2+1=6x+10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.29.(1)12xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.30.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩ 答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
苏科版初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 3.已知,则a 2-b 2-2b 的值为 A .4B .3C .1D .0 4.计算:202020192(2)--的结果是( ) A .40392 B .201932⨯ C .20192- D .25.下列图形可由平移得到的是( )A .B .C .D .6.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68°7.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠18.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CDD .若AD ∥BC ,则∠1=∠B 9.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 310.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a - 11.下列计算不正确的是( ) A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 12.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 二、填空题13.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.15.若24x mx ++是完全平方式,则m =______.16.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.17.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.18.分解因式:x 2﹣4x=__.19.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.20.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.21.已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a= __________ .22.比较大小:π0_____2﹣1.(填“>”“<”或“=”)23.分解因式:m2﹣9=_____.24.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=_____.三、解答题25.如图,已知AB∥CD,12∠=∠,BE与CF平行吗?26.如果a c=b ,那么我们规定(a,b)=c,例如:因为23= 8 ,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ;(2)若记(3,5)=a,(3,6)=b,(3,30)=c,求证:a +b =c .27.解不等式-3+3+1 21-3-18-xxx x ⎧≥⎪⎨⎪<⎩()28.先化简,再求值:(3x+2)(3x-2)-5x(x+1)-(x-1)2,其中x2-x-10=0.29.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.(请选择正确的选项)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)若x2﹣y2=16,x+y=8,求x﹣y的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 30.已知m 2,3n a a ==,求①m n a +的值; ②3m-2n a 的值31.如图,已知AB ∥CD ,∠1=∠2,求证:AE ∥DF .32.解下列方程组:(1)32316x y x y -=⎧⎨+=⎩ (2)234229x y z x y z ⎧==⎪⎨⎪-+=-⎩ 33.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 34.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .35.如图,已知:点A C 、、B 不在同一条直线,ADBE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.36.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ;(3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.5.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A6.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得: 2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D .【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.7.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.8.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.9.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m •(8n )2=ab 2,故选:A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.10.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.11.B解析:B【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意;∵624a a a ÷=,∴选项B 计算不正确,符合题意;2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B .【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .12.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.二、填空题13.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.14.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD =45°,∠BDC =60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,m=±,故4±.故答案为:4【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.17.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.18.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).19.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.20.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.21.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.22.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.23.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.24.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.三、解答题25.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.26.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.27.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.28.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.29.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020)=12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.30.①6;②89 【解析】解:①②31.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB ,结合题干条件得到∠FDA=∠DAE ,进而得到结论.【详解】证明:∵AB ∥CD ,∴∠CDA =∠DAB ,∵∠1=∠2, ∴∠CDA ﹣∠1=∠DAB ﹣∠2,∴∠FDA =∠DAE ,∴AE ∥DF .【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单. 32.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.33.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-.【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.34.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++ 故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.35.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.36.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.。
最新苏科七年级苏科初一下册第二学期数学期末考试卷及答案百度文库一、选择题1.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩2.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3 D .a=2,b=-3 3.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种4.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 5.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+6.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩7.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .6 8.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 69.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8 B .6 C .2 D .0 10.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6±11.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠212.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个二、填空题13.如图,AD⊥BC于D,那么图中以AD为高的三角形有______个.14.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.15.最薄的金箔的厚度为0.000000091m,用科学记数法表示为________m.16.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.17.34xy=⎧⎨=-⎩是方程3x+ay=1的一个解,则a的值是__________.18.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________19.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.20.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .921.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.22.因式分解:=______.23.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.24.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.三、解答题25.计算: (1)022019()32020-- (2)4655x x x x ⋅+⋅26.观察下列等式,并回答有关问题:3322112234+=⨯⨯;333221123344++=⨯⨯;33332211234454+++=⨯⨯; …(1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ; (2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小.27.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式. (1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.28.因式分解: (1)3a xyyx ;(2)()222416x x +-.29.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 30.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值. 31.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2; (2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2. 32.计算:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+ (3)4(2)(2)x x -+-(4)2(2)(2)a b a a b ---33.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).34.四边形ABCD 中,∠A=140°,∠D=80°. (1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数; (3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.35.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立; (2)小王说:可以将其转化为两数和的平方来说明等式成立; (3)小丽说:可以构造图形,通过计算面积来说明等式成立; 36.因式分解: (1)x 4﹣16; (2)2ax 2﹣4axy +2ay 2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得: 2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩, 故选A. 【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.2.B解析:B 【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可. 详解:(x+1)(x-3) =x 2-3x+x-3 =x 2-2x-3 所以a=2,b=-3, 故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.3.B解析:B 【分析】设1元和5元的纸币分别有x 、y 张,得到方程x+5y=20,然后根据x 、y 都是正整数即可确定x 、y 的值. 【详解】解:设1元和5元的纸币分别有x 、y 张, 则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.4.C解析:C【分析】A.根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A进行判断B.根据幂的乘方运算法则对B进行判断C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断D.根据同底数幂除法运算法则对D进行判断【详解】A.2a3•3a=6a4,故A正确,不符合题意B.(﹣2y3)2=4y6,故B正确,不符合题意C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意D.a5÷a3=a2(a≠0),故D正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A选项属于整式的乘法,错误;B选项符合因式分解的概念,正确;C选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误. 故选B . 【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.6.A解析:A 【分析】设这个队胜x 场,负y 场,根据在8场比赛中得到12分,列方程组即可. 【详解】解:设这个队胜x 场,负y 场, 根据题意,得8312x y x y +=⎧⎨-=⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.7.B解析:B 【解析】分析:推出DF ∥CE ,推出∠FDB=∠ECB ,∠EDF=∠CED ,根据DE ∥AC 推出∠ACE=∠DEC ,根据角平分线得出∠ACE=∠ECB ,即可推出答案. 详解:∵CE ⊥AB ,DF ⊥AB , ∴DF ∥CE , ∴∠ECB =∠FDB , ∵CE 是∠ACB 的平分线, ∴∠ACE =∠ECB , ∴∠ACE =∠FDB , ∵AC ∥DE ,∴∠ACE =∠DEC =∠FDB , ∵DF ∥CE ,∴∠DEC =∠EDF =∠FDB ,即与∠FDB 相等的角有∠ECB 、∠ACE 、∠CED 、∠EDF ,共4个, 故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.8.B解析:B根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解. 【详解】解:A 、a 8÷a 2=a 4不正确; B 、(-m )2·(-m 3)=-m 5 正确;C 、x 3+x 3=x 6合并得2x 3,故本选项错误;D 、(a 3)3=a 9,不正确. 故选B . 【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.9.D解析:D 【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可. 【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+ 4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0. 故选:D . 【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.10.B解析:B 【解析】 【分析】利用完全平方公式的结构特征判断即可确定出a 的值. 【详解】解:∵x 2-ax+36是一个完全平方式,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题13.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.14.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m ).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a ×10n (1≤a <10,n 为整数).15..【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:89.110-⨯.【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2. 故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值.18.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.20.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.21.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.22.2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18=2(x2-9)=2(x+3)(x-3).考点:因式分解.解析:2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).考点:因式分解.23.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.24.4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a 、b 均为正整数,∴14a b =⎧⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.三、解答题25.(1)89;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.26.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.27.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.28.(1)3xy a ;(2)()()2222x x -+. 【分析】(1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x 3a xy x y 3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.29.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.30.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.31.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.32.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b ---()()222442a ab b a ab =-+--222442a ab b a ab =-+-+224ab b +=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.33.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.34.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 35.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.36.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。
苏科版七年级数学下册期末测试卷(2)一、选择题1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°3.如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°4.已知1微米=10﹣6米,则25微米用科学记数法表示为()A.2.5×10﹣5米 B.2.5×10﹣7米 C.2.5×10﹣6米 D.2.5×10﹣8米5.石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米.数据0.334纳米用科学记数法可以表示为()A.0.334×10﹣9米B.3.34×10﹣9米C.3.34×10﹣10米D.3.34×10﹣8米6.正常人红细胞直径平均为0.000 0072米,数字0.000 0072米用科学记数法表示为()A.7.2×107B.0.72×10﹣6C.7.2×10﹣6D.72×10﹣77.若a2﹣2a﹣2=0,则(a﹣1)2=()A.1 B.2 C.3 D.48.下列运算正确的是()A.x4+x4=2x8B.x3•x=x4C.(x﹣y)2=x2﹣y2D.(x2)3=x59.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b210.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.11.已知是方程mx+3y=5的解,则m的值是()A.1 B.﹣1 C.﹣2 D.212.方程3x+2y=17的正整数解有()A.1组 B.2组 C.3组 D.4组13.将不等式x﹣1>0的解集表示在数轴上,下列表示正确的是()A.B.C.D.14.不等式1﹣2x>1的解集为()A.x>0 B.x<0 C.x>1 D.x<115.若a是不等式2x﹣1>5的解,b不是不等式2x﹣1>5的解,则下列结论正确的是()A.a>b B.a≥b C.a<b D.a≤b二、填空题16.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为.17.计算:20170+(﹣)﹣1=.18.计算:(x+1)2=.19.对于二元一次方程3(x﹣1)﹣2(y+2)=﹣1,用含x的代数式表示y的结果为.20.命题:面积相等的两个三角形是全等三角形是假命题(填“真”或“假”)三、解答题21.已知:CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度数.22.计算:(1)﹣32+(﹣)﹣2+;(2)(3x2y﹣2)2÷(x﹣2y)3.23.计算:6ab(2a2b﹣ab2).24.某地为了鼓励居民节约用水,决定实行两极收费制,即每月用水量不超过15吨(含15吨)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.(1)求每吨水的政府补贴优惠价市场调节价分别是多少?(2)小明家3月份用水24吨,他家应交水费多少元?25.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节约用水的目的,规定:每户居民每月用水不超过15m3时,按基本价格收费;超过15m3时,不超过的部分仍按基本价格收费,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如表所示:(1)求该市居民用水的两种收费价格;(2)若该居民6月份交水费80元,那么该居民这个月水量为m3.26.如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?27.用反证法证明“一个三角形中不可能有两个角是钝角”已知:△ABC求证:∠A、∠B、∠C中不能有两个角是钝角证明:假设.答案1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】选择题【难度】易【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.2.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【考点】K7:三角形内角和定理.【专题】选择题【难度】易【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.3.如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【考点】K7:三角形内角和定理.【专题】选择题【难度】易【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.4.已知1微米=10﹣6米,则25微米用科学记数法表示为()A.2.5×10﹣5米 B.2.5×10﹣7米 C.2.5×10﹣6米 D.2.5×10﹣8米【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1微米=0.000001米=1×10﹣6米∴25微米=25×1×10﹣6米=2.5×10﹣5米故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米.数据0.334纳米用科学记数法可以表示为()A.0.334×10﹣9米B.3.34×10﹣9米C.3.34×10﹣10米D.3.34×10﹣8米【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.334纳米=0.334×10﹣9m=3.34×10﹣10m.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.正常人红细胞直径平均为0.000 0072米,数字0.000 0072米用科学记数法表示为()A.7.2×107B.0.72×10﹣6C.7.2×10﹣6D.72×10﹣7【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0072=7.2×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若a2﹣2a﹣2=0,则(a﹣1)2=()A.1 B.2 C.3 D.4【考点】4C:完全平方公式.【专题】选择题【难度】易【分析】求出a2﹣2a=2,根据完全平方公式展开,代入后即可求出答案.【解答】解:∵a2﹣2a﹣2=0,∴a2﹣2a=2,∴(a﹣1)2=a2﹣2a+1=2+1=3,故选C.【点评】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键.8.下列运算正确的是()A.x4+x4=2x8B.x3•x=x4C.(x﹣y)2=x2﹣y2D.(x2)3=x5【考点】4C:完全平方公式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】根据合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,差的平方等于平方和减积的二倍,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、差的平方等于平方和减积的二倍,故C错误;D、幂的乘方底数不变指数相乘,故D错误;故选:B.【点评】本题考查了完全平方公式,熟记法则并根据法则计算是解题关键.9.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b2【考点】4C:完全平方公式;35:合并同类项;49:单项式乘单项式.【专题】选择题【难度】易【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【解答】解:A、﹣2x2﹣3x2=﹣5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选:A.【点评】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.10.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】将各项中x与y的值代入方程检验即可得到结果.【解答】解:将x=1,y=0代入方程得:左边=1﹣0=1,右边=1,即左边=右边,则是方程x﹣2y=1的解.故选D.【点评】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.已知是方程mx+3y=5的解,则m的值是()A.1 B.﹣1 C.﹣2 D.2【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】根据方程的解满足方程,可得关于m的方程,根据解方程,可得答案.【解答】解:由题意,得﹣2m+3=5,解得m=﹣1,故选:B.【点评】本题考查了二元一次方程的解,利用方程的解满足方程得出关于m的方程是解题关键.12.方程3x+2y=17的正整数解有()A.1组 B.2组 C.3组 D.4组【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】把方程化为用一个未知数表示成另一个未知数的形式,再根据x、y均为正整数求解即可.【解答】解:方程2x+3y=17可化为x=,∵x、y均为正整数,∴17﹣2y>0且为3的倍数,当y=1时,x=5,当y=4时,x=3,当y=7时,x=1,∴方程3x+2y=17的正整数解为,,,故选:C.【点评】本题主要考查方程的特殊解,用一个未知数表示成另一个未知数是解题的关键.13.将不等式x﹣1>0的解集表示在数轴上,下列表示正确的是()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【专题】选择题【难度】易【分析】先解不等式得到x>1,然后利用数轴表示不等式的方法对各选项进行判断.【解答】解:x﹣1>0,所以x>1,用数轴表示为:.故选A.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.14.不等式1﹣2x>1的解集为()A.x>0 B.x<0 C.x>1 D.x<1【考点】C6:解一元一次不等式.【专题】选择题【难度】易【分析】移项、合并同类项、系数化为1即可得.【解答】解:∵﹣2x>1﹣1,∴﹣2x>0,∴x<0,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.若a是不等式2x﹣1>5的解,b不是不等式2x﹣1>5的解,则下列结论正确的是()A.a>b B.a≥b C.a<b D.a≤b【考点】C6:解一元一次不等式.【专题】选择题【难度】易【分析】首先解不等式2x﹣1>5求得不等式的解集,则a和b的范围即可确定,从而比较a和b的大小.【解答】解:解2x﹣1>5得x>3,.a是不等式2x﹣1>5的解则a>3,b不是不等式2x﹣1>5的解,则b≤3.故a>b.故选A.【点评】本题考查了一元一次不等式的解法,确定a和b的范围是关键.16.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为.【考点】JA:平行线的性质;J3:垂线.【专题】填空题【难度】中【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【解答】解:过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点评】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.17.计算:20170+(﹣)﹣1=.【考点】6F:负整数指数幂;6E:零指数幂.【专题】填空题【难度】中【分析】根据零次幂、负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=1﹣3=﹣2,故答案为:﹣2.【点评】本题考查了负整数指数幂,利用零次幂等于1、负整数指数幂与正整数指数幂互为倒数是解题关键.18.计算:(x+1)2=.【考点】4C:完全平方公式.【专题】填空题【难度】中【分析】完全平方公式是(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2,根据根式求出即可.【解答】解:(x+1)2=x2+2x+1,故答案为:x2+2x+1.【点评】本题考查了对完全平方公式公式的应用,注意:完全平方公式是(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2.19.对于二元一次方程3(x﹣1)﹣2(y+2)=﹣1,用含x的代数式表示y的结果为.【考点】93:解二元一次方程.【专题】填空题【难度】中【分析】要用含x的代数式表示y,就先化简二元一次方程3(x﹣1)﹣2(y+2)=﹣1,得到:3x﹣3﹣2y﹣4=﹣1,再移项,合并同类项得到:y=.所以用含x的代数式表示y的结果为:y=.【解答】解:化简得:3x﹣3﹣2y﹣4=﹣1移项得:﹣2y=6﹣3x系数化1得:y=.故填:y=.【点评】要掌握移项和合并同类项的方法.解题关键是先把方程化简,再通过移项和合并同类项把方程变形为是用含x的代数式表示y.20.命题:面积相等的两个三角形是全等三角形是假命题(填“真”或“假”)【考点】O1:命题与定理.【专题】填空题【难度】中【分析】根据全等三角形的判定进行判断.【解答】解:面积相等的两个不一定三角形全等,是假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.21.已知:CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度数.【考点】JA:平行线的性质;J3:垂线.【专题】解答题【难度】难【分析】根据两直线平行,同旁内角互补求出∠AOD,再根据角平分线的定义求出∠1,然后根据垂直的定义求出∠2,再根据平角的定义列式计算即可得解.【解答】解:如图,∵CD∥AB,∴∠AOD=180°﹣∠D=180°﹣50°=130°,∵OE平分∠AOD,∴∠1=∠AOD=×130°=65°,∵OF⊥OE,∴∠2=90°﹣∠1=90°﹣65°=25°,∴∠BOF=180°﹣∠AOD﹣∠2=180°﹣130°﹣25°=25°.【点评】本题考查了平行线的性质,角平分线的定义,以及垂直的定义,是基础题,熟记性质与概念并准确识图是解题的关键.22.计算:(1)﹣32+(﹣)﹣2+;(2)(3x2y﹣2)2÷(x﹣2y)3.【考点】47:幂的乘方与积的乘方;6F:负整数指数幂.【专题】解答题【难度】难【分析】(1)先求出每一部分的值,再求出即可;(2)先算乘方,再算除法即可.【解答】解:(1)原式=﹣9+9+8=8;(2)原式=9x4y﹣4÷x﹣6y3=9x10y﹣7=.【点评】本题考查了幂的乘方和积的乘方、负整数指数幂、零指数幂、负整数指数幂等知识点,能灵活运用知识点进行计算是解此题的关键.23.计算:6ab(2a2b﹣ab2).【考点】4A:单项式乘多项式.【专题】解答题【难度】难【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:原式=12a3b2﹣2a2b3.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.24.某地为了鼓励居民节约用水,决定实行两极收费制,即每月用水量不超过15吨(含15吨)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.(1)求每吨水的政府补贴优惠价市场调节价分别是多少?(2)小明家3月份用水24吨,他家应交水费多少元?【考点】9A:二元一次方程组的应用.【专题】解答题【难度】难【分析】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元,题中有两个等量关系:①用水23吨,交水费35元;②2月份用水19吨,交水费25元.据此列出方程组,求解此方程组即可;(2)小明家3月份交水费=15x+(24﹣14)y,将(1)中所求值代入计算即可.【解答】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元.根据题意可得:,解得:;答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当x=1,y=2.5时,15×1+(24﹣15)×2.5=37.5,答:小明家3月份应交水费37.5元.【点评】本题考查二元一次方程组的应用.正确理解收费标准是解决本题的关键.25.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节约用水的目的,规定:每户居民每月用水不超过15m3时,按基本价格收费;超过15m3时,不超过的部分仍按基本价格收费,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如表所示:(1)求该市居民用水的两种收费价格;(2)若该居民6月份交水费80元,那么该居民这个月水量为m3.【考点】9A:二元一次方程组的应用.【专题】解答题【难度】难【分析】(1)分两种情况:当x<6时;当x>6时;求得用户用水为x立方米时的水费;(2)先判断这个月一定超过15立方米,再根据等量关系:15立方米的水费+超过15立方米的水费=80元,列出方程求解即可【解答】解:(1)设基本水费价格为:x元/m3,超过的部分水费价格为:y元/m3,,解得:,答:基本水费价格为:3元/m3,超过的部分水费价格为:5元/m3;(2)∵3×15=45<80(元),∴这个月一定超过15立方米,则15×2+5(a﹣15)=80,解得:x=22.答:这个月该用户用水22立方米.故答案为:22.【点评】此题主要考查了二元一次方程组的应用,根据图表中数据得出用户用水为x米3(x>15)时的水费是解题关键.26.如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【专题】解答题【难度】难【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金300元/次,分别求出租车费用即可.【解答】(1)解:设A型车1辆运x吨,B型车1辆运y吨,由题意得解之得,所以1辆A型车满载为3吨,1辆B型车满载为4吨.(2)设租用A型车a辆,B型车b辆.则有:3a+4b=31吨a=,因a,b只能取整数,,,,共三种方案.(3)9×200+1×300=21005×200+4×300=22001×200+300×7=2300所以最省钱方案为A型车1辆,B型车7辆,租车费用2100元.【点评】本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.27.用反证法证明“一个三角形中不可能有两个角是钝角”已知:△ABC求证:∠A、∠B、∠C中不能有两个角是钝角证明:假设.【考点】O3:反证法.【专题】解答题【难度】难【分析】根据反证法的证明方法假设出命题,进而证明即可.【解答】证明:假设∠A、∠B、∠C中有两个角是钝角,不妨设∠A、∠B为钝角,∴∠A+∠B>180°,这与三角形内角和定理相矛盾,故假设不成立原命题正确.【点评】此题主要考查了反证法,需熟练掌握反证法的一般步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) word 版一、选择题1.对于算式20203﹣2020,下列说法错误的是( )A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠CB .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 3.已知,则a 2-b 2-2b 的值为 A .4B .3C .1D .0 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 6.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( ) A .1B .-1C .4D .-4 7.下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 28.下列各式从左到右的变形,是因式分解的是( ) A .a 2-5=(a+2)(a-2)-1 B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 9.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .10.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8± 11.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 12.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题13.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______. 14.已知23x y +=,用含x 的代数式表示y =________.15.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).16.一个n 边形的内角和是它外角和的6倍,则n =_______.17.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.18.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.19.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 20.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 21.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.22.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.三、解答题23.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子: ;(2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.24.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?25.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .26.先化简,再求值:(1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =. 27.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.28.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项) A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 29.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?30.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D .2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.B解析:B先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x,∴k=12=1,故选A.【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.9.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.10.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.11.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C .【详解】12.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.二、填空题13.【分析】根据同底数的幂的乘法运算的逆运算,先将分成 ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为: .【点睛】本题考查幂的乘方和积的乘方,将不同底数 解析:5-12【分析】 根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】 解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ 20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ ()20185112⎛⎫=-⨯- ⎪⎝⎭512=- 故答案为:512-. 【点睛】 本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.14.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .15.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).16.14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.17.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为-解析:7 2【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 18.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m +n =3,mn =2,∴(1+m )(1+n )=1+n +m +mn =1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.19.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 20.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.【详解】解:33221x y m x y m +=+⎧⎨-=-⎩①②,①+②得:5x =3m +2,解得:x =325m +, 把x =325m +代入①得:y =945m -, 由x 与y 互为相反数,得到3294+55m m +-=0, 去分母得:3m +2+9﹣4m =0,解得:m =11,故答案为:11【点睛】 此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.21.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.22.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120×400+(120-x)×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题23.(1)8×10+1=81;(2)2n(2n+1)+1=(2n+1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n个等式为:2n(2n+1)+1=(2n+1)2,理由:2n(2n+1)+1=4n2+4n+1=(2n+1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.24.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩【分析】(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.【详解】(1)设A组工人有x人、B组工人有(150−x)人,根据题意得,70x+50(150−x)=9300,解得:x=90,150−x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意得,90a+60(200−a)≥15000,解得:a≥100,答:A组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.25.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C'''即可;(2)根据平移的性质可得出AC与A C''的关系;(3)先取AB的中点E,再连接CE即可;(4)线段AC扫过的面积为平行四边形AA C C''的面积,根据平行四边形的底为4,高为7,可得线段AC扫过的面积.【详解】解:(1)如图所示,△A B C'''即为所求;(2)由平移的性质可得,AC与A C''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C''的面积,由图可得,线段AC扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.(1)-8a+12,16;(2)x2+3,1 3 9【分析】(1)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案;(2)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案.【详解】解:(1)原式=a2-4a-(a2-2a+6a-12)=a2-4a-(a2+4a-12)=a2-4a-a2-4a+12=-8a+12把12a=-代入得:原式=-8×(1-2)+12=16;(2)原式=x2+4x+4+4x2-1-4x2-4x =x2+3把13x=代入得:原式=(13)2+3=139.【点睛】本题考查了多项式乘法,合并同类项,平方差公式和完全平方公式.细心运算是解题关键.27.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020) =12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.29.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩ 【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260x y x y +=⎧⎨+-=⎩和 解得66x y =-⎧⎨=⎩把66x y =-⎧⎨=⎩代入x-2y+mx+5=0, 解得m=136- (3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,∴x=0时,m 的值与题目无关∴y=2.5∴02.5x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.30.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。
新苏科七年级数学下册第二学期期末测试题及答案(共五套) word版一、选择题1.如图,能判断AB∥CE的条件是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠BCA D.∠B=∠ACE 2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.3.若(x+2)(2x-n)=2x2+mx-2,则()A.m=3,n=1;B.m=5,n=1;C.m=3,n=-1;D.m=5,n=-1;4.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A.56°B.62°C.66°D.68°5.若a >b ,则下列结论错误的是( )A.a−7>b−7 B.a+3>b+3 C.a5>b5D.−3a>−3b6.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.7.点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M 的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)8.下列方程中,是二元一次方程的是()A.x2+x=1 B.2x﹣3y=5 C.xy=3 D.3x﹣y=2z9.下列计算不正确的是()A.527a a a=B.623a a a÷=C.2222a a a+=D.(a2)4=a810.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为()A.4 B.5 C.6 D.811.下列各式中,不能够用平方差公式计算的是()A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )12.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题13.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.14.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.15.若x +3y -4=0,则2x •8y =_________.16.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________17.二元一次方程7x+y =15的正整数解为_____.18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.()22x y --=_____.20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 . 21.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____. 22.计算(﹣2xy )2的结果是_____.三、解答题23.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.24.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.25.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知)∴∠1=∠3,( )又∵∠1=∠2,(已知) ∴ =∠2,( )∴ ∥ ,( )∴∠AED = .( )26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.27.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值. 28.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.29.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?30.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B =∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.A解析:A【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n)=2x2+4x-nx-2n,又∵(x+2)(2x-n)=2x2+mx-2,∴2x2+(4-n)x-2n=2x2+mx-2,∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.4.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.5.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A.不等式两边同时减去7,不等号方向不变,故A选项正确;B.不等式两边同时加3,不等号方向不变,故B选项正确;C.不等式两边同时除以5,不等号方向不变,故C选项正确;D.不等式两边同时乘以-3,不等号方向改变,﹣3a<﹣3b,故D选项错误.故选D.点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.6.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.7.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.8.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.9.B解析:B【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意;∵624a a a ÷=,∴选项B 计算不正确,符合题意;2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B .【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .10.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.11.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.12.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.二、填空题13.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可. 【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角解析:30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.15.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.16.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.18.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2⨯10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.20.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.21.6【分析】把代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12xy=⎧⎨=-⎩代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把12xy=⎧⎨=-⎩代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.22.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x 2y 2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.三、解答题23.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.24.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.25.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.27.116【分析】方程组消去n 后,与已知方程联立求出x 与y 的值,即可确定出n 的值.【详解】解:方程组消去n 得,-7x-8y=1,联立得:7816x y x y --=⎧⎨+=⎩解得4943x y =⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.28.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.29.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.30.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.。
新苏科七年级数学下册第二学期期末测试题及答案(共五套)一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE2.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 3.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD 4.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 5.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)6.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 7.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .8.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 9.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .610.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35°11.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°12.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-二、填空题13.已知:()521x x ++=,则x =______________. 14.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.15.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.16.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.17.二元一次方程7x+y =15的正整数解为_____.18.已知23x y +=,用含x 的代数式表示y =________.19.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.20.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.21.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.22.已知一个多边形的每个外角都是24°,此多边形是_________边形.23.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.24.若a m =2,a n =3,则a m +n 的值是_____.三、解答题25.计算 (1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.26.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?27.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.28.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.29.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示).(结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积.(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(1 3AM AB=),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.30.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x-+31.若x,y为任意有理数,比较6xy与229x y+的大小.32.⑴如图,试用a的代数式表示图形中阴影部分的面积;⑵当a=2时,计算图中阴影部分的面积.33.因式分解:(1)12abc﹣9a2b;(2)a2﹣25;(3)x3﹣2x2y+xy2;(4)m2(x﹣y)﹣(x﹣y).34.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.35.解下列方程组:(1)32316x yx y-=⎧⎨+=⎩(2)234229x y zx y z⎧==⎪⎨⎪-+=-⎩36.(1)填一填21-20=2( )22-21=2( )⋯(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+⋯+22019.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D【解析】A选项:(﹣2a3)2=4a6,故是错误的;B选项:(a﹣b)2=a2-2ab+b2,故是错误的;C选项:6123aa+=+13,故是错误的;故选D.3.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A、错误.由∠1=∠4应该推出AB∥CD.B、错误.由∠2=∠3,应该推出BC//AD.C、正确.D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.4.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 5.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A 、(﹣a )2(﹣a )3=(﹣a )5,故A 错误;B 、(﹣a )(﹣a )4=(﹣a )5,故B 错误;C 、(﹣a 2)a 3=﹣a 5,故C 错误;D 、(﹣a 3)(﹣a 2)=a 5,故D 正确;故选:D .【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.6.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-,正方形中阴影部分面积为:a2-b2,故a2-b2=(a+b)(a-b).故选:C.【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.7.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.8.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A、1+2<4,不能组成三角形;B、2+3=5,不能组成三角形;C、5+6<12,不能组成三角形;D、4+6>8,能组成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.9.C解析:C【分析】先解不等式组,根据只有2个整数解得到a的范围,再解方程,得到a的范围,再根据a是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.10.B解析:B【解析】试题分析:由DA ⊥AC ,∠ADC=35°,可得∠ACD=55°,根据两线平行,同位角相等即可得∵AB ∥CD ,∠1=∠ACD=55°,故答案选B .考点:平行线的性质.11.C解析:C【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.12.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B、因式分解不彻底,故B选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、是整式的乘法,故D不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.二、填空题13.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.14.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.15.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法17.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.18.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】+=x y23移项得:y=3-2x.故答案是:y=3-2x.19.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.20.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.解析:a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b =﹣4①,3a +2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a ﹣b =﹣4①,3a +2b >1②,由①得,b =2a +4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.21.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.解:方法一、()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.22.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴14ab=⎧⎨=⎩,33ab=⎧⎨=⎩,52ab=⎧⎨=⎩,71ab=⎧⎨=⎩.a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.24.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n=am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.解:a m +n =a m •a n =2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m +n =a m •a n 是解题的关键;三、解答题25.(1)2- ;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443x xx x x x x x x x x ⨯+-⎛⎫⋅+⋅-=-=-=-= ⎪⎝⎭. 【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.26.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】 //BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.27.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.28.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.29.(1)23a (2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴1 22223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=512故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.30.(1)374-.(2)16x4−8x2+1.【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-=1914--÷=374-.(2)原式=[(2x−1)(2x+1)]2=(4x2−1)2=16x4−8x2+1.【点睛】本题考查零指数幂、负整数指数幂、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.31.2296x y xy+≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x,y为任意有理数,22296(3)0x y xy x y+-=-≥,∴2296x y xy+≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.32.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a2+6a;(2)当a=2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.33.(1)3ab(4c﹣3a);(2)(a+5)(a﹣5);(3)x(x﹣y)2;(4)(x﹣y)(m +1)(m﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc﹣9a2b=3ab(4c﹣3a);(2)a2﹣25=(a+5)(a﹣5);(3)x3﹣2x2y+xy2=x(x2﹣2xy+y2)=x(x﹣y)2;(4)m2(x﹣y)﹣(x﹣y)=(x﹣y)(m2﹣1)=(x﹣y)(m+1)(m﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.34.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB,结合题干条件得到∠FDA=∠DAE,进而得到结论.【详解】证明:∵AB∥CD,∴∠CDA=∠DAB,∵∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣∠2,∴∠FDA=∠DAE,∴AE∥DF.【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单.35.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.36.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.。
最新苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) 百度文库一、选择题1.计算(﹣2a 2)•3a 的结果是( ) A .﹣6a 2 B .﹣6a 3 C .12a 3 D .6a 3 2.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a =3.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm4.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( )A .4B .8C .-8D .±85.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-36.已知()22316x m x --+是一个完全平方式,则m 的值可能是( ) A .7-B .1C .7-或1D .7或1-7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩8.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米 B .2.62米 C .3.62米 D .4.62米 9.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1) D .(1,﹣1) 10.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2bC .2cD .0 11.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( )A .10m -<≤B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题13.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS=,则图中阴影部分的面积是 ________.14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____. 15.已知方程组,则x+y=_____.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 17.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.18.二元一次方程7x+y =15的正整数解为_____. 19.已知()223420x y x y -+--=,则x=__________,y=__________.20.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________. 21.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .22.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.23.已知30m -=,7m n +=,则2m mn +=___________.24.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.三、解答题25.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.26.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点. (1)如图1,连接CE , ①若CE ∥AB ,求∠BEC 的度数; ②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.27.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空) ∠B =∠ ,∠C =∠ ∵ ∠DAB +∠BAC + ∠CAE =180° ∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )28.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭29.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.30.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?31.解方程组:(1)2531y x x y =-⎧⎨+=-⎩;(2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.32.阅读理解并解答:为了求1+2+22+23+24+…+22009的值. 可令S =1+2+22+23+24+…+22009 则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1 所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1 请依照此法,求:1+5+52+53+54+…+52020的值.33.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题) 34.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x yxy ⎧+=⎪⎪⎨⎪+=⎪⎩ 35.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.36.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________; (2)利用上面的规律计算: ①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】用单项式乘单项式的法则进行计算. 【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B . 【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.C解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可. 【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误. 故选:C 【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.C解析:C 【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边. 【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意; 故选C. 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.4.D解析:D试题分析:∵(x±4)2=x 2±8x+16, 所以m=±2×4=±8. 故选D .考点:完全平方式.5.B解析:B 【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可. 详解:(x+1)(x-3) =x 2-3x+x-3 =x 2-2x-3 所以a=2,b=-3, 故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.6.D解析:D 【分析】利用完全平方公式的特征判断即可得到结果. 【详解】 解:()22316x m x --+是一个完全平方式,∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x + ∴-2(m-3)=8或-2(m-3)=-8 解得:m =-1或7 故选:D 【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩,【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米,故选:A.【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.9.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.10.D解析:D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.11.C解析:C【解析】解:A.x2 x3=x5,故A错误;B .(-2x 2)2 = 4 x 4,故B 错误;C .( x 3 )2= x 6,正确;D .x 5÷ x = x 4,故D 错误. 故选C .12.C解析:C 【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围. 【详解】 解:0233(2)x m x x ->⎧⎨-≥-⎩①②解不等式①,得x>m. 解不等式②,得x ≤3. ∴不等式组得解集为m<x ≤3. ∵不等式组有三个整数解, ∴01m ≤<. 故选C. 【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案. 【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是 故答案为:6. 【点睛】 解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案. 【详解】 解:ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBD GCDGCEAGEAGFBGFS SSSSS∴=== 2,BG GE =2,BGC GECS S ∴=,DGCCGE SS∴=GBDGCDGCEAGEAGFBGFSSS SSS∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6. 【点睛】本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.14.100 【分析】利用完全平方公式解答. 【详解】解:原式=(10.1﹣0.1)2=102=100. 故答案是:100. 【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100 【分析】利用完全平方公式解答. 【详解】解:原式=(10.1﹣0.1)2=102=100. 故答案是:100. 【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.15.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2.解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2.16.12 【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.17.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.18.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为或.故答案为:或.【点解析:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.19..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x .【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.20.【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,,故答案为:.【解析:541403276x y x y +=⎧⎨+=⎩【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,541403276x y x y +=⎧⎨+=⎩, 故答案为:541403276x y x y +=⎧⎨+=⎩. 【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.22.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b +ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a 2b +ab 2=ab (a +b )=3×5=15(2)a 2+b 2=(a +b )2-2ab =52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键. 23.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 24.28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG=52°,∵EFNM 是由EFCD 折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.三、解答题25.68︒【分析】根据已知首先求得∠BAD 的度数,进而可以求得∠BAE ,而∠CAE=∠BAE ,在△ACD 中利用内角和为180°,即可求得∠C .【详解】解:∵AD是△ABC的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE平分∠BAC,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.26.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE =40°,∠ACB =40°,∴∠BEC =180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.27.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.28.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.29.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.30.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)8 4788(1)4n nn n+--⎧⎨+--≥⎩<①②由①得:12 n>19由②得:1202 n≤∴不等式组的解集是:11 1922≤<n20n为正整数,20,n∴=478158,m n∴=+=15820638.∴-⨯=答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.31.(1)21xy=⎧⎨=-⎩;(2)175125xy=⎧⎨=⎩.【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y xx y=-⎧⎨+=-⎩①②,把①代入②得:x+6x﹣15=﹣1,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩;(2)方程组整理得:300 5537500x yx y+=⎧⎨+=⎩①②,①×53﹣②得:48x=8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.32.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.33.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得: 241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.34.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解.(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;35.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.36.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE2.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=3.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 4.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106 C .3.8×105 D .38×1045.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==-D .14,33m n =-= 6.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩ 7.下列方程中,是二元一次方程的是( ) A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 8.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)29.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .10.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .11.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110°12.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题13.多项式2412xy xyz +的公因式是______.14.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.15.已知5x m =,4y m =,则2x y m +=______________.16.已知23x y +=,用含x 的代数式表示y =________.17.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 . 21.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.22.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.23.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.24.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 三、解答题25.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅26.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.27.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.28.因式分解:(1)249x - (2) 22344ab a b b --29.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC=90º+12∠A ,(请补齐空白处......) 理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=12∠ABC ,_________________,在ΔABC 中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A , ∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A . (探究2):如图2,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB 中,∠AOB=90º,已知AB 不平行与CD ,AC 、BD 分别是∠BAO 和∠ABO 的角平分线,又CE 、DE 分别是∠ACD 和∠BDC 的角平分线,则∠E=_______;(拓展):如图4,直线MN 与直线PQ 相交于O ,∠MOQ=60º,点A 在射线OP 上运动,点B 在射线OM 上运动,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在ΔAEF 中,如果有一个角是另一个角的4倍,则∠ABO=______.30.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.31.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).32.已知1502x x +-=,求值; (1)221x x +(2)1x x- 33.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-234.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;35.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.36.(1)解二元一次方程组3423 x yx y-=⎧⎨-=⎩;(2)解不等式组29421333x xx x<-⎧⎪⎨+≥-⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.B解析:BA.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm 2.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=- B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 3.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-4.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10116.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 7.下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 28.计算12x a a a a ⋅⋅=,则x 等于( ) A .10 B .9 C .8 D .49.下列运算正确的是( ) A .236x x x ⋅= B .224(2)4x x -=- C .326()x x =D .55x x x ÷= 10.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A.0个B.1个C.2个D.3个11.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.15.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.16.若 a m =6 , a n =2 ,则 a m−n =________17.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .18.不等式1x 2x 123>+-的非负整数解是______. 19.233、418、810的大小关系是(用>号连接)_____.20.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .921.已知代数式2x-3y 的值为5,则-4x+6y=______.22.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .23.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.24.计算:2020(0.25)-×20194=_________.三、解答题25.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +-(4)()()a b c a b c ++-+26.已知:方程组2325x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.27.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示).(结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积. (迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.28.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.29.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.轴于B,点C在30.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.31.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.32.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.33.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.34.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = . 在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)35.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.36.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.2.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.3.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.5.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.6.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.A解析:A【解析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.9.C解析:C【解析】解:A .x 2⋅ x 3= x 5,故A 错误;B .(-2x 2)2 = 4 x 4,故B 错误;C .( x 3 )2= x 6,正确;D .x 5÷ x = x 4,故D 错误.故选C .10.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A .【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.11.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.12.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题13.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】-=,宽为8,故阴影部分的面积两个阴影图形可以平移组成一个长方形,长为1521313×8=104,故答案为104.14.20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.解:∵△ABE向右平移2cm得到△DCF,∴D解析:20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.16.3.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.17.或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则解析:或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则第三边为:10-1×2=8(cm ),1+1<8,不符合题意; 相等的两边的长为2cm ,则第三边为:10-2×2=6(cm ),2+2<6,不符合题意; 相等的两边的长为3cm ,则第三边为:10-3×2=4(cm ),3+3>4,符合题意; 相等的两边的长为4cm ,则第三边为:10-4×2=2(cm ),2+4>4,符合题意. 故第三边长为4或2cm .故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.18.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x解析:0,1,2,3,4【解析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x-2移项合并同类项得x <5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.19.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.20.B【解析】连接OC ,OB ,OA ,OD ,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.21.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.22.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.23.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.24.【分析】先将写成的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】×,,,=,故答案为:.【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆 解析:14【分析】先将2020(0.25)-写成201911()44⨯的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】 2020(0.25)-×20194,2019201911()444=⨯⨯, 201911(4)44=⨯⨯, =14, 故答案为:14. 【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆运算,正确掌握公式是解此题的关键.三、解答题25.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.26.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得 2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得120130a a +<⎧⎨->⎩解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.27.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=512故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.28.6°【解析】试题分析:先根据三角形内角和求出∠BAC的度数,由AE是△ABC的角平分线,求出∠DAC的度数,由AD是BC边上的高,求出∠EAC的度数,再利用角的和差求出∠DAE的度数.解:∵在△ABC中,∠ABC=56°,∠ACB=44°∴∠BA C=180°-∠ABC-∠ACB=80°∵AE是△ABC的角平分线∴∠EAC=12∠BA C=40°∵AD是BC边上的高,∠ACB=44°∴∠DAC=90°-∠ACB=46°∴∠DAE=∠DAC-∠EAC=6°29.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a2+6a;(2)当a=2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.30.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=, ∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C , ∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1,∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.31.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.32.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.33.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.34.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b a a b b +-+=()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦=()()2222163+⨯-=198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.35.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解. 【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=,∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.36.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.。
新苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) word 版一、选择题1.下列计算正确的是( ) A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )A .B .C .D .3.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .04.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 5.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4B .8C .-8D .±86.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α- B .1902α︒+C .12αD .15402α︒-7.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 8.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD9.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=- B .2()ab a a b a -=- C .25(1)5x x x x +-=+-D .21()x x x x x+=+10.下列方程中,是二元一次方程的是( ) A .x 2+x =1 B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 11.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .412.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )二、填空题13.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.14.已知5m a =,3n a =,则2m n a -的值是_________.15.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 16.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______. 17.已知5x m =,4y m =,则2x y m +=______________. 18.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.19.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.20.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).21.计算212⎛⎫= ⎪⎝⎭______.22.计算:22020×(12)2020=_____. 三、解答题23.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积. (经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示). (结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积.(迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.24.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由. 25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+- (3)2616a a --26.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.27.已知关于x 的方程3m x +=的解满足325x y ax y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.28.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数3mn则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)29.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格. (1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )30.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误 故选:C . 【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.D解析:D 【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误; B 、不能用平移变换来分析其形成过程,故此选项错误; C 、不能用平移变换来分析其形成过程,故此选项正确; D 、能用平移变换来分析其形成过程,故此选项错误; 故选:D . 【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.C解析:C 【分析】先将原式化简,然后将a−b =1整体代入求解. 【详解】()()2212221a b a b b a b a b ba b b a b -∴--+--+--=,====.故答案选:C . 【点睛】此题考查的是整体代入思想在代数求值中的应用.4.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.5.D解析:D【解析】试题分析:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.考点:完全平方式.6.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.7.D解析:D【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a+;求出两个图形面积然后做差即可. 【详解】解:设长方形的宽为x cm ,则长为(x +a )cm , 则正方形的边长为()2242x a x x a⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+,二者面积之差为()222244144x ax a x ax a ++-+=,故选:D . 【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.8.B解析:B 【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B . 考点:三角形的角平分线、中线和高.9.B解析:B 【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解. 【详解】解:根据因式分解的概念, A 选项属于整式的乘法,错误; B 选项符合因式分解的概念,正确; C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误. 故选B . 【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.10.B解析:B根据二元一次方程的定义对各选项逐一判断即可得. 【详解】解:A .x 2+x =1中x 2的次数为2,不是二元一次方程;B .2x ﹣3y =5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C .xy =3中xy 的次数为2,不是二元一次方程;D .3x ﹣y =2z 中含有3个未知数,不是二元一次方程; 故选:B . 【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.11.A解析:A 【解析】 【分析】利用同底数幂的乘法即可求出答案, 【详解】解:由题意可知:a 2+x =a 12, ∴2+x =12, ∴x =10, 故选:A . 【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.12.B解析:B 【分析】根据平方差公式:22()()a b a b a b +-=-进行判断. 【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意; 故选B . 【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.二、填空题【分析】根据不等式的性质即可求解. 【详解】 依题意得m-2<0 解得m <2 故答案为:m <2. 【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m <2 【分析】根据不等式的性质即可求解. 【详解】 依题意得m-2<0 解得m <2 故答案为:m <2. 【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.14.【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】 解:, ∵, ∴, ∴,故答案为:. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】解:22m n m n a a a -=÷, ∵5m a =,∴22525m a ==, ∴22252533m n m n a a a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 15.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.16.24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x 2+12xy+4y 2=9x 2-12xy+4y 2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a 2±2ab+b 2. 17.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键. 18.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键.19.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x =﹣1.②当2x+3=﹣1时,解得:x =﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x =﹣2.③当x+2016=0时,x =﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x =﹣2016.综上所述,当x =﹣1,或x =﹣2,或x =﹣2016时,代数式(2x+3)x+2016的值为1. 故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.20.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).21.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为 .【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】 解:222111==224⎛⎫ ⎪⎝⎭. 故答案为14 . 【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 22.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.三、解答题23.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=5 12故答案为5 12.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.24.△ABC是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c,则△ABC是等边三角形.【详解】解:△ABC是等边三角形,理由如下:∵a2+c2=2ab+2bc-2b2∴a2-2ab+ b2+ b2-2bc +c2=0∴(a-b)2+(b-c)2=0∴a-b=0,b-c=0,∴a=b,b=c,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解.【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.27.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.28.(1)m =1,n =5;(2)(a +2b )2=a 2+4ab +4b 2;(3)2a 2+5ab +3b 2=(a +b )(2a +3b ),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B 型板1块,按裁法三裁剪时,可以裁出5块B 型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A 型板材块的长为120cm ,150-120=30,所以可裁出B 型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.29.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.30.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.。
苏科七年级数学下册第二学期期末测试题及答案(共五套)一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种 B .5种 C .6种 D .7种 3.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +b C .b ﹣a D .﹣a ﹣b 4.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy5.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=106.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或158.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M的坐标是( ) A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)9.下列各式从左到右的变形中,是因式分解的为( ) A .ab +ac +d =a (b +c )+d B .(x +2)(x ﹣2)=x 2﹣4 C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)210.下列运算正确的是( ) A .a 2·a 3=a 6 B .a 5+a 3=a 8 C .(a 3)2=a 5 D .a 5÷a 5=1 11.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( )A .4B .5C .6D .812..已知2x ay =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( )A .1B .2C .3D .4二、填空题13.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.15.若24x mx ++是完全平方式,则m =______.16.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______. 17.233、418、810的大小关系是(用>号连接)_____.18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.一个n 边形的内角和为1080°,则n=________.20.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .21.内角和等于外角和2倍的多边形是__________边形.22.已知一个多边形的每个外角都是24°,此多边形是_________边形. 23.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 24.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.三、解答题25.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ; (3)设a =r +c ,b =r ﹣c (c >0),那么( )(A)S2=S1;(B)S2>S1;(C)S2<S1;(D)S2与S1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.26.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.27.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).(结论应用)(2)如图2,已知△CDE的面积为1,14CDAC=,13CECB=,求△ABC的面积.(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(13AM AB=),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.28.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值.29.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.30.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′. (1)请在图中画出平移后的△A ′B ′C ′; (2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________ (4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)31.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX=°;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.32.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.33.如图(1),在平面直角坐标系中,点A 在x 轴负半轴上,直线l x ⊥轴于B ,点C 在直线l 上,点C 在x 轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.34.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形: A .仅学生自己参与; B .家长和学生一起参与; C .仅家长参与; D .家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.35.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.''',36.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到ΔA B C图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.''';(1)画出平移后的ΔA B C(2)连接BB'、CC',那么线段BB'与CC'的关系是_________;(3)四边形BCC B''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.3.A解析:A【分析】根据多项式与多项式相乘知(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,据此可以求得k的值.【详解】解:∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,又∵x2﹣kx﹣ab=(x﹣a)(x+b),∴x2﹣kx﹣ab=x2+(b﹣a)x﹣ab,∴﹣k=b﹣a,k=a﹣b,故选:A.【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.4.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.5.A解析:A【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.6.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.7.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6此时336+=,不满足三角形的三边关系定理(2)当等腰三角形的腰为6时,三边为3,6,6此时366+>,满足三角形的三边关系定理则其周长为36615++=综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.8.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A .【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.9.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.11.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.12.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题13.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB ∥CD ,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.14.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,m=±,故4±.故答案为:4【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角解析:30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.17.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2,∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.18.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218020.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.21.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).22.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360° 24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.23.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 24.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.三、解答题25.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得: S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S 1>S 2.故选C .【点睛】此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.26.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.27.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=512故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.28.(1)224()()xy x y x y=+--;(2)16xy=;(3)23x y-=±.【分析】(1)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为:224()()xy x y x y=+--;故答案为:224()()xy x y x y=+--;(2)∵2(32)5x y-=,∴2291245x xy y-+=①,∵2(32)9x y+=,∴2291249x xy y++=②,∴由②-①,得24954xy=-=,∴16xy=;(3)∵25,2x y xy +==,∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.29.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.30.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB 扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点.【详解】(1)△A ′B ′C ′如图所示;(2)B ′D ′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.31.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A =50°,∠BXC =90°,所以∠ABX+∠ACX =90°﹣50°=40°;②由(1)的结论易得∠DBE =∠DAE +∠ADB+∠AEB ,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB =80°;∴∠DCE =12(ADB+∠AEB)+A=40°+50°=90°; ③由②知,∠BG 1C =110(ABD+∠ACD)+A , ∵∠BG 1C =77°,∴设∠A 为x°, ∵∠ABD+∠ACD =140°﹣x°, ∴110(40﹣x)x =77, ∴14﹣110x+x =77, ∴x =70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.32.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3,解得:m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.33.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=, ∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1,∵AF 、DF 分别平分CAB ∠、ODE ∠, ∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm2.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm3.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3 4.如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.5.下列图案中,可以看成是由图案自身的一部分经平移后得到的是()A.B.C.D.6.端午节前夕,某超市用1440元购进A、B两种商品共50件,其中A种商品每件24元,B品件36元,若设购进A种商品x件、B种商品y件,依题意可列方程组()A.5036241440x yx y+=⎧⎨+=⎩B.5024361440x yx y+=⎧⎨+=⎩C.144036241440x yx y+=⎧⎨+=⎩D.144024361440x yx y+=⎧⎨+=⎩7.点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M 的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)8.科学家发现2019﹣nCoV冠状肺炎病毒颗粒的平均直径约为0.00000012m.数据0.00000012用科学记数法表示为()A.1.2×107B.0.12×10﹣6C.1.2×10﹣7D.1.2×10﹣89.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.610.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°11.若一个三角形的两边长分别为3和6,则第三边长可能是()A.6 B.3 C.2 D.1012.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠2二、填空题13.已知关于x的不等式组()531235x a xx⎧->-⎨-≤⎩的所有整数解的和为7则a的取值范围是__________.14.已知关于x的不等式组521{xx a-≥-->无解,则a的取值范围是________.15.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S l,△ACE的面积为S2,若S△ABC=12,则S1+S2=______.16.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________17.已知2x=3,2y=5,则22x+y-1=_____.18.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A .6B .7C .8D .9 19.计算212⎛⎫= ⎪⎝⎭______. 20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .21.已知30m -=,7m n +=,则2m mn +=___________.22.已知一个多边形的每个外角都是24°,此多边形是_________边形.23.若2a x =,5b x =,那么2a b x +的值是_______ ;24.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.三、解答题25.计算(1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.26.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 227.观察下列等式,并回答有关问题: 3322112234+=⨯⨯; 333221123344++=⨯⨯;33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小. 28.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .29.因式分解:(1)3a x y y x ;(2)()222416x x +-.30.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 31.探究与发现: 如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.32.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.33.如果a c=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.34.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?35.四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.36.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A、C、D不能构成三角形,错误B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B.【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.3.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.4.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.5.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A、是平移;B、轴对称变换,不是平移;C、是旋转变换,不是平移.D、图形的大小发生了变化,不是平移.故选:A.【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.6.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.10.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.11.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.12.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题13.7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可.【详解】解:,∵解不等式①得:,解不等式②得:x≤4,∴不等式组的解析:7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可.【详解】解:() 531235x a xx⎧->-⎨-≤⎩①②,∵解不等式①得:32ax->,解不等式②得:x≤4,∴不等式组的解集为342ax-<≤,∵关于x的不等式组()531235x a xx⎧->-⎨-≤⎩的所有整数解的和为7,∴当32a->0时,这两个整数解一定是3和4,∴2≤32a -<3, ∴79a ≤<, 当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1, ∴a 的取值范围是7≤a <9或-3≤a <-1.故答案为:7≤a <9或-3≤a <-1.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.14.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.15.14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.16.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=故答案为解析:45 2【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=45 2故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.18.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.19.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111== 224⎛⎫⎪⎝⎭.故答案为14.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.20.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.21.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 22.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.23.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.24.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.三、解答题25.(1)2- ;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443x xx x x x x x x x x ⨯+-⎛⎫⋅+⋅-=-=-=-= ⎪⎝⎭. 【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.27.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2.(2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.28.证明见解析.【分析】根据对顶角的性质得到BD ∥CE 的条件,然后根据平行线的性质得到∠B=∠C ,已知∠C=∠D ,则得到满足AB ∥EF 的条件,再根据两直线平行,内错角相等得到∠A=∠F .【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C=∠ABD ;又∵∠C=∠D ,∴∠D=∠ABD ,∴AB ∥EF ,∴∠A=∠F .考点:平行线的判定与性质;对顶角、邻补角.29.(1)3xy a ;(2)()()2222x x -+.【分析】(1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x 3a x y x y 3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.30.(1)374-.(2)16x 4−8x 2+1. 【分析】 (1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果; (2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.31.(1)∠BDC =∠A+∠B+∠C ,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD 并延长至点F ,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF ;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC ,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX 的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB ,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB 的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB )+∠A ,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD 并延长至点F ,由外角定理可得∠BDF =∠BAD+∠B ,∠CDF =∠C+∠CAD ;∵∠BDC =∠BDF+∠CDF ,∴∠BDC =∠BAD+∠B+∠C+∠CAD.∵∠BAC =∠BAD+∠CAD ;∴∠BDC =∠BAC +∠B+∠C ;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A =∠BXC ,又因为∠A =50°,∠BXC =90°,所以∠ABX+∠ACX =90°﹣50°=40°;②由(1)的结论易得∠DBE =∠DAE +∠ADB+∠AEB ,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB =80°;∴∠DCE =12(ADB+∠AEB)+A=40°+50°=90°; ③由②知,∠BG 1C =110(ABD+∠ACD)+A , ∵∠BG 1C =77°,∴设∠A 为x°, ∵∠ABD+∠ACD =140°﹣x°, ∴110(40﹣x)x =77, ∴14﹣110x+x =77, ∴x =70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.32.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案;(2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.33.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.34.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.35.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 36.篮球队14支,排球队10支【分析】 根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩ 答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.下列图形可由平移得到的是( )A .B .C .D .3.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( ) A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯4.下列计算中,正确的是( ) A .235235x x x += B .236236x x x = C .322()2x x x÷-=-D .236(2)2x x -=-5.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案. A .0 B .1 C .2 D .3 6.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .2567.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=- B .2()ab a a b a -=- C .25(1)5x x x x +-=+-D .21()x x x x x+=+8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或159.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( ) A .B .C .D .10.七边形的内角和是( ) A .360°B .540°C .720°D .900°11.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( )A .10m -<≤B .10m -≤<C .01m ≤<D .01m <≤ 12.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255二、填空题13.多项式2412xy xyz +的公因式是______.14.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.15.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________. 16.二元一次方程7x+y =15的正整数解为_____. 17.()()3a 3b 13a 3b 1899+++-=,则a b += ______ . 18.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .21.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.22.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____.23.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____.24.分解因式:m 2﹣9=_____.三、解答题25.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C '''; (2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.26.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ; (3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定; (4)请对你在第(3)小题中所作的判断说明理由.27.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′; (2)在图中画出△A′B′C′的高C′D′. 28.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.29.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1. 30.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.31.已知a +a 1-=3, 求(1)a 2+21a(2)a 4+41a 32.解方程组:(1)2531y x x y =-⎧⎨+=-⎩;(2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.33.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.34.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数3mn则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)35.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
新苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) 百度文库一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124° 3.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 4.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 5.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩8.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 99.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 10.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4B .5C .6D .8 11..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1B .2C .3D .4 12.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.若(2x +3)x +2020=1,则x =_____.14.等式01a =成立的条件是________.15.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.16.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.17.因式分解:224x x -=_________.18.若(x ﹣2)x =1,则x =___.19.一个n 边形的内角和为1080°,则n=________.20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .21.比较大小:π0_____2﹣1.(填“>”“<”或“=”)22.若2a x =,5b x =,那么2a b x +的值是_______ ; 三、解答题23.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.24.实验中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买100个A型放大镜和150个B型放大镜需用1500元;若购买120个A型放大镜和160个B型放大镜需用1720元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)学校决定购买A型放大镜和B型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A型放大镜?25.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是________(4)△ABC在整个平移过程中线段AB扫过的面积为________(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个(注:格点指网格线的交点)26.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=,2100×(12)100=;(2)通过上述验证,归纳得出:(a•b)n=;(abc)n=.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.27.将下列各式因式分解(1)xy2-4xy(2)x4-8x2y2+16y428.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x,y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:C D 投入(元/米2)12 16 收益(元/米2) 18 26求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)29.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.30.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a ∥b ,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D.【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.A解析:A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.4.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.5.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 6.D解析:D【详解】解:A 、能通过其中一个四边形平移得到,不符合题意;B 、能通过其中一个四边形平移得到,不符合题意;C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D .7.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.A解析:A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.9.B解析:B【分析】把x 与y 的值代入方程检验即可.【详解】解:A 、把31x y =⎧⎨=⎩代入得:左边=15﹣1=14,右边=4, ∵左边≠右边,∴31x y =⎧⎨=⎩不是方程的解; B 、把11x y =⎧⎨=⎩代入得:左边=5﹣1=4,右边=4, ∵左边=右边,∴11x y =⎧⎨=⎩是方程的解; C 、把04x y =⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4, ∵左边≠右边,∴04x y =⎧⎨=⎩不是方程的解; D 、把13x y =⎧⎨=⎩代入得:左边=5﹣3=2,右边=4, ∵左边≠右边,∴13x y =⎧⎨=⎩不是方程的解, 故选:B .【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.10.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.11.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.12.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.14..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.15.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.17.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.x x-解析:2(2)【分析】直接提取公因式即可.【详解】2x x x x-=-.242(2)x x-.故答案为:2(2)【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.18.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.19.8直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218020.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.21.>先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 22.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.三、解答题23.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.24.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.25.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.(5)根据同底等高面积相等可知共有9个点.【详解】(1)△A′B′C′如图所示;(2)B′D′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.(1)1, 1, (2)a n b n, a n b n c n,(3)132 .【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1;(2)(a•b)n=a n b n,(abc)n=a n b n c n,(3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=﹣132. 【点睛】 本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.27.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.28.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有: 123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩,解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.考点:整式的混合运算.29.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.30.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°. 【分析】(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP ,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,即得到13∠FNP=180°-∠PMH ,即13∠N+∠PMH=180°. 【详解】(1)证明:∵∠1=∠BEF ,12180︒∠+∠=∴∠BEF+∠2=180°∴AB ∥CD.(2)解:12N AEM NFD ∠=∠-∠ 设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y过M 作MP ∥AB ,过N 作NQ ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.。
苏科版七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 2.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--3.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 4.若(x-2y)2 =(x+2y)2+M,则M= ( ) A .4xyB .- 4xyC .8xyD .-8xy 5.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=106.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x +=+ 7.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 8.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .69.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =6 10.一个多边形的每个内角都等于140°,则这个多边形的边数是( ) A .7B .8C .9D .10 11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 12.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->- 二、填空题13.计算:23()a =____________.14.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 15.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.16.已知22a b -=,则24a b ÷的值是____.17.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 18.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.19.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.20.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 21.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 22.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.23.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.24.计算:x(x﹣2)=_____三、解答题25.解不等式-3+3+121-3-18-xxx x⎧≥⎪⎨⎪<⎩()26.已知有理数,x y满足:1x y-=,且221x y,求22x xy y++的值.27.分解因式:(1)3222x x y xy-+;(2)2296(1)(1)x x y y-+++;(3)()214(1)m m m-+-.28.因式分解:(1)249x- (2) 22344ab a b b--29.如图,在△ABC中,∠ABC=56º,∠ACB=44º,AD是BC边上的高,AE是△ABC的角平分线,求出∠DAE的度数.30.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:_____.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是_____.31.解不等数组:3(2)41213x xxx--≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集.32.解方程组:41325x yx y+=⎧⎨-=⎩.33.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.34.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒. (2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.35.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) 百度文库一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=2.下列计算中,正确的是( )A .235235x x x +=B .236236x x x =C .322()2x x x÷-=- D .236(2)2x x -=- 3.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2D .14a 2 4.32236x y 3x y -分解因式时,应提取的公因式是( ) A .3xy B .23x y C .233x y D .223x y5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .7.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩ B .8312x y x y -=⎧⎨-=⎩ C .18312x y x y +=⎧⎨+=⎩ D .8312x y x y -=⎧⎨+=⎩8.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 9.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8±10.七边形的内角和是()A.360°B.540°C.720°D.900°11.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为()A.36x yx y-=⎧⎨+=⎩B.36x yx y+=⎧⎨-=⎩C.331661x yx y+=⎧⎨-=⎩D.331661x yx y-=⎧⎨+=⎩12.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题13.已知2x+3y-5=0,则9x•27y的值为______.14.分解因式:m2﹣9=_____.15.已知等腰三角形的两边长分别为4和8,则它的周长是_______.16.已知方程组,则x+y=_____.17.如果42x-与231x mx++的乘积中不含x2项,则m=______________.18.如图,在△ABC中,点D为BC边上一点,E、F分别为AD、CE的中点,且ABCS∆=8cm2,则BEFS∆=____.19.若把代数式245x x--化为()2x m k-+的形式,其中m、k为常数,则m k+=______.20.已知23x y+=,用含x的代数式表示y=________.21.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.22.计算:2m·3m=______.23.已知代数式2x-3y的值为5,则-4x+6y=______.24.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有a 根,则a 的值可能有_____种.三、解答题25.因式分解:(1)3a x y y x ;(2)()222416x x +-. 26.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A . (1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.27.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.28.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.29.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?30.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.31.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.32.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.33.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.34.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).35.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-236.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
江苏省七年级(下)期末数学试卷一、选择题:(本大题共有6小题,每小题2分,共12分,以下各题都有四个选项,其中只有一个是正确的)1.(2015•安徽模拟)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.考点:利用平移设计图案.分析:根据图形平移、旋转、翻折变换的性质对各选项进行逐一分析即可.解答:解:A、通过翻折变换得到.故本选项错误;B、通过旋转变换得到.故本选项错误;C、通过平移变换得到.故本选项正确;D、通过翻折变换得到.故本选项错误.故选C.点评:本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.2.(2013•南安市质检)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析: A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.解答:解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D点评:此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.3.(2015•江都市模拟)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4考点:因式分解的意义.分析:根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.解答:解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.点评:此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(2015春•泰兴市期末)把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>0考点:在数轴上表示不等式的解集.分析:根据在数轴上表示不等式解集的方法进行解答即可.解答:解:∵0处是空心圆点且折线向右;1处是实心圆点且折线向左,∴该不等式组的解集为:0<x≤1.故选A.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心原点的区别是解答此题的关键.5.(2015春•泰兴市期末)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对项角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个考点:命题与定理.分析:先写出命题的逆命题,再对逆命题的真假进行判断即可.解答:解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选B.点评:此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.(2015春•泰兴市期末)已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个考点:三角形三边关系.分析:由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c ﹣b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.解答:解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.点评:此题考查了三角形的三边关系.此题难度较大,解题的关键是根据三角形的三边关系与a,b,c的长都是整数,且a≤b<c,b=5去分析求解,得到a=2,3,4,5.二、填空题:(本大题共10小题,每小题2分,共20分)7.(2015春•泰兴市期末)一个n边形的内角和是540°,那么n= 5 .考点:多边形内角与外角.分析:根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.解答:解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.点评:本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.8.(2015春•泰兴市期末)命题“若a>0,b>0,则a+b>0”这个命题是真命题(填“真”或“假”).考点:命题与定理.专题:常规题型.分析:根据两个正数的和依然为正数可判断命题为真命题.解答:解:若a>0,b>0,则a+b>0”,这个命题是真命题.故答案为:真.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(2015春•泰兴市期末)已知二元一次方程x﹣y=1,若y的值大于﹣1,则x的取值范围是x>0 .考点:解一元一次不等式.分析:先表示出y,再由y>﹣1,可得关于x的方程,解出即可.解答:解:由题意得,y=x﹣1,∵y>﹣1,∴x﹣1>﹣1,解得:x>0.故答案为:x>0.点评:本题考查了解一元一次不等式的知识,解答本题的关键是得出y的表达式.10.(2015春•泰兴市期末)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为2 .考点:多项式乘多项式.分析:根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.解答:解:(x+k)(x﹣2),=x2﹣2x+kx﹣﹣k,=x2+(k﹣2)x﹣2k,∵不含有x的一次项,∴k﹣2=0,解得k=2.故答案为:2.点评:本题考查了多项式乘多项式的运算法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.11.(2015春•泰兴市期末)已知m x=1,m y=2,则m x+2y= 4 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先求出(m y)2=22=4,再利用m x+2y=m x•(m y)2求解.解答:解:∵m y=2,∴(m y)2=22=4,∵m x=1,∴m x+2y=m x•(m y)2=1×4=4故答案为:4.点评:本题考查了积的乘方的性质,熟记运算性质并理清指数的变化是解题的关键.12.(2015春•泰兴市期末)关于x、y的方程组,则x+y的值为﹣1 .考点:解二元一次方程组.分析:方程组的两个方程相加,再两边都除以3,即可求出答案.解答:解:,①+②得:3x+3y=﹣3,x+y=﹣1,故答案为:﹣1.点评:本题考查了解二元一次方程组的应用,主要考查学生能否选择适当的方法求出结果,题目比较好,难度适中.13.(2015春•泰兴市期末)如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2= 240 °.考点:多边形内角与外角;三角形内角和定理.分析:利用∠1、∠2是△ADE的外角,利用外角性质,可得∠1=∠ADE+∠A,∠2=∠AED+∠A,利用等式性质可求∠1+∠2的值.解答:解:∵∠1、∠2是△ADE的外角,∴∠1=∠ADE+∠A,∠2=∠AED+∠A,∴∠1+∠2=∠ADE+∠A+∠AED+∠A,又∵∠ADE+∠A+∠AED=180°,∴∠1+∠2=180°+60°=240°.故答案为:240.点评:本题考查了了三角形内角和定理和三角形外角的性质,注意掌握三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.14.(2015春•泰兴市期末)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组是.考点:由实际问题抽象出二元一次方程组.分析:根据题意可得等量关系:①乙的弹珠数+甲的弹珠数×=10;②甲的弹珠数+乙的弹珠数×=10,根据等量关系列出方程组即可.解答:解:设乙的弹珠数为x颗,甲的弹珠数为y颗,由题意得:,故答案为:.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.15.(2015春•泰兴市期末)若关于x的不等式组的解集是x>m,则m的取值范围是m≥2 .考点:不等式的解集.分析:根据不等式组的解集,可判断m与2的大小.解答:解:因为不等式组的解集是x>m,根据同大取较大原则可知:2<m,当m=2时,不等式组的解集也是x>m,所以m≥2.故答案为:m≥2.点评:主要考查了不等式的运用.根据题意分别求出对应的值,利用不等关系求解.16.(2015春•泰兴市期末)我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是1089 .考点:二元一次方程组的应用.分析:根据“回文数”的定义进而分析得出“绿”=1,“山”=9或“绿”=0,“山”=0,即可得出符合题意的答案.解答:解:四位数×9还是四位数,说明有两种情况:“绿”=1,“山”=9或“绿”=0,“山”=0①“绿”=0,且“山”=0;不符合题意,②“绿”=1,且“山”=9三位数×9还是三位数,则说明“水”=0或1,代入可得1089为四位数.故答案为:1089.点评:此题主要考查了推理与论证,得出数字之间变化规律进而分析得出是解题关键.三、解答题(本大题共10小题,共68分,应写出必要的计算过程、推理步骤或文字说明)17.(8分)(2015春•泰兴市期末)计算(1)(2x+3y)(4x+7y);(2)(﹣3a+2b)(﹣3a﹣2b);(3)(﹣3x+2)2;(4)﹣3101×(﹣)100﹣(π﹣3)0+(﹣)﹣2.考点:整式的混合运算.专题:计算题.分析:(1)原式利用多项式乘以多项式法则计算,合并即可得到结果;(2)原式利用平方差公式计算即可得到结果;(3)原式利用完全平方公式展开得到结果;(4)原式第一项逆用积的乘方运算法则计算,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:(1)原式=8x2+14xy+12xy+21y2=8x2+26xy+21y2;(2)原式=9a2﹣4b2;(3)原式=9x2﹣12x+4;(4)原式=﹣3﹣1+4=0.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015春•泰兴市期末)因式分解(1)16﹣4x2;(2)4ab2﹣4a2b﹣b3.考点:提公因式法与公式法的综合运用.分析:(1)首先提取公因式4,进而利用平方差公式分解因式得出即可;(2)首先提取公因式﹣b,进而利用完全平方公式分解因式得出即可.解答:解:(1)16﹣4x2=4(4﹣x2)=4(2+x)(2﹣x);(2)4ab2﹣4a2b﹣b3=﹣b(﹣2ab+4a2+b2)=﹣b(2a﹣b)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.19.(6分)(2015春•泰兴市期末)解二元一次方程组(1);(2).考点:解二元一次方程组.专题:计算题.分析:两方程组利用加减消元法求出解即可.解答:解:(1),②﹣①×2得:x=6,将x=6代入①得:y=﹣3,则方程组的解为;(2)方程组整理得:,①﹣②得:y=0,将y=0代入①得:x=,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(6分)(2015春•泰兴市期末)解不等式(组)(1)8x﹣5≥x+16;(2).考点:解一元一次不等式组;解一元一次不等式.分析:(1)首先移项,然后合并同类项,系数化成1即可求解;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)移项,得8x﹣x≥16+5,合并同类项,得:7x≥21,系数化成1得:x≥3;(2),解①得:x<11,解②得:x>10,则不等式组的解集是:10<x<11.点评:本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.(6分)(2015春•泰兴市期末)如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°,求△BDE各内角的度数.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:利用三角形的外角性质,先求∠ABD,再根据角平分线的定义,可得∠DBC=∠ABD,运用平行线的性质得∠BDE的度数,根据三角形内角和定理可求∠BED的度数.解答:解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是∠ABC的角平分线,∴∠DBC=∠EBD=15°,∵DE∥BC,∴∠BDE=∠DBC=15°;∴∠BED=180°﹣∠EBD﹣∠EDB=150°.点评:本题综合考查了平行线的性质及三角形内角与外角的关系,三角形内角和定理.22.(6分)(2015春•泰兴市期末)2014年巴西世界杯正如火如荼的进行着,带给了全世界的球迷25个不眠之夜,足球比赛规则规定:每队胜一场得3分,平一场得1分,负一场得0分.(1)若夺冠热门巴西队如愿登顶,手捧大力神杯,在本届世界杯上巴西队共比赛7场,并且保持不败,共得分17分,求巴西队赢了几场比赛?(2)若A、B两队一共比赛了10场,A队保持不败且得分超过22分,A队至少胜多少场?考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)表示出巴西队的胜利场数和平局场数,进而根据题意得出等式即可;(2)利用已知表示出A队胜y场,进而得出不等式求出即可.解答:解:(1)设巴西队赢了x场比赛,则平了(7﹣x)场,根据题意可得:3x+7﹣x=17解得:x=5,答:巴西队赢了5场比赛;(2)设A队胜y场,根据题意可得:3y+(10﹣y)>22,解得:y>6,答:A队至少胜7场比赛.点评:此题主要考查了一元一次方程的应用和一元一次不等式的应用,正确理解题意得出等量关系是解题关键.23.(6分)(2015春•泰兴市期末)求证:平行于同一条直线的两条直线平行.考点:平行线的判定.专题:证明题.分析:先写出已知、求证,作直线AB交a于A点,交b于B点,交c于C点,根据平行线的性质由a∥c得∠1=∠2,由b∥c得∠2=∠3,则∠1=∠3,然后根据平行线的判定得到a∥b.解答:已知:a∥c,b∥c.求证:a∥b.证明:作直线AB交a于A点,交b于B点,交c于C点,如图,∵a∥c,∴∠1=∠2,∵b∥c,∴∠2=∠3,∴∠1=∠3,∴a∥b.点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.也考查了平行线的性质.24.(8分)(2015春•泰兴市期末)已知,关于x,y的方程组的解满足x>y>0.(1)求a的取值范围;(2)化简|a|﹣|2﹣a|.考点:解一元一次不等式组;二元一次方程组的解.分析:(1)首先解不等式组,利用a表示出x,y的值,然后根据x>y>0,列不等式组求得a的范围;(2)根据a的范围,以及绝对值的性质即可化简.解答:解:(1)解不等式得:,∵x>y>0,∴,解得:a>2;(2)|a|﹣|2﹣a|=a﹣(a﹣2)=2.点评:本题考查了不等式组的解法与二元一次方程组的解法,正确解方程组是关键.25.(6分)(2015春•泰兴市期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15 ;(2)利用上述规律直接写出27= 128 ;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11 的积.(4)由此你可以写出115= 161051 .(5)由第9 行可写出118= 214358881 .考点:整式的混合运算.专题:规律型.分析:观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.解答:解:(1)(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6,即a2b4项的系数是15,故答案为:15;(2)27=128,故答案为:128;(3)11,121=11×11,1331=121×11,14641=1331×11,15101051=14641×11,故答案为:11;(4)115=(10+1)5=105+5×104×1+10×103×12+10×102×13+5×10×14+15=161051,故答案为:161051;(5)第9行可写出118,118=(10+1)8=108+8×107×1+28×106×12+56×105×13+70×104×14+56×103×15+28×102×16+8×10×17+18=214358881,故答案为:9,214358881.点评:本题考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.26.(10分)(2015春•泰兴市期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A 在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.考点:坐标与图形性质;垂线;三角形的面积.=CD•OC,分析:(1)因为△BCD的高为OC,所以S△BCD(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.=CD•OC=×3×2=3.解答:解:(1)S△BCD(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.点评:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.。