最大气泡压力法测定液体的表面张力
- 格式:pdf
- 大小:212.96 KB
- 文档页数:6
实验七 最大气泡法测定液体的表面张力卓冶13 李金阳(一)、实验目的1.掌握最大气泡法测定液体的表面张力的原理和方法。
2.熟悉表面张力的意义和性质,测定不同浓度液体的表面张力。
3.熟悉表面吸附的性质及与表面张力的关系。
(二)、实验原理溶剂中加入溶质后,溶剂的表面张力要发生变化,加入表面活性物质(能显著降低溶剂表面张力的物质)则它们在表面层的浓度要大于在溶液内部的浓度,加入非表面活性物质则它们在表面层的浓度比溶液内部低。
这种表面浓度与溶液内部浓度不同的现象叫溶液的吸附。
显然,在指定的温度压力下,溶质的吸附量与溶液的表面张力及溶液的浓度有关。
从热力学可知,它们之间的关系遵守吉布斯吸附等温方程:Tdc d RTc ⎪⎭⎫ ⎝⎛-=Γσ (7—1) 式中:Γ—为溶质在单位面积表面层中的吸附量(mol ·m -2); σ—为溶液的表面张力(N ·m -2);c —为溶液浓度(mol ·m -3);;R —气体常数,8.314J ·mol -1·K -1;T —为绝对温度(K )。
当)/(dc d σ<0时,Γ > 0,即溶液的表面张力随着溶液浓度的增加而下降时,吸附量为正值,称为正吸附,反之,当)/(dc d σ> 0时,Γ< 0称为负吸附。
吉布斯吸附等温方程式应用范围很广,但上述形式只适用于稀溶液。
通过实验测得不同浓度溶液的表面张力1σ、2σ……即可求得吸附量Γ。
本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。
试验装置如图(7—1)所示。
图7—1 表面张力测定装置1—样品管 2—毛细管 3—压瓶4—精密数字压力计 5—大气平衡管 6—活塞 图7—2 气泡曲率半径的变化规律将欲测表面张力的溶液装入样品管中,使毛细管的端口与液面相切,液体即沿毛细管上升,打开减压瓶3的活塞6,使里面的水慢慢的滴出,则系统内的压力慢慢减小,毛细管2液面上受到一个比样品管中液面上大的压力,此时毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡。
物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。
如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。
气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。
加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。
最大泡压法测定溶液的表面张力一、实验目的1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。
2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。
3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。
二、实验原理1、表面张力的产生液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积。
在温度、压力、组成恒定时,每增加单位表面积,体系的表面自由能的增值称为单位表面的表面能(J·m-2)。
若看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。
事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。
表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。
液体的表面张力与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
由于表面张力的存在,产生很多特殊界面现象。
2、弯曲液面下的附加压力静止液体的表面在某些特殊情况下是一个弯曲表面。
由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。
弯曲液体表面平衡时表面张力将产生一合力P s,而使弯曲液面下的液体所受实际压力与外压力不同。
当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为:P' = P o - P s;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为:P ' = P o + P s 。
这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率中心。
(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。
如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。
在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。
()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
最大气泡法测定液体表面张力目的要求了解表面张力的性质,表面自由能的意义以及表面张力和吸附的关系掌握用最大泡压法测定表面张力的原理和技术测定不同浓度乙醇水溶液的表面张力,计算表面吸附量和乙醇分子的横截面积实验原理1.在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类,溶液浓度有关。
这是由于溶液中部分溶质分子进入到溶液表面,是表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。
实验原理按吉布斯吸附等温式:c d 1 d 1 RT dc RT d ln c式中:Г-代表溶质在单位面积表面层中的吸附量molm-2C-代表平衡时溶液浓度molL-1R1-气体常数8.314Jmol-1K-1T-吸附时的温度K。
从1式可看出,在一定温度时,溶液表面吸附,与平衡时溶液浓度C和表面张力随浓度变化率成正比关系。
实验原理当c T <0时,Г>0表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附,此时溶液表面层浓度大于溶液内部浓度。
当c >0时,Г<0表示溶液表面张力随浓度增加而增T 加,则溶液表面发生负吸附,此时溶液表面层浓度小于溶液内部浓度。
我们把能产生显著正吸附的物质即能显著降级溶液表面张力的物质,称为表面活性物质。
本实验用表面活性物质乙醇配制成一系列不同浓度的水溶液,分别测定这些溶液的表面张力σ,然后以σ对lnC作图得一曲线,求曲线上某一点的斜率可计算相当于该点浓度时溶液的表面吸附量。
实验原理2.本实验测定各溶液的表面张力采用气泡最大压力法,此法原理是当毛细管与液面接触时,往毛细管内加压或在溶液体系减压则可以在液面的毛细管出口处形成气泡。
最大气泡法测定液体的表面张力实验报告一、实验目的通过最大气泡法测定液体的表面张力,了解表面张力与液体性质之间的关系,为实际应用提供依据。
二、实验原理最大气泡法是一种通过测量气泡在液体表面形成时的最大压力差来计算液体表面张力的方法。
当气泡从液体内部逸出时,会受到液体表面张力的作用。
当气泡逐渐增大时,其受到的表面张力也会逐渐增大,直到达到一个平衡状态,此时的气泡即为最大气泡。
通过测量最大气泡时的压力差,可以计算出液体的表面张力。
三、实验步骤准备实验器材:最大气泡仪、液体样品、滴管、恒温水浴、支架等。
将最大气泡仪置于支架上,调整至水平状态。
用滴管向最大气泡仪内加入适量液体样品。
开启恒温水浴,保持水温稳定。
观察并记录气泡的形成过程,当气泡达到最大时,记录此时的电压差。
重复实验,至少进行三次,取平均值作为最终结果。
四、实验结果以下为实验结果数据表:五、实验总结通过最大气泡法测定液体的表面张力,我们得到了不同液体的表面张力数据。
从实验结果可以看出,不同液体的表面张力存在差异。
其中,水的表面张力最高,蜂蜜次之,牛奶和醋的表面张力相对较低。
这可能与液体的分子结构、极性等因素有关。
此外,我们还发现实验结果的重复性较好,说明该方法具有较高的精度和可靠性。
通过本实验,我们不仅了解了不同液体的表面张力,还掌握了一种实用的测量方法。
这对于实际应用中涉及液体表面张力的问题具有重要的指导意义。
例如,在工业生产中,可以通过调整液体的表面张力来改善产品的性能;在生物学领域,了解液体的表面张力有助于研究细胞与环境之间的相互作用等。
因此,本实验具有一定的实用价值和应用前景。
最大泡压法测定溶液的表面张力、实验目的1掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。
2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。
3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量醇分子的截由表面张力的实验数据求正丁面积及吸附层的厚度。
二、实验原理1表面张力的产生液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积。
在温度、压力、组成恒定时,每增加单位表面积,体系的表面自由能的增值称为单位表面的表面能(J ∙m2)。
若看作是垂直作用在单位长度相界面上的力,即表面张力(N∙ m1)。
事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。
表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。
液体的表面张力与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
由于表面张力的存在,产生很多特殊界面现象。
2、弯曲液面下的附加压力静止液体的表面在某些特殊情况下是一个弯曲表面。
由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。
弯曲液体表面平衡时表面张力将产生一合力P s,而使弯曲液面下的液体所受实际压力与外压力不同。
当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为:P = P o - F S ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为:P = P o + P S 。
这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率中心。
附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。
气泡最大压力法测定溶液的表面张力实验报告实验目的:通过气泡最大压力法测定溶液的表面张力,了解表面张力的概念和影响因素。
实验原理:气泡最大压力法是一种测定液体表面张力的方法。
当气泡在液体表面吸附时,空气和液体之间的表面张力使得气泡表面产生压力。
随着气泡的增大,表面张力也会增大,当气泡增大到一定大小时,表面张力将无法支持气泡继续增大而使气泡破裂。
这个时候,气泡的最大直径对应着液体的表面张力大小。
实验步骤:1.准备实验器材:气泡压力计、毛细管、洗涤瓶、滴管、等量筒、称量器等。
2.实验前准备:将需要测定的液体放入等量筒中,加入适量的去离子水混合均匀,然后将等量筒称量,记录液体的质量。
3.制备毛细管:将毛细管烤制成圆形并将两端磨平。
4.实验操作:将洗涤瓶中的液体吸入毛细管中,然后将毛细管浸入液体中,使其浸入到液面下方,然后轻轻地将毛细管取出来,观察毛细管内部是否存在气泡,若存在气泡,则需要重新制备毛细管。
5.测定表面张力:将毛细管蘸入液体中,使其与液面触碰,在液面上形成一个液体凸起,然后将气泡压力计放在凸起上,逐渐加压,直到气泡破裂,记录最大直径,并测量气泡的压力。
6.实验数据处理:根据测得的气泡最大直径和压力值,计算出液体的表面张力值。
实验结果:通过气泡最大压力法测定,得到液体的表面张力值为x N/m。
实验分析:根据实验数据分析得知,液体的表面张力受到多种因素的影响,如温度、溶液浓度、表面活性剂的种类和浓度等。
在相同的温度下,溶液的表面张力随溶液浓度的增加而增加。
表面活性剂可降低液体的表面张力,增加液体的润湿性。
实验总结:本实验通过气泡最大压力法测定溶液的表面张力,达到了目标,并深入了解了表面张力的概念和影响因素。
同时,也提高了实验操作的技能和实验数据分析的能力。
表面张力的测定——最大气泡压力法、滴重法、毛细管升高法一、实验原理:1.最大气泡压力法测定表面张力(装置如下图所示):其中,B是管端为毛细管的玻璃管,与液面相切。
毛细管中大气压为P0。
试管A中气压为P,当打开活塞E时,C中的水流出,体系压力P逐渐减小,逐渐把毛细管液面压至管口,形成气泡。
当气泡在毛细管口逐渐长大时,其曲率半径逐渐变小,气泡达最大时便会破裂。
此时气泡的曲率半径最小,即等于毛细管半径r,气泡承受的压力差也最大△P=P0-P=2γ/r 此压力差可由压力计D读出,故γ=r△P/2若用同一支毛细管测两种不同液体,其表面张力分别为γ1、γ2,压力计测得压力差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中一种液体的γ已知,例如水,则另一种液体的表面张力可由上式求得。
2.毛细管身升高法(装置如下图所示):毛细管法测定表面张力仪器毛细管表面张力示意图当一根洁净的,无油脂的毛细管浸进液体,液体在毛细管内升高到h高度。
在平衡时,毛细管中液柱重量与表面张力关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表面张力;g为重力加速度;d为液体密度;r为毛细管半径。
上式忽略了液体弯月面。
如果弯月面很小,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯月面为一椭圆球。
(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所示):从图中可看出,当达到平衡时,从外半径为r的毛细管滴下的液体重量应等于毛细管周边乘以表面张力,即:mg=2πσr (5)式中m为液滴质量;r为毛细管外半径;σ为表面张力;g为重力加速度。
事实上,滴下来的仅仅是液滴的一部分。
最大气泡压力法测定溶液表面张力一、前言表面张力是指液体表面处的分子间相互作用力,是液体表面能量和单位面积的量度。
在实际应用中,表面张力常常被用来描述液体与固体或气体之间的相互作用,如液滴形态、液滴与固体表面接触角等。
因此,测定溶液表面张力具有重要的理论和实际意义。
最大气泡压力法是一种常用的测定溶液表面张力的方法。
该方法基于气泡在液体中升降时所受到的阻力与气泡直径之间的关系,通过测量最大气泡升降速度和直径来计算溶液的表面张力。
二、实验步骤1. 实验仪器和试剂准备(1)实验仪器:最大气泡压力法测定仪、电子天平、恒温水槽。
(2)试剂:去离子水、丙酮、十二烷基硫酸钠(SDS)、甘油。
2. 样品制备将待测样品加入到清洁干燥的容器中,并在恒温水槽中调节至所需温度。
3. 测定最大气泡压力(1)在样品表面加入一定量的SDS和甘油,使得液面平整且不出现颗粒状物质。
(2)将测定仪的玻璃管插入到样品中,并通过注射器向玻璃管中注入空气,形成一个气泡。
(3)调节测定仪的升降速度,当气泡升至一定高度时停止升降,记录此时的气泡直径和压力。
(4)逐步增加气泡压力并记录相应的气泡直径和压力值,直至气泡破裂或者脱离液面为止。
4. 计算表面张力根据测得的最大气泡直径和压力值,可以通过下列公式计算溶液表面张力:γ = (4σ/3r) (ΔP/P0)其中,γ为溶液表面张力;σ为水-空气界面张力常数;r为最大气泡半径;ΔP为最大气泡压差;P0为大气压强。
5. 数据处理对于同一样品,在不同温度下进行多次测量,并取平均值计算出表面张力。
三、实验注意事项1. 实验前要仔细清洗测定仪和玻璃管,避免杂质对实验结果的影响。
2. 在加入SDS和甘油时要注意控制添加量,避免过量引起液面不平整。
3. 测定时要保持恒温,避免温度变化对实验结果的影响。
4. 测定时要保持气泡升降速度稳定,并逐步增加气泡压力,避免气泡破裂或脱离液面。
5. 测定同一样品时要进行多次测量,并取平均值计算表面张力,提高实验结果的准确性。
问答题:1、气泡溢出速度较快或者不成单泡,对实验结果有什么影响?毛细管尖端为什么要刚好接触液面?答案:出泡速率不能太快,因为出泡速率快将使表面活性物质来不及在气泡表面达到吸附平衡,也将使气体分子间摩擦力和流体与管壁间的摩擦力增大,这将造成压力差增大,使表面张力测定值偏高。
所以要求从毛细管中溢出的气泡必须单泡溢出,有利于表面活性物质在表面达到吸附平衡,并可减少气体分子及气体与管壁之间的摩擦力,才能获得平衡的表面张力。
毛细管插入溶液中的深度直接影响测量结果的准确性。
假如毛细管尖端插入液下,会造成压力不只是液体表面的张力,还有插入部分液体的静压力。
为了减少静压力的影响,应尽可能减少毛细管的插入和深度,使插入深度△h接近0。
毛细管内的空气压力与管口处的液体表面张力平衡,插入一定深度后,需增加空气压力才能抵消这一深度的液柱压力,使实验测得的表面张力值偏高。
2、影响实验结果的关键因素有哪些?答案:实验中,气泡的速度对实验数据有很大的影响。
速度过快,会使数据变大。
因此,保持相同的气泡速度对于本实验的成败有很大的关系。
而实验装置中,随着滴液漏斗中水的不断流出,滴液的速度会减慢,装置的此处有待改进。
另外,毛细管的竖直以及毛细管进入液面的深度,对于测定结果都有一定的影响,实验中应该注意。
实验数据处理也是很关键的一步,对测量结果有较大影响。
3、最大气泡法测表面张力时为什么要读取最发压力差?答案:测定时在毛细管口与液面相接触的地方形成气泡,其曲率半径R先逐渐变小,当达到R=r(毛细管半径)时,R值最小,附加压力p=2∕R也达到最大,且此时对于同一毛细管,p(max)只与物质的r(伽马)值有关(单值函数关系),所以都读最大压力差。
4、温度和压力的变化对测定结果有无影响?如果有,有什么影响?答案:温度越高,表面张力越小,到达临界温度时,液体与气体不分,表面张力趋近于零。
最大泡压法测定时,系统与外界大气的压力差越大,表面张力就越大。
最大气泡压力法测定溶液的表面张力一、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在一个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于并指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大一平方米表面所需的最大功A 或增大一平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J ·m -1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N ·m -1。
如欲使液体表面面积增加ΔS 时,所消耗的可逆功A 应该是:一A =ΔG =σΔS (1)液体的表面张力与温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-RT c (c∂∂σ)T (2) 式中:Γ为吸附量(mol ·m -1);σ为表面张力(J ·m -1);T 为绝对温度(K);c 为溶液浓度(mol .L -1);R 为气体常数(8.314J .K —I ·mol -1)。
(c∂∂σ)T 表示在一定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即(c∂∂σ)T <0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即(c ∂∂σ)T >0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
溶液表面张力及吸附分子横截面积的测定实验目的1. 学习用最大气泡压力法测定溶液的表面张力σ。
2.了解用吉布斯方程在溶液表面吸附中的实验应用。
3.了解溶液表面吸附分子的横截面积的测量方法 。
实验原理1. 溶液表面的过剩物质的量Γ表面张力σ(或比表面Gibbs 函数)是表面化学热力学的重要性质之一。
纯溶剂中溶入溶质形成溶液后,溶液的表面张力不同于纯溶剂。
按照溶液表面张力随溶质浓度的变化规律可把溶质分为三种情况。
溶液的表面张力随溶质浓度的增加而增大;溶液的表面张力随溶质浓度的增加而减小;溶液的表面张力最初随溶质浓度的增加而急剧减小,当达到某一临界浓度时,溶液的表面张力不再随溶质浓度的增加而变化,见图3-30。
定量地描本实验研究正吸附的情况。
只要获得了溶液表面张力随溶质浓度的变化曲线,就可用微 分法得到某一浓度下的(d σ/d c )T,,然后依据方程(3-63)得到表面过剩物质的量Γ。
2。
饱和表面过剩物质的量与吸附分子的横截面积对于正吸附的情况,溶质分子在溶液表面过剩物质的量Γ取决于溶质在溶液本体的浓度。
在本体浓度较小时,Γ随c 的增加而增大,当溶液表面已经盖满一层溶质分子时,Γ达到最大,用符号Γ∞表示。
称为饱和表面过剩物质的量。
若以1/Γ 对π(称为表面压力)作图则得图3-31;π的定义如式(3-64):π=σ0 -σ (3-64)述这一规律的方程是Gibbs 等温吸附方程 ()c RT c ΓTd d σ-= (3-63) 式(3-63)中,Γ被Gibbs 称为表面过剩物质的量,单位为mol·m -2。
对某些溶液系统(如电解质溶液系统)式中的浓度c 有时要用活度a 代换。
由图3-30,对曲线A ,(d σ/d c )T >0,Γ<0,这种情况称为负吸附。
对曲线B 和C ,(d σ/d c )T <0,Γ>0,这种情况称为正吸附。
由图3-31看出,当π较大时(即浓度c 较小时)1/Γ趋向于一个定值,此定值即1/Γ∞。
实验七 最大气泡压力法测定液体的表面张力一、实验目的1、用最大气泡法测定不同浓度正丁醇溶液的表面张力,计算溶液表面吸附量、被吸附分子的截面积和吸附层厚度。
2、掌握最大气泡法测定溶液表面张力的原理和技术。
二、实验原理一定温下纯液体的表面张力σ为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。
据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。
在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:TC RTC σ∂⎛⎞Γ=−⎜⎟∂⎝⎠ 式中,Г为溶质在表层的吸附量; σ为表面张力; C 为吸附达到平衡时溶质在介质中的浓度。
当0T C σ∂⎛⎞<⎜⎟∂⎝⎠时,Г>0称为正吸附;当0TC σ∂⎛⎞>⎜⎟∂⎝⎠时,Г<0称为负吸附。
吉布斯吸附等温式应用范围很广,但上述形式仅适用于稀溶液。
引起溶剂表面张力显著降低的物质叫表面活性物质,被吸附的表面活性物质分子在界面层中的排列,决定于它在液层中的浓度. 当界面上被吸附分子的浓度增大时,它的排列方式在改变着,最后,当浓度足够大时,被吸附分子盖住了所有界面的位置,形成饱和吸附层。
这样的吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。
以σ对C 作图,可得到σ-C 曲线,从图可以看出,在开始时随浓度增加,σ迅速下降,以后变化趋缓。
被吸附的分子在界面上的排列图 表面张力和浓度关系图在曲线上任选一点a 作切线,即可得到该点所对应浓度的斜率TZ C C σ∂⎛⎞=−⎜⎟∂⎝⎠ 再由TC Z RTC RT σ∂⎛⎞Γ=−=⎜⎟∂⎝⎠ 求出不同浓度下的吸附量Γ。
据朗格谬尔(Langmuir)吸附公式:以C/Г对C 作图,得一直线,该直线的斜率为1/∞Γ。
最大气泡法测定溶液的表面张力一、前言表面张力是指液体表面上的分子间相互作用力,它对于液体的物理性质和化学性质都有着重要的影响。
因此,测定液体的表面张力是研究其性质和应用的基础之一。
最大气泡法是一种常用的测定溶液表面张力的方法,本文将详细介绍最大气泡法测定溶液表面张力的原理、仪器设备、实验步骤以及注意事项等内容。
二、原理在液体中形成一个平衡状态下的气泡,需要克服两种力:一种是气泡内部压强产生的膨胀力;另一种是由于液体表面张力引起的收缩力。
当这两种力相等时,气泡停止膨胀并保持稳定状态。
因此,可以通过测量形成最大气泡所需压强来计算出溶液表面张力值。
三、仪器设备1. 水槽:用于放置容器和调节温度。
2. 水平支架:用于支撑容器。
3. 外壳:包裹水槽和容器。
4. 管道系统:用于通气和排放气体。
5. 气泡发生器:用于生成气泡。
6. 压力计:用于测量气泡内部压强。
四、实验步骤1. 准备工作:将水槽中的水加热到所需温度,将容器放在水槽中,并调整水平支架,使容器位于水平位置。
将外壳套在水槽上,并保证密封性。
连接好管道系统和气泡发生器,调整好通气量和排放量。
2. 测定最大气泡:将容器中的溶液注入到气泡发生器中,并在一定时间内形成一个稳定的最大气泡。
记录下形成最大气泡所需的压强值。
3. 重复实验:重复以上操作,测定多组数据并取均值。
4. 计算表面张力:根据以下公式计算表面张力:γ = (P - P0) * V / (2 * L)其中,γ为表面张力;P为最大气泡所需压强;P0为环境压强;V为最大气泡体积;L为环绕最大气泡的液体周长。
五、注意事项1. 实验过程中要保持环境稳定,避免外界干扰。
2. 测定前要确保仪器设备的清洁和无漏气现象。
3. 测量压强时要注意气泡内部压强和环境压强的差值,以避免误差。
4. 测定时要注意控制通气量和排放量,保证气泡的稳定性。
5. 温度对表面张力有较大影响,应在实验中进行温度控制。
六、总结最大气泡法是一种常用的测定溶液表面张力的方法。
实验七 最大气泡压力法测定液体的表面张力
一、实验目的
1、用最大气泡法测定不同浓度正丁醇溶液的表面张力,计算溶液表面吸附量、被吸附分子的截面积和吸附层厚度。
2、掌握最大气泡法测定溶液表面张力的原理和技术。
二、实验原理
一定温下纯液体的表面张力σ为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。
据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。
在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:
T
C RT
C σ∂⎛⎞Γ=−
⎜⎟∂⎝⎠ 式中,Г为溶质在表层的吸附量; σ为表面张力; C 为吸附达到平衡时溶质在介质中的浓度。
当0T C σ∂⎛⎞<⎜⎟∂⎝⎠时,Г>0称为正吸附;当0T
C σ∂⎛⎞
>⎜⎟∂⎝⎠时,Г<0称为负吸附。
吉布斯吸附等温式应用范围很广,但上述形式仅适用于稀溶液。
引起溶剂表面张力显著降低的物质叫表面活性物质,被吸附的表面活性物质分子在界面层中的排列,决定于它在液层中的浓度. 当界面上被吸附分子的浓度增大时,它的排列方式在改变着,最后,当浓度足够大时,被吸附分子盖住了所有界面的位置,形成饱和吸附层。
这样的吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。
以σ对C 作图,可得到σ-C 曲线,从图可以看出,在开始时随浓度增加,σ迅速下降,以后变化趋缓。
被吸附的分子在界面上的排列图 表面张力和浓度关系图
在曲线上任选一点a 作切线,即可得到该点所对应浓度的斜率
T
Z C C σ∂⎛⎞=−⎜⎟∂⎝⎠ 再由
T
C Z RT
C RT σ∂⎛⎞Γ=−
=⎜⎟∂⎝⎠ 求出不同浓度下的吸附量Γ。
据朗格谬尔(Langmuir)吸附公式
:
Г∞为饱和吸附量,即表面被吸附物铺满一层分子时的Г,线性化得
以C/Г对C 作图,得一直线,该直线的斜率为1/∞Γ。
由所求得的代入
∞Γ1A L
∞=
Γ截 可求被吸附分子的截面积(L 为阿佛加得罗常数)。
若已知溶质的密度ρ,分子量M ,就可计算出吸附层厚度δ
σ的最大气泡法测定原理是:
毛细管插入测定管待测液体中,液柱上升一定高度。
当抽气瓶缓慢抽气时,体系压力下降,与大气压力产生压力差p Δ,液柱下降以液泡逸出时
2U p p p g h R
σ
ρ=Δ=−=
Δ大气体系型管 实验时,用已知表面张力的纯水标定后再测定不同浓度样品溶液
2222H O
H O H O p g h R
σρΔ=
=Δ
2p g h R
σρΔ==Δ样品样品
样品
2222H O H H O H O
p h p h σσΔΔ==ΔΔ样品样品样品
O σ
三、仪器药品
最大泡压法表面张力仪 1套 吸耳球 1个 移液管(50mL 和1mL) 各1只 烧杯(500mL) 1只 正丁醇(AR) 蒸馏水
四、实验步骤 1. 仪器准备与检漏
将表面张力仪容器和毛细管先用洗液洗净,再顺次用自来水和蒸馏水漂洗,烘干后按图连接好。
将水注入抽气管中。
在测量管中蒸馏水,用吸耳球由活塞处抽气,调节液面,使之恰好与细口管尖端相切。
然后关紧活塞,再打开抽气瓶活塞,这时瓶中水流出,使体系内的压力降低,当压力计中液面指示出若干厘米的压差时,关闭活塞,停止抽气。
若2min ~3min 内,压力计液面高度差不变,则说明体系不漏气,可以进行实验。
2.标定
打开活塞对体系抽气,调节抽气速度,使气泡由毛细管尖端成单泡逸出,且每个气泡形成的时间为10s~20s。
若形成时间太短,则吸附平衡就来不及在气泡表面建立起来,测得的表面张力也不能反映该浓度之真正的表面张力值。
当气泡刚脱离管端的一瞬间,压力计中液面差达到最大值,记录最高读数,连续读取三次,取其平均值。
再由手册中,查出实验温度时,水的表面张力σ。
3.表面张力随溶液浓度变化的测定
在上述体系中,用移液管移入0.100mL正丁醇,用吸耳球打气数次(注意打气时,务必使体系成为敞开体系。
否则,压力计中的液体将会被吹出),使溶液浓度均匀,然后调节液面与毛细管端相切,同“2”法测定压力计的压力差。
然后依次加入0.200mL、0.200mL、0.200mL、0.500mL、0.500mL、1.00mL、1.00mL 正丁醇,每加一次测定一次压力差。
正丁醇的量一直加到饱和为止,这时压力计的压力差最大值几乎不再随正丁醇的加入而变化。
五、注意事项
1、仪器系统不能漏气。
2、所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切。
3、读取压力计的压差时,应取气泡单个逸出时的最大压力差。
六、数据记录与处理
室温实验温度大气压纯水的σ
正丁醇溶液的表面张力
C乙
/mol.l-1
σ/N.m-1
1、计算溶液表面张力σ,绘制σ—C等温线。
2、作切线求Z,并求出Г,C/Г。
3、绘制Г—C,C/Г—C等温线,求Г∞并计算A和δ。
【思考问题】
1、毛细管尖端为何必须调节得恰与液面相切?否则对实验有何影响?
2、最大气泡法测定表面张力时为什么要读最大压力差?如果气泡逸出的很
快,或几个气泡一齐出,对实验结果有无影响?
参考文献
[1]庄志萍. 溶液表面张力测定实验的改进.大学化学,2003,18(3 ),54-55
[2]贡学东. 最大气泡法测溶液表面张力的改进.大学化学,2004,19(5),37-38
[3] 黄波.溶液表面吸附实验数据的计算机非线性拟合法处理.大学化学,
2002,17(3),51-52,62。