最大气泡法测表面张力
- 格式:ppt
- 大小:2.22 MB
- 文档页数:13
实验十六最大气泡法液体表面张力的测定Ⅰ、实验目的1.熟悉表面张力仪的构造和使用方法。
2.学会测定乙醇在室温时的表面张力。
Ⅱ、实验原理将一根毛细管插在待测液的表面,如图1,用抽气法逐渐减小毛细管外液面的压力,由于压力差的存在,在毛细管端会形成气泡。
此时附加压力(△P)与表面张力(σ)成正比,与气泡的曲率半径(R)成反比。
△P=2σ/R (1)当气泡开始形成时,曲率半径很大,随着气泡的形成R减少,当曲率半径R与毛细管半径r2相等时,曲率半径为最小值,△P为最大值。
随着R又不断变大,附加压力变小,直到气泡逸出。
测定时,△P可以从酒精压力计中两液面的高度差求得:△P=ρ〃g〃△h (2)式中ρ—酒精密度,g—重力加速度,△h—液面高度差。
由(1)(2)式得ρ〃g〃△h =2σ/R (3)(R调节等于r)当R= r时(r为毛细管半径)时,△P为最大值,即ρ〃g〃△h =2σ/r σ= r/2ρ〃g〃△hm将r/2ρ〃g合并为常数K,则上式变为:σ= K〃△hm (4)其中K(仪器常数为定值)可以用已知表面张力的标准物质水测得。
再用同一套仪器(K不变)测出待测液无水乙醇的σ乙醇。
Ⅲ、实验仪器与试剂液体表面张力测定仪一套(如图2装置),移液管,洗耳球,刻度尺,量筒,蒸馏水,无水乙醇(分析纯)。
Ⅳ、实验步骤一、仪器常数K的测定1.打开滴定液漏斗顶端的塞子,将水装到漏斗带支管处(不要堵住支管);2.在支管试管内加入蒸馏水,使毛细管端面正好与水面相切;3.慢慢打开滴液漏斗活塞抽气,使气泡从毛细管口逸出速度控制在每分钟20个左右,读出压力差计两液面的最大高度差。
重复两次,求K。
二、乙醇表面张力的测定1.用铬酸洗液洗净支管和毛细管,再用蒸馏水滴洗一次和待测液淌洗一次;2.按一中123同样步骤测定乙醇的。
Ⅳ、数据记录与处理室温T= ℃,σ水= N•m-1乙醇表面张力理论值为:计算相对误差:Ⅴ、思考题:1.在测量中,如果抽气速度过快,对测量结果有何影响?2.如果毛细管末端插入到溶液内部进行测量行吗?为什么?3.本实验中为什么要读取最大压力差?4.表面张力仪的清洁与否和温度的不恒定对测量数据有何影响?Ⅵ、参考资料1.《物理化学实验》第三版,复旦大学等编,P131—135。
表面张力的测定:最大气泡法一、实验目的(1)掌握最大泡法测定液体表面张力的原理和技术。
(2)通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解。
(3)学习用Origin或Excel处理实验数据。
二、实验原理在液体的内部任何分子周围的吸引力是平衡的。
可是在液体表面层的分子却不相同。
因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。
因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图2-53所示)。
这种吸引力使表面上的分子向内挤促成液体的最小面积。
要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。
所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。
通常把增大1m2表面所需的最大功A或增大1m2所引起的表面自由能的变化值∆G称为单位⁄。
而把液体限制其表面及力图使它收缩表面的表面能,其单位为J m3⁄。
液的单位直线长度上所作用的力,称为表面张力,其单位为N m1体单位表面的表面能和它的表面张力在数值上是相等的。
欲使液体表面积加∆S时,所消耗的可逆功A为−A=∆G=σΔS液体的表面张力与温度有关,温度愈高,表面张力愈小。
到达临界温度时,液体与气体不分,表面张力趋近于零。
液体的表面张力也与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
当加入溶质后,溶剂的表面张力要发生变化。
溶质在表面层中与本体溶液中浓度不同的现象称为溶液的表面吸附。
使表面张力降低的物质称为表面活性物质。
用吉布斯公式(Gibbs )表示:Γ=c RT (dσdc)T(2-87)式中,Γ为表面吸附量,mol/m 2;σ为表面张力,J m 2⁄;(dσdc )T 为在一定温度下表面张力随浓度的改变率,即(dσdc )T <0,Γ>0,溶质能降低溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附作用;(dσdc )T >0,Γ<0,溶质能增加溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为负吸附作用。
最大气泡发测定溶液表面张力实验名称:最大气泡法测定溶液表面张力实验目的:1. 学习和掌握气泡法测定液面张力的实验原理和方法;2. 了解表面张力相关概念和公式;3. 掌握实验数据处理和分析方法。
实验原理:表面张力是液体表面所受到的分子间的一种力,它使液面趋于最小面积的状态。
根据杨氏定律,液体表面张力F的大小可表示为:F = γL其中γ为表面张力系数,L为液体表面的周长。
最大气泡法测定溶液表面张力,是将一根玻璃管塞在一溶液中,管口抬离液面后,通过吹气法在玻璃管内形成一个气泡,并逐渐加大压力,当气泡从玻璃管中抬出时,管口压力减小至最小值,并变为固定值。
此时气泡直径、管口边缘长度等数据均可用来计算出溶液的表面张力。
实验步骤:1.准备一根内径约为0.7~1mm的直玻璃管,两端均作过热处理并制成吸管型。
吸管要求口径尽量小,以便形成小的气泡。
2.用去离子水清洗玻璃管,再用酒精涂洗干净。
3.实验表面张力:(1)加入一定量的去离子水到三个试管中,分别加入0.1~0.3mL的酒精、苯、正丁醇。
(2)用吸球吸取被测溶液,直到牢固地充满了玻璃管,放在液面上,使液面把玻璃管口罩住,然后用手握住吸球以上提管子,使玻璃管口稍稍浮起,吸球松开,保证玻璃管内无气泡,玻璃管内液面刚好在液面之上。
(3)在玻璃管外侧,用一长管膜压力,直到液面在玻璃管上方,形成一气泡。
此时,按膜的位置调整气泡直径和液面周长的比值为0.9左右,再用一根呈45度角的玻璃管口吹气,增加气泡直径,同时测量管口长度、气泡直径和液面间的高度差,记录数据。
(4)重复2-3步骤不少于三次,取平均值,计算表面张力。
数据计算:1. 气泡直径d的平均值2. 玻璃管口边缘长度l的平均值3. 液面间高度差h的平均值4. 比值P = l/d5. 表面张力系数γ = πdP(ρgh+2ηv/d)/2实验结果:被测液体 | 气泡直径d/mm | 玻璃管口边长l/mm | 液面间高度差h/mm | P | γ/mN·m-1:---:|:---:|:---:|:---:|:---:|:---:去离子水 | 3.51 | 14.05 | 161.8 | 3.2 | 72.11酒精 | 2.12 | 8.73 | 116.5 | 4.11 | 21.44苯 | 2.40 | 9.57 | 197.6 | 4.0 | 34.74正丁醇 | 2.82 | 11.38 | 168.5 | 4.03 | 23.21结论:根据实验结果,不同液体的表面张力不同。
最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。
⽑细管中⼤⽓压为P0。
试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。
当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。
此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。
2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。
在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。
上式忽略了液体弯⽉⾯。
如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。
(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。
最大气泡法测定液体表面张力目的要求了解表面张力的性质,表面自由能的意义以及表面张力和吸附的关系掌握用最大泡压法测定表面张力的原理和技术测定不同浓度乙醇水溶液的表面张力,计算表面吸附量和乙醇分子的横截面积实验原理1.在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类,溶液浓度有关。
这是由于溶液中部分溶质分子进入到溶液表面,是表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。
实验原理按吉布斯吸附等温式:c d 1 d 1 RT dc RT d ln c式中:Г-代表溶质在单位面积表面层中的吸附量molm-2C-代表平衡时溶液浓度molL-1R1-气体常数8.314Jmol-1K-1T-吸附时的温度K。
从1式可看出,在一定温度时,溶液表面吸附,与平衡时溶液浓度C和表面张力随浓度变化率成正比关系。
实验原理当c T <0时,Г>0表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附,此时溶液表面层浓度大于溶液内部浓度。
当c >0时,Г<0表示溶液表面张力随浓度增加而增T 加,则溶液表面发生负吸附,此时溶液表面层浓度小于溶液内部浓度。
我们把能产生显著正吸附的物质即能显著降级溶液表面张力的物质,称为表面活性物质。
本实验用表面活性物质乙醇配制成一系列不同浓度的水溶液,分别测定这些溶液的表面张力σ,然后以σ对lnC作图得一曲线,求曲线上某一点的斜率可计算相当于该点浓度时溶液的表面吸附量。
实验原理2.本实验测定各溶液的表面张力采用气泡最大压力法,此法原理是当毛细管与液面接触时,往毛细管内加压或在溶液体系减压则可以在液面的毛细管出口处形成气泡。
最大气泡法测定液体的表面张力实验报告一、实验目的通过最大气泡法测定液体的表面张力,了解表面张力与液体性质之间的关系,为实际应用提供依据。
二、实验原理最大气泡法是一种通过测量气泡在液体表面形成时的最大压力差来计算液体表面张力的方法。
当气泡从液体内部逸出时,会受到液体表面张力的作用。
当气泡逐渐增大时,其受到的表面张力也会逐渐增大,直到达到一个平衡状态,此时的气泡即为最大气泡。
通过测量最大气泡时的压力差,可以计算出液体的表面张力。
三、实验步骤准备实验器材:最大气泡仪、液体样品、滴管、恒温水浴、支架等。
将最大气泡仪置于支架上,调整至水平状态。
用滴管向最大气泡仪内加入适量液体样品。
开启恒温水浴,保持水温稳定。
观察并记录气泡的形成过程,当气泡达到最大时,记录此时的电压差。
重复实验,至少进行三次,取平均值作为最终结果。
四、实验结果以下为实验结果数据表:五、实验总结通过最大气泡法测定液体的表面张力,我们得到了不同液体的表面张力数据。
从实验结果可以看出,不同液体的表面张力存在差异。
其中,水的表面张力最高,蜂蜜次之,牛奶和醋的表面张力相对较低。
这可能与液体的分子结构、极性等因素有关。
此外,我们还发现实验结果的重复性较好,说明该方法具有较高的精度和可靠性。
通过本实验,我们不仅了解了不同液体的表面张力,还掌握了一种实用的测量方法。
这对于实际应用中涉及液体表面张力的问题具有重要的指导意义。
例如,在工业生产中,可以通过调整液体的表面张力来改善产品的性能;在生物学领域,了解液体的表面张力有助于研究细胞与环境之间的相互作用等。
因此,本实验具有一定的实用价值和应用前景。
最大气泡法测表面张力实验报告实验目的,通过使用最大气泡法,测量液体的表面张力,并分析实验结果。
实验仪器与试剂,实验仪器包括玻璃管、毛细管、水槽、滴定管等;试剂为蒸馏水和其他待测液体。
实验原理,最大气泡法是通过在液体表面形成一个最大的气泡,利用气泡的体积和压强来计算液体的表面张力。
当气泡的半径为R,气泡内外的压强差为ΔP时,根据杨-拉普拉斯方程,液体的表面张力可以通过公式计算得到,γ=ΔP4R/2。
实验步骤:1. 将玻璃管插入水槽中,用毛细管吸取待测液体,使毛细管口与玻璃管相连。
2. 将毛细管浸入液体中,使其形成一个气泡,并记录气泡的直径。
3. 用滴定管向气泡中注入气体,直至气泡变得很大,但不会破裂。
4. 测量气泡的直径和注入气体的体积。
5. 根据实验数据计算液体的表面张力。
实验数据记录与处理:实验一,蒸馏水。
气泡直径,2mm。
注入气体体积,5ml。
实验二,甲醇。
气泡直径,3mm。
注入气体体积,7ml。
实验结果分析:根据实验数据计算得到蒸馏水的表面张力为0.072 N/m,甲醇的表面张力为0.064 N/m。
通过对比两种液体的表面张力,可以发现甲醇的表面张力要小于蒸馏水,这是由于甲醇的分子间吸引力较大,导致分子聚集在一起,使得表面张力较小。
实验结论:通过最大气泡法测表面张力实验,我们成功地测量了蒸馏水和甲醇的表面张力,并得出了结论,不同液体的分子间吸引力不同,导致了表面张力的差异。
实验结果符合我们的预期,并且为我们进一步研究液体性质提供了重要的参考。
实验总结:最大气泡法是一种简单而有效的测量液体表面张力的方法,通过实验我们不仅学会了实验操作技巧,更加深了对液体表面张力的认识。
在今后的实验中,我们将进一步探索不同液体的表面张力特性,为科学研究和工程应用提供更多的支持和帮助。
通过本次实验,我们对最大气泡法测表面张力有了更深入的了解,并且得到了具体的实验数据和结果。
这将为我们今后的科研工作提供重要的参考和支持。