导数的应用(二)
- 格式:doc
- 大小:149.00 KB
- 文档页数:4
高中数学导数的应用导数是高中数学中的重要概念之一,它在许多实际问题中都有着广泛的应用。
本文将从几个不同的角度来讨论导数的应用。
一、函数的局部性质导数描述了函数在某一点附近的局部变化情况。
通过计算导数,我们可以判断函数在某点上是增函数还是减函数,从而了解函数的局部性质。
例如,对于一条直线函数,导数恒为常数,表示函数在任意一点上都是增函数或减函数;而对于一个二次函数,导数可以告诉我们函数的凹凸性质。
二、切线与法线导数还可以用来求解函数的切线和法线方程。
对于一条曲线,通过求解曲线上某一点的导数,我们可以得到切线的斜率,从而得到切线方程。
同样地,法线的斜率可以通过切线的斜率和导数的关系求解,进而得到法线方程。
这种应用在物理学中特别有用,例如计算质点在曲线上的运动轨迹时,我们需要知道质点的切线方程,以便求解其运动速度和加速度等物理量。
三、最值问题导数也可以用来解决函数的最值问题。
对于一个连续函数,其最值出现在导数为零的点或者定义域的端点上。
因此,通过求解导数为零的方程,我们可以得到函数的极值点,从而求解最值问题。
这一应用在经济学中尤为重要,例如在成本和收益问题中,我们需要确定某种产品的生产数量,以使总利润最大化。
四、曲线的凹凸性与拐点通过导数的符号变化,我们可以判断函数在某一区间上的凹凸性以及确定曲线的拐点。
当导数在某一区间上始终大于零时,函数在该区间上是凹函数;反之,当导数在某一区间上始终小于零时,函数在该区间上是凸函数。
而导数在某一点上发生跃变时,可以判断该点为函数的拐点。
这一应用在优化问题和工程设计中具有重要意义,例如在物体运动问题中,我们需要找到最优的运动轨迹,以使得物体的速度变化最小。
总结起来,导数的应用非常广泛。
无论是研究函数的局部性质、求解切线和法线方程、解决最值问题,还是分析曲线的凹凸性与拐点,导数都发挥着重要的作用。
因此,对于高中数学学习者来说,深入理解导数的概念和应用是非常重要的。
只有掌握了导数的应用,才能更好地解决实际问题,并在日后的学习和工作中受益。
导数的七种应用导数是微积分里面非常重要的概念之一,它是求解函数的变化率的重要工具。
在现实世界中,各种科学领域和工程学都有着广泛的应用。
本文将介绍导数的七种应用,包括微积分学,物理学,经济学,机械工程,数学,生物学和计算机科学。
一、微积分学导数在微积分学中有各种广泛的应用,例如求解定积分以及求解复合函数的极值问题。
比如,我们可以使用梯度(即导数)来求解函数的最小值或最大值,这在实际工程中也经常用到。
二、物理学导数在物理学中也有广泛的应用,其中最重要的是用导数来求解动量。
根据动量定理,物体的动量是受速度函数的变化来决定的,而速度函数的变化正是由导数来求解的。
三、经济学导数在经济学中又有广泛的应用,例如用来求解经济的最优状态。
在经济学中,基本的决策问题都可以用导数来求解,从而找到满足所有参与者条件的最佳解决方案。
四、机械工程导数在机械工程中也有广泛的应用,最常用的就是热力学运用。
它可以用来表示流体在特定温度和压强条件下的特性,从而确定机械系统的传热量、流量及其他物理参数。
五、数学导数在数学中也有广泛的应用,例如用来求解方程组的最优解,以及线性规划问题、最小二乘问题和其他优化问题。
六、生物学导数在生物学中也有广泛的应用,主要用于研究植物的生长状况,以及植物体内及周围环境中生物活动的影响。
七、计算机科学导数在计算机科学中也发挥了重要作用,比如使用导数解决数值优化问题,以及机器学习中的梯度下降法,这都是实现机器智能的重要技术。
综上所述,导数在各种科学和工程领域有着广泛的应用。
它是一种重要的数学工具,在现实世界中有着各种各样的应用,从而改变了我们对函数变化和流体传热的认识,为探索现实世界科学规律,提供了重要依据。
第2课时《导数在函数中的应用》说课稿杭集中学杭圣平导数这一块内容的教学分为五个课时,第一课时导数的概念与几何意义;第二课时导数的基本运算;第三课时导数在研究函数中的运用(1);第四课时导数在研究函数中的运用(2);第五课时导数在实际问题中的应用。
一、说教材导数是高中数学新增内容,它在解决数学问题中起到工具的作用,其地位十分重要。
在近年来年的高考题都涉及这个知识点,主要用来解决与函数相关的一类问题,难度较大,涉及面广,如在研究函数单调性,讨论函数图象的变化趋势、求极值和最值、不等式恒成立等。
运用导数解决这类问题能化繁为简,起事半功倍的作用。
二、说教学目标通过本节课的学习让学生进一步建立利用导数解决与函数有关问题的意识。
并要掌握以下三个方面:第一:导数与函数单调性的关系,会求函数单调区间及参数取值范围。
第二:导数与函数的极值、极值与最值的关系,会求函数的极值,最值及参数范围。
第三:综合考查,将导数内容和传统内容,函数的单调性、不等式的恒成立,解析几何中距离相结合,提高学生分析问题解决问题的能力。
三、说教学方法多媒体教学与诱导法,在教学过程中与学生进行互动式教学四、说重点与难点在分析例题时,引导学生抓住重点,突破难点,提高分析问题和解决问题的能力,并要形成一定的经验,理解并掌握针对此类题目的常规解题思路。
本节课设计了三道例题,重点都放在导数在解决函数有关问题的应用上。
例1主要是从导数与函数单调性关系出发,找出不等式恒成立,通过分离变量或数形结合,解决有关的参数的范围。
例2则是导数在解析几何中的应用,在求距离的最小值时,从数的角度出发重点应放在函数构造及求函数值域上;若从形的角度出发重点应放在距离的转化上与切线方程求法上。
例3则是应用导数求含参数函数的极值与参数范围,重点在于熟练求极值方法。
解决这三个重点就要对导数的基础知识透彻理解。
例1和例2的难点都是问题的转化上。
如例1中将f(x)在区间I上单调递减转化为不等式恒成立;例2中求距离最小值时构造函数或转化为两平行线之间的距离这一步是最关键的,例3对题意的把握,对参数范围讨论及极大极小值的判断是关键,需要学生具备对导数与函数单调性、极值、最值关系的理解能力和分析问题简化问题的能力。
1.2.2 基本初等函数的导数公式及导数的运算法则(二)1.问题导航(1)导数的四则运算法则是什么?在使用运算法则时的前提条件是什么? (2)复合函数的定义是什么,它的求导法则又是什么? 2.例题导读通过P 15例2学会利用导数的运算法则及导数公式求函数的导数,P 15例3为导数的实际应用问题,P 17例4为复合函数的求导问题,注意复合函数的求导法则.1.导数的四则运算法则(1)条件:f (x ),g (x )是可导的. (2)结论:①[f (x )±g (x )]′=f ′(x )±g ′(x ). ②[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 2.复合函数的求导公式 (1)复合函数的定义:①一般形式是y =f (g (x )).②可分解为y =f (u )与u =g (x ),其中u 称为中间变量.(2)求导法则:复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为:y ′x=y ′u ·u ′x .1.判断(正确的打“√”,错误的打“×”) (1)函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( ) (2)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) 答案:(1)√ (2)×2.函数y =x ln x 的导数为( ) A .y ′=ln x +1 B .y ′=ln x -1 C .y ′=ln x D .y ′=1 解析:选A.y ′=x ′ln x +x (ln x )′=ln x +1. 3.y =sin 2x 的导数是( ) A .y ′=2sin x B .y ′=2cos x C .y ′=sin 2x D .y ′=cos 2x解析:选C.y ′=(sin 2x )′ =2sin x cos x =sin 2x . 4.求下列函数的导数:(1)若f (x )=2x +3,则f ′(x )=________;(2)函数f (x )=2sin x -cos x ,则f ′(x )=________;(3)函数f (x )=-2x +1,则f ′(x )=________.答案:(1)2 (2)2cos x +sin x (3)2(x +1)21.应用导数公式的注意事项(1)两个导数的和差运算只可推广到有限个函数的和差的导数运算. (2)两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. (3)若两个函数不可导,则它们的和、差、积、商不一定不可导.(4)对于较复杂的函数式,应先进行适当的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数求导的一般方法(1)分析清楚复合函数的复合关系是由哪些基本函数复合而成,适当选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量. (3)根据基本函数的求导公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.(4)复合函数求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程,对于经过多次复合及四则运算而成的复合函数,可以直接应用公式和法则,从最外层开始由外及里逐层求导.应用导数的运算法则求导求下列函数的导数:(1)y =x 4-3x 2-5x +6;(2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.[解] (1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5(x )′+6′=4x 3-6x -5.(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x =sin x cos x +x cos 2x.(3)法一:y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)·(x +2) =(x +2+x +1)·(x +3)+(x +1)(x +2) =(2x +3)(x +3)+x 2+3x +2 =3x 2+12x +11;法二:∵(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′ =(x 3+6x 2+11x +6)′ =3x 2+12x +11.(4)法一:y ′=⎝ ⎛⎭⎪⎫x -1x +1′=(x -1)′(x +1)-(x -1)(x +1)′(x +1)2=x +1-(x -1)(x +1)2=2(x +1)2. 法二:∵y =x -1x +1=x +1-2x +1=1-2x +1,∴y ′=⎝⎛⎭⎫1-2x +1′=⎝⎛⎭⎫-2x +1′=-2′(x +1)-2(x +1)′(x +1)2=2(x +1)2.求函数的导数的策略:(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数. (2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.1.(1)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎡⎦⎤0,512π,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]解析:选D.∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎫θ+π3,∵θ∈⎣⎡⎦⎤0,512π,∴sin ⎝⎛⎭⎫θ+π3∈⎣⎡⎦⎤22,1, ∴2sin ⎝⎛⎭⎫θ+π3∈[2,2],故选D.(2)已知f (x )=e xx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:∵f ′(x )=(e x )′x -e x ·x ′x 2=e x (x -1)x 2(x ≠0).∴由f ′(x 0)+f (x 0)=0,得 e x 0(x 0-1)x 20+e x 0x 0=0.解得x 0=12.答案:12复合函数的导数运算(1)若函数f (x )=1(1-3x )4的导数为f ′(x ),则f ′(1)=________.[解析] 设y =u -4,u =1-3x ,∴f ′(x )=y ′u ·u ′x =(-4)(1-3x )-5(1-3x )′=12(1-3x )5, ∴f ′(1)=-38.[答案] -38(2)求下列函数的导数:①y =1-2x cos x ;②y =3log 2(x 2-2x +3).[解] ①由于y =1-2x cos x 是两个函数y =1-2x 与y =cos x 的乘积, y ′=(1-2x )′cos x -1-2x sin x =(-2)21-2x cos x -1-2x sin x =-cos x 1-2x-1-2x sin x .②令y =3u ,u =log 2v ,v =x 2-2x +3,则y ′u =3u ln 3,u ′v =1v ln 2,v ′x =2x -2,所以y ′x =(2x -2)·3log 2(x 2-2x +3)·ln 3(x 2-2x +3)ln 2=2log 23·(x -1)3log 2(x 2-2x +3)x 2-2x +3.(1)求复合函数的导数的步骤:分层—选择中间变量,写出构成它的内、外层函数 ↓分别求导—分别求各层函数对相应变量的导数 ↓相乘—把上述求导的结果相乘 ↓变量回代—把中间变量回代(2)求复合函数的导数的注意点:①内、外层函数通常为基本初等函数.②求每层函数的导数时注意分清是对哪个变量求导,这是求复合函数导数时的易错点.2.函数y =cos 2x +sin x 的导数为( )A .-2sin 2x +cos x2xB .2sin 2x +cos x2xC .-2sin 2x +sin x2xD .2sin 2x -cos x2x解析:选A.y ′=-sin 2x ·(2x )′+cos x ·(x )′=-2sin 2x +12·1x cos x=-2sin 2x +cos x2x .导数运算的综合应用求满足下列条件的函数f (x ).(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,且x 2f ′(x )-(2x -1)f (x )=1. [解] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0), 则f ′(x )=3ax 2+2bx +c .由f (0)=3,得d =3,由f ′(0)=0,得c =0, 由f ′(1)=-3,f ′(2)=0可建立方程组 ⎩⎪⎨⎪⎧3a +2b =-3,12a +4b =0,解得⎩⎪⎨⎪⎧a =1,b =-3, ∴f (x )=x 3-3x 2+3.(2)由f ′(x )为一次函数可知f (x )为二次函数, 设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b . 把f (x )、f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1, 即(a -b )x 2+(b -2c )x +c -1=0.要使方程对任意x 都成立,则需a =b ,b =2c ,c =1. 解得a =2,b =2,c =1,∴f (x )=2x 2+2x +1.利用导数的运算法则及复合函数的求导法则求得函数的导数,再结合导数的几何意义、三角函数、不等式等知识点综合考查求函数的解析式,参数的取值范围,不等式的求解与证明等是考查导数运算应用的常规考法,同时也体现了导数的优越性.3.已知两边取对数可以使“积”的形式化为“和”的形式,函数f (x )=ln y 就变成了复合函数,它是由f =ln u 和u =y 复合而成的.根据上面的信息,求y =(x -1)(x -2)·…·(x -10)(x >10)的导数.解:两边同时取自然对数,得ln y =ln(x -1)+ln(x -2)+…+ln(x -10). 两边对x 求导,得 1y ·y ′=1x -1+1x -2+…+1x -10. ∴y ′=⎝⎛⎭⎫1x -1+1x -2+…+1x -10·(x -1)·(x -2)·…·(x -10).已知抛物线y =ax +bx -5在点(2,1)处的切线为y =-3x +7,求b 的值. [解] ∵y ′=2ax +b ,当x =2时,y ′=4a +b ,∴4a +b =-3. 又点(2,1)在曲线上,∴4a +2b -5=1,联立组成方程组⎩⎪⎨⎪⎧4a +b =-3,4a +2b -5=1,解得⎩⎪⎨⎪⎧a =-3,b =9. [错因与防范](1)在求解切线问题时,注意切点既在曲线上,又在切线上,因容易找不全条件导致求解困难.(2)已知曲线上某点的切线,有两层意思:一是在该点的导数值等于切线的斜率;二是该点的坐标满足已知曲线的方程.4.若f (x )=x +ln(x -5),g (x )=ln(x -1),解不等式f ′(x )>g ′(x ).解:f ′(x )=1+1x -5,g ′(x )=1x -1.由f ′(x )>g ′(x ),得1+1x -5>1x -1,即(x -3)2(x -5)(x -1)>0, ∴x >5或x <1.又两函数定义域满足⎩⎪⎨⎪⎧x -5>0,x -1>0,∴x >5.∴不等式f ′(x )>g ′(x )的解集为(5,+∞).1.f (x )=ln xx的导数是( )A .f ′(x )=1+ln x x 2B .f ′(x )=1+ln xx C .f ′(x )=1-ln x x 2D .f ′(x )=1+ln xx 2解析:选C.f ′(x )=(ln x )′x -(ln x )x ′x 2=1-ln xx 2.2.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:33.函数y =sin n x cos nx 的导数为________. 解析:y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x (sin x )′cos nx +sin n x (-sin nx )·(nx )′=n sin n -1x cos x ·cos nx -sin nx sin nx ·n=n sin n -1x (cos x cos nx -sin x sin nx )=n sin n -1x cos[(n +1)x ].答案:n sin n -1x cos[(n +1)x ][A.基础达标]1.已知f (x )=x -5+3sin x ,则f ′(x )等于( )A .-5x -6-3cos xB .x -6+3cos xC .-5x -6+3cos xD .x -6-3cos x解析:选C.利用求导公式和求导法则求解.f ′(x )=-5x -6+3cos x .故选C. 2.函数y =x 3cos x 的导数是( ) A .3x 2cos x +x 3sin x B .3x 2cos x -x 3sin x C .3x 2cos x D .-x 3sin x解析:选B.y ′=(x 3cos x )′=3x 2cos x +x 3(-sin x )=3x 2cos x -x 3sin x .3.已知f ⎝⎛⎭⎫1x =x1+x ,则f ′(x )等于( )A.11+x B .-11+xC.1(1+x )2 D .-1(1+x )2解析:选D.令1x =t ,则f (t )=1t1+1t=11+t,∴f (x )=11+x ,f ′(x )=⎝⎛⎭⎫11+x ′=-1(1+x )2.4.函数y =12(e x +e -x )的导数是( )A.12(e x -e -x )B.12(e x +e -x ) C .e x-e -x D .e x +e -x解析:选A.y ′=⎣⎡⎦⎤12(e x +e -x )′=12(e x -e -x ). 5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 解析:选B.设切点为P (x 0,y 0), 则y 0=x 0+1,y 0=ln(x 0+a ),又∵切线的斜率为1,∴1x 0+a=1,∴x 0+a =1,∴y 0=0,x 0=-1,∴a =2,故选B. 6.f (x )=ln(x 2+1)的导数是________.解析:f ′(x )=1x 2+1·2x 2x 2+1=xx 2+1. 答案:xx 2+17.f (x )=(2x +a )2,且f ′(2)=20,则a =________. 解析:∵f ′(x )=8x +4a , f ′(2)=20,即16+4a =20. ∴a =1. 答案:18.函数y =x -cos xx +sin x在x =2处的导数是________.解析:∵y ′=⎝ ⎛⎭⎪⎫x -cos x x +sin x ′=(1+sin x )(x +sin x )-(1+cos x )(x -cos x )(x +sin x )2=(x +1)sin x +(1-x )cos x +1(x +sin x )2,∴y ′|x =2=3sin 2-cos 2+1(2+sin 2)2.答案:3sin 2-cos 2+1(2+sin 2)29.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:∵曲线y =ax 2+bx +c 过点P (1,1), ∴a +b +c =1.①∵y ′=2ax +b ,∴4a +b =1.②又∵曲线过点Q (2,-1),∴4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9. 10.求下列函数的导数.(1)y =a ax cos(ax )+b bx sin(bx ); (2)y =log a (log a x ).解:(1)y ′=(a ax )′cos(ax )+a ax [cos(ax )]′+(b bx )′·sin(bx )+b bx [sin(bx )]′=a ax ln a ·(ax )′cos(ax )+a ax [-sin(ax )](ax )′+b bx ln b ·(bx )′·sin(bx )+b bx cos(bx )(bx )′=a ax +1[cos(ax )ln a -sin(ax )]+b bx +1[sin(bx )ln b +cos(bx )].(2)y ′=1log a x log a e ·(log a x )′=log a e log a x ·1x ·log a e =log 2a e x log a x. [B.能力提升]1.已知A ,B ,C 是直线l 上的三点,向量OA →,OB →,OC →满足OA →=[f (x )+2f ′(1)]OB →-ln(x +1)OC →,则f ′(1)的值为( )A .0B .ln 2 C.12D .2 解析:选C.由于A ,B ,C 三点共线,于是有f (x )+2f ′(1)-ln(x +1)=1,即f (x )=ln(x +1)-2f ′(1)+1,则f ′(x )=1x +1,于是f ′(1)=12.2.已知函数f (x )=ax 2+bx +c 的图象过原点,它的导函数y =f ′(x )的图象如图所示,则( )A .-b2a >0,4ac -b 24a>0B .-b2a <0,4ac -b 24a>0C .-b2a >0,4ac -b 24a<0D .-b2a <0,4ac -b 24a<0解析:选A.函数f (x )=ax 2+bx +c 的图象过原点,则c =0,于是f (x )=ax 2+bx ,则f ′(x )=2ax +b ,结合f ′(x )的图象可知,a <0,b >0.所以-b 2a >0,4ac -b 24a =-b 24a>0,故选A.3.(2015·高考陕西卷)设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0),因为两切线垂直,所以k 1 k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)4.若曲线f (x )=ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意知该函数的定义域为(0,+∞),f ′(x )=2ax +1x,∵存在垂直于y 轴的切线,∴此时斜率为0,问题转化为x >0范围内导函数f ′(x )=2ax +1x存在零点.法一:(图象法)再将之转化为g (x )=-2ax 与h (x )=1x存在交点.当a =0时不符合题意;当a >0时,如图①所示,数形结合可得显然没有交点;当a <0时,如图②所示,此时正好有一个交点,故有a <0,应填(-∞,0).图① 图②法二:(分离变量法)上述也可等价于方程2ax +1x =0在(0,+∞)内有解,显然可得a =-12x 2∈(-∞,0). 答案:(-∞,0)5.(2015·郑州高二检测)已知函数f (x )=axx 2+b,且f (x )的图象在x =1处与直线y =2相切.(1)求函数f (x )的解析式;(2)若P (x 0,y 0)为f (x )图象上的任意一点,直线l 与f (x )的图象相切于P 点,求直线l 的斜率k 的取值范围.解:(1)对函数f (x )求导,得f ′(x )=a (x 2+b )-ax (2x )(x 2+b )2=ab -ax 2(x 2+b )2.因为f (x )的图象在x =1处与直线y =2相切.所以⎩⎪⎨⎪⎧f ′(1)=0,f (1)=2,即⎩⎪⎨⎪⎧ab -a =0,1+b ≠0,a1+b=2,所以a =4,b =1,所以f (x )=4xx 2+1.(2)因为f ′(x )=4-4x 2(x 2+1)2,所以直线l 的斜率k =f ′(x 0)=4-4x 20(x 20+1)2=4⎣⎡⎦⎤2(x 20+1)2-1x 20+1,令t =1x 20+1,t ∈(0,1],则k =4(2t 2-t )=8⎝⎛⎭⎫t -142-12,所以k ∈⎣⎡⎦⎤-12,4. 6.在等比数列{a n }中,a 1=2,a 2=4,若函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a n ).求f ′(0). 解:f ′(x )=x ′[(x -a 1)(x -a 2)·…·(x -a n )]+x ·[(x -a 1)(x -a 2)·…·(x -a n )]′ =(x -a 1)(x -a 2)·…·(x -a n )+x [(x -a 1)(x -a 2)·…·(x -a n )]′∴f ′(0)=(-a 1)(-a 2)·…·(-a n )=(-1)na 1a 2·…·a n 由题意知a 1=2,a 2=4,∴a n =2n .∴f ′(0)=(-1)n ·21+2+3+…+n=(-1)n·2n (1+n )2.。
导数的七种应用
导数是一个重要的数学概念,它表达了函数变化的方式。
由于它可以描述函数之间的关系,所以它在几乎所有的数学和科学领域中都有应用。
导数的七种应用是:
一、用于估算
导数可以用来估算函数的极值,从而使我们能够得出函数的极值点。
此外,还可以用导数来估算函数在任意点处的变化率。
二、用于求极值
使用导数,可以求出函数在某一点处的极值。
这使得可以确定某函数的最大值和最小值,以及求解它们所在的位置。
三、用于求解微分方程
导数也可以用来求解微分方程。
因为微分方程的形式是表示函数变化率的方程,所以它可以使用导数来求解。
四、用于图像的拟合
导数可以用来拟合任意函数的图像。
只需要知道函数的形式,就可以用导数来拟合图像。
五、用于求局部极大值或极小值
导数可以用来求局部极大值或极小值。
这是因为可以通过函数的导数来确定其极大值和极小值的位置。
六、用于解决线性递增/递减问题
通过导数,可以解决线性递增/递减问题。
这是由于递增/递减函数的导数表示其变化率,所以可以根据导数求解此类问题。
七、用于求微分
导数也可以用来求微分。
微分是求函数图像在某一点处的斜率,因此可以使用导数来求微分。
从上面我们可以看出,导数有着众多的应用,涵盖了数学和科学领域的众多研究领域。
运用它们,可以解决各种复杂问题,为科学和数学探索做出重要贡献。
导数在实际生活中的运用导数是微积分中的重要概念,它描述了函数在某一点上的变化率。
导数在实际生活中有许多应用,例如:1. 物理学:导数被广泛应用于物理学中的运动学和动力学。
导数可以描述物体在某一时刻的加速度和速度,以及其位置和速度之间的关系。
例如,在抛物线运动中,导数可以用来描述物体在不同时间点的速度和加速度,从而可以预测物体的轨迹。
2. 经济学:导数在经济学中的应用非常广泛。
例如,在微观经济学中,导数可以用来描述供求关系、生产函数和成本函数。
在宏观经济学中,导数可以用来描述经济增长率、通货膨胀率和失业率等关键绩效指标。
3. 工程学:导数在工程学中的应用也非常广泛。
例如,在电力工程中,导数可以用来描述电流的变化率和电压的变化率,从而可以预测电路的性能。
在机械工程中,导数可以用来描述速度和加速度等关键参数,从而可以预测机械元件的性能。
4. 生物学:导数在生物学中的应用也很重要。
例如,在生物医学中,导数可以用来描述药物的代谢率和药物的效果,从而可以设计更有效的药物。
在生态学中,导数可以用来描述物种群的增长率和灭绝率,从而可以预测生态系统的稳定性和可持续性。
5. 计算机科学:导数在计算机科学中的应用也非常广泛。
例如,在计算机图形学中,导数可以用来定义曲线和曲面,从而可以绘制出复杂的图形。
在人工智能中,导数可以用来设计更高效的算法,例如反向传播算法用于神经网络的训练。
总之,导数在实际生活中有多种应用,涵盖了许多不同的领域,包括物理学、经济学、工程学、生物学和计算机科学。
了解导数的应用有助于我们更好地理解和应用微积分的原理。
考点测试16 导数的应用(二)一、基础小题1.函数f(x)=x3-3x2+2在区间上的最大值是( )A.-2 B.0C.2 D.4答案 C解析令f′(x)=3x2-6x=0,得x=0,x=2(舍去).比较f(-1),f(0),f(1)的大小知f(x)max=f(0)=2.2.已知对任意实数x,都有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时( )A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<0答案 B解析由题意知f(x)是奇函数,g(x)是偶函数.当x>0时,f(x),g(x)都单调递增,则当x<0时,f(x)单调递增,g(x)单调递减,即f′(x)>0,g′(x)<0.3.若曲线f(x)=x,g(x)=xα在点P (1,1)处的切线分别为l1,l2,且l1⊥l2,则实数α的值为( ) A.-2 B.2C.12D.-12答案 A解析f′(x)=12x,g′(x)=αxα-1,所以在点P处的斜率分别为k1=12,k2=α,由于l1⊥l2,所以k1k2=α2=-1,所以α=-2,选A.4.若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( )A.上单调递增,在(0,+∞)上单调递减,又f(-2)=1,f(3)=1,∴f(x2-6)>1可化为-2<x2-6<3,∴2<x<3或-3<x<-2.7.若0<x1<x2<1,则( )A.e x2-e x1>ln x2-ln x1B.e x2-e x1<ln x2-ln x1C.x2e x1>x1e x2D.x2e x1<x1e x2答案 C解析构造函数f(x)=e x-ln x,则f′(x)=e x-1x,故f(x)=e x-ln x在(0,1)上有一个极值点,即f(x)=e x-ln x在(0,1)上不是单调函数,无法推断f(x1)与f(x2)的大小,故A、B错;构造函数g(x)=e xx,则g′(x)=x e x-e xx2=e x x-1x2,故函数g(x)=e xx在(0,1)上单调递减,故g(x1)>g(x2),x2e x1>x1e x2,故选C.8.已知f(x)=ln x-x4+34x,g(x)=-x2-2ax+4,若对任意的x1∈(0,2],存在x2∈,使得f(x1)≥g(x2)成立,则a的取值范围是( )A.⎣⎢⎡⎭⎪⎫54,+∞B.⎣⎢⎡⎭⎪⎫-18,+∞C.⎣⎢⎡⎦⎥⎤-18,54D.⎝⎛⎦⎥⎤-∞,-54答案 A解析 由于f ′(x )=1x -34×1x 2-14=-x 2+4x -34x 2=-x -1x -34x 2,易知,当x ∈(0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,2]上单调递增,故f (x )min =f (1)=12.对于二次函数g (x )=-x 2-2ax +4,易知该函数开口向下,所以其在区间上的最小值在端点处取得,即g (x )min =min{g (1),g (2)}.要使对任意的x 1∈(0,2],存在x 2∈,使得f (x 1)≥g (x 2)成立,只需f (x 1)min ≥g (x 2)min ,即12≥g (1)且12≥g (2),所以12≥-1-2a +4且12≥-4-4a +4,解得a ≥54. 二、高考小题9.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中肯定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1答案 C解析 构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0, 即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.10.设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-32e ,1B .⎣⎢⎡⎭⎪⎫-32e ,34 C .⎣⎢⎡⎭⎪⎫32e ,34D .⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由f (x 0)<0,即e x0 (2x 0-1)-a (x 0-1)<0, 得e x0 (2x 0-1)<a (x 0-1).当x 0=1时,得e<0,明显不成立,所以x 0≠1.若x 0>1,则a >ex2x 0-1x 0-1.令g (x )=ex2x -1x -1,则g ′(x )=2x e x ⎝ ⎛⎭⎪⎫x -32x -12.当x ∈⎝ ⎛⎭⎪⎫1,32时,g ′(x )<0,g (x )为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,g ′(x )>0,g (x )为增函数, 要满足题意,则x 0=2,此时需满足g (2)<a ≤g (3),得3e 2<a ≤52e 3,与a <1冲突,所以x 0<1.由于x 0<1,所以a <ex 02x 0-1x 0-1.易知,当x ∈(-∞,0)时,g ′(x )>0,g (x )为增函数, 当x ∈(0,1)时,g ′(x )<0,g (x )为减函数,要满足题意,则x 0=0,此时需满足g (-1)≤a <g (0), 得32e≤a <1(满足a <1).故选D. 11.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开头下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35xB .y =2125x 3-45x C .y =3125x 3-xD .y =-3125x 3+15x答案 A解析 依据题意知,所求函数在(-5,5)上单调递减.对于A ,y =1125x 3-35x ,∴y ′=3125x 2-35=3125(x 2-25),∴∀x ∈(-5,5),y ′<0,∴y =1125x 3-35x 在(-5,5)内为减函数,同理可验证B 、C 、D 均不满足此条件,故选A.12.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案 C解析 f ′(x )=3πm cos πxm,∵f (x )的极值点为x 0, ∴f ′(x 0)=0,∴3πmcos πx 0m=0,∴πmx 0=k π+π2,k ∈Z ,∴x 0=mk +m2,k ∈Z .又∵x 20+2<m 2,∴⎝ ⎛⎭⎪⎫mk +m 22+⎣⎢⎡⎦⎥⎤3sin ⎝⎛⎭⎪⎫k π+π22<m 2,k ∈Z , 即m 2⎝ ⎛⎭⎪⎫k +122+3<m 2,k ∈Z .∵m ≠0,∴⎝ ⎛⎭⎪⎫k +122<m 2-3m2,k ∈Z .又∵存在x 0满足x 20+2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k +122min ,∴m 2-3m 2>⎝ ⎛⎭⎪⎫122,∴m 2-3>m 24, ∴m 2>4,∴m >2或m <-2,故选C.13.设x 3+ax +b =0,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是____________.(写出全部正确条件的编号)①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2. 答案 ①③④⑤解析 设f (x )=x 3+ax +b .当a =-3,b =-3时,f (x )=x 3-3x -3,f ′(x )=3x 2-3,令f ′(x )>0,得x >1或x <-1;令f ′(x )<0,得-1<x <1,故f (x )在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f (-1)=-1,f (1)=-5,f (3)=15,故方程f (x )=0只有一个实根,故①正确.当a =-3,b =2时,f (x )=x 3-3x +2,易知f (x )在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f (-1)=4,f (1)=0,x →-∞时,f (x )→-∞,从而方程f (x )=0有两个根,故②错.当a =-3,b >2时,f (x )=x 3-3x +b ,易知f (x )的极大值为f (-1)=2+b >0,微小值为f (1)=b -2>0,x →-∞时,f (x )→-∞,故方程f (x )=0有且仅有一个实根,故③正确.当a =0,b =2时,f (x )=x 3+2,明显方程f (x )=0有且仅有一个实根,故④正确.当a =1,b =2时,f (x )=x 3+x +2,f ′(x )=3x 2+1>0,则f (x )在(-∞,+∞)上为增函数,易知f (x )的值域为R ,故f (x )=0有且仅有一个实根,故⑤正确.综上,正确条件的编号有①③④⑤. 三、模拟小题14.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m 的取值范围为( )A .(-∞,2]B .(-∞,3]C .已知函数f (x )=m -1-x 2(e≤x ≤2e)(e 为自然对数的底数)与g (x )=2-5ln x 的图象上存在关于x 轴对称的点,则实数m 的取值范围是( )A . D .答案 D解析 由题意可知,方程m -1-x 2=5ln x -2在上有解,即m =x 2+5ln x -1在上有解.令h (x )=x 2+5ln x -1,h ′(x )=2x +5x,易知h (x )在上单调递增,所以h (x )在上的最小值为e 2+5-1=e 2+4,最大值为(2e)2+5ln 2e -1=4e 2+5ln 2+4.所以实数m 的取值范围是.故选D.16.已知函数f (x )=x 3-tx 2+3x ,若对于任意的a ∈,b ∈(2,3],函数f (x )在区间上单调递减,则实数t 的取值范围是( )A .(-∞,3]B .(-∞,5]C .上单调递减,则有f ′(x )≤0在上恒成立,即不等式3x 2-2tx +3≤0在上恒成立,即有t ≥32⎝ ⎛⎭⎪⎫x +1x 在上恒成立,而函数y =32⎝ ⎛⎭⎪⎫x +1x 在上单调递增,由于a ∈,b ∈(2,3],当b =3时,函数y =32⎝ ⎛⎭⎪⎫x +1x 取得最大值,即y max =32⎝ ⎛⎭⎪⎫3+13=5,所以t ≥5,故选D.17.已知f (x )=12x 2+b x +c (b ,c 是常数)和g (x )=14x +1x 是定义在M ={x |1≤x ≤4}上的函数,对于任意的x ∈M ,存在x 0∈M 使得f (x )≥f (x 0),g (x )≥g (x 0),且f (x 0)=g (x 0),则f (x )在M 上的最大值为( )A .72 B .5 C .6D .8答案 B解析 由于g (x )=14x +1x≥214=1(当且仅当x =2时等号成立),所以f (2)=2+b2+c =g (2)=1,c =-1-b2,所以f (x )=12x 2+b x -1-b 2,f ′(x )=x -b x 2=x 3-bx 2.由于f (x )在x =2处有最小值,所以f ′(2)=0,即b =8,所以c =-5,f (x )=12x 2+8x -5,f ′(x )=x 3-8x 2,所以f (x )在上单调递减,在上单调递增,而f (1)=12+8-5=72,f (4)=8+2-5=5,所以函数f (x )的最大值为5,故选B. 18.已知函数f (x )=ax 3+x 2-ax (a ∈R ,且a ≠0).假如存在实数a ∈(-∞,-1],使得函数g (x )=f (x )+f ′(x ),x ∈(b >-1)在x =-1处取得最小值,则实数b 的最大值为________.答案17-12解析 依题意,f ′(x )=3ax 2+2x -a ,g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(2-a )x -a ,则g (x )≥g (-1)在区间上恒成立,即(x +1)≥0 ①,当x =-1时,不等式①成立,当-1<x ≤b 时,不等式①可化为ax 2+(2a +1)x +1-3a ≥0 ②,令h (x )=ax 2+(2a +1)x +1-3a ,由a ∈(-∞,-1]知其图象是开口向下的抛物线,故h (x )在闭区间上的最小值必在端点处取得,又h (-1)=-4a >0,则不等式②成立的充要条件是h (b )≥0,整理得b 2+2b -3b +1≤-1a ,则该不等式在a ∈(-∞,-1]上有解,即b 2+2b -3b +1≤⎝ ⎛⎭⎪⎫-1a max =1,得-1<b ≤17-12,故实数b 的最大值为17-12.一、高考大题1.设函数f (x )=αcos2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .解 (1)f ′(x )=-2αsin2x -(α-1)sin x . (2)当α≥1时,|f (x )|=|αcos2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0).因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)·cos x -1. 设t =cos x ,则t ∈,令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得最小值,最小值为g ⎝ ⎛⎭⎪⎫1-α4α=-α-128α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去),或α>15.①当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.②当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)>g ⎝ ⎛⎭⎪⎫1-α4α. 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-α4α-|g (-1)|=1-α1+7α8α>0, 所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-α4α=α2+6α+18α.综上,A =⎩⎪⎨⎪⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34>1, 所以|f ′(x )|≤1+α<2A .当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A . 所以|f ′(x )|≤2A .2.已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)争辩f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈成立.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=ax 2-2x -1x3. 当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a x -1x 3⎝⎛⎭⎪⎫x -2a ⎝⎛⎭⎪⎫x +2a .①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫1,2a 时, f ′(x )<0,f (x )单调递减.②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③a >2时,0<2a<1,当x ∈⎝ ⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝ ⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.(2)由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x2-⎝⎛⎭⎪⎫1-1x -2x2+2x 3 =x -ln x +3x +1x 2-2x3-1,x ∈.设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈.则f (x )-f ′(x )=g (x )+h (x ). 由g ′(x )=x -1x≥0,可得g (x )≥g (1)=1. 当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x4. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈内单调递减.由于φ(1)=1,φ(2)=-10, 所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0.所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号. 所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈成立.3.已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),争辩h (x )零点的个数. 解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0,即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0.解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0,所以只需考虑f (x )在(0,1)上的零点个数.①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3上单调递减,在⎝⎛⎭⎪⎫-a3,1上单调递增,故在(0,1)中,当x =-a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a3-a 3+14. a .若f ⎝⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)上无零点;b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点;c .若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.二、模拟大题 4.已知函数f (x )=x ln xx -1-a (a <0). (1)当x ∈(0,1)时,求f (x )的单调性;(2)若h (x )=(x 2-x )·f (x ),且方程h (x )=m 有两个不相等的实数根x 1,x 2.求证:x 1+x 2>1. 解 (1)f ′(x )=x -1-ln xx -12,设g (x )=x -1-ln x ,则g ′(x )=1-1x,∴当x ∈(0,1)时,g ′(x )<0,∴g (x )>g (1)=0,∴f ′(x )>0,∴f (x )在(0,1)上单调递增. (2)证明:∵h (x )=x 2ln x -ax 2+ax (a <0),∴h ′(x )=2x ln x +x -2ax +a ,设g (x )=2x ln x +x -2ax +a , ∴g ′(x )=2ln x -2a +3,∵y =g ′(x )在(0,+∞)上单调递增, 当x →0时,g ′(0)<0,g ′(1)=3-2a >0,∴必存在t ∈(0,1),使得g ′(t )=0,即2ln t -2a +3=0, ∴y =h ′(x )在(0,t )上单调递减,在(t ,+∞)上单调递增.又当x →0时,h ′(0)<0,h ′(1)=1-a >0. 设h ′(x 0)=0,则x 0∈(0,1),∴y =h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 又h (1)=0,不妨设x 1<x 2则0<x 1<x 0,x 0<x 2<1,由(1)知⎩⎪⎨⎪⎧fx 1<f x 0,fx 2>f x 0⇒⎩⎪⎨⎪⎧h x 1>f x 0x 21-x 1,hx 2<f x 0x 22-x 2,∴f (x 0)(x 22-x 2)>h (x 2)=h (x 1)>f (x 0)(x 21-x 1), ∴(x 22-x 2)-(x 21-x 1)=(x 2-x 1)(x 2+x 1-1)>0, ∴x 1+x 2>1.5.已知函数f (x )=e x-ax 2,曲线y =f (x )在x =1处的切线方程为y =bx +1. (1)求a ,b 的值;(2)求函数f (x )在上的最大值;(3)证明:当x >0时,e x +(1-e)x -x ln x -1≥0.解 (1)f ′(x )=e x-2ax ,由题意,得f ′(1)=e -2a =b ,f (1)=e -a =b +1,解得a =1,b =e -2.(2)解法一:由(1)知,f (x )=e x -x 2,∴f ′(x )=e x-2x ≥x +1-2x ≥1-x ≥0,x ∈, 故f (x )在上单调递增,f (x )max =f (1)=e -1. 解法二:由(1)知,f (x )=e x-x 2,∴f ′(x )=e x -2x ,令g (x )=f ′(x ),则g ′(x )=e x-2. 由g ′(x )>0,得x >ln 2;由g ′(x )<0,得0<x <ln 2.∴g (x )=f ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增, ∴f ′(x )≥f ′(ln 2)=2-2ln 2 >0, ∴f (x )在上单调递增,∴f (x )max =f (1)=e -1.(3)证明:∵f (0)=1,又由(2)知,f (x )的图象过点(1,e -1),且y =f (x )在x =1处的切线方程为y =(e -2)x +1,故可猜想:当x >0,x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方.下面证明:当x >0时,f (x )≥(e-2)x +1.设m (x )=f (x )-(e -2)x -1,x >0,则m ′(x )=e x-2x -(e -2),设h (x )=e x-2x -(e -2),则h ′(x )=e x-2.由(2)知,m ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增. 又m ′(0)=3-e>0,m ′(1)=0,0<ln 2<1, ∴m ′(ln 2)<0.∴存在x 0∈(0,1),使得m ′(x 0)=0,∴当x ∈(0,x 0)∪(1,+∞)时,m ′(x )>0; 当x ∈(x 0 ,1)时,m ′(x )<0.故m (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+∞)上单调递增. 又m (0)=m (1)=0,∴m (x )=e x-x 2-(e -2)x -1≥0(当且仅当x =1时取等号). ∴e x+2-e x -1x≥x ,x >0.由(2)知,e x≥x +1,∴x ≥ln (x +1),∴x -1≥ln x ,当且仅当x =1时取等号. ∴e x+2-e x -1x ≥x ≥ln x +1,即e x+2-e x -1x≥ln x +1.∴e x +(2-e)x -1≥x ln x +x ,即e x+(1-e)x -x ln x -1≥0成立,当且仅当x =1时等号成立. 6.已知函数f (x )=e x-x +122,g (x )=2ln (x +1)+e -x.(1)x ∈(-1,+∞)时,证明:f (x )>0; (2)a >0,若g (x )≤ax +1,求a 的取值范围.解 (1)证明:令p (x )=f ′(x )=e x -x -1,则p ′(x )=e x-1,在(-1,0)上,p ′(x )<0,p (x )单调递减;在(0,+∞)上,p ′(x )>0,p (x )单调递增. 所以p (x )的最小值为p (0)=0,即f ′(x )≥0,所以f (x )在(-1,+∞)上单调递增,即f (x )>f (-1)>0. (2)令h (x )=g (x )-(ax +1),则h ′(x )=2x +1-e -x-a , 令q (x )=2x +1-e -x-a ,则q ′(x )=1ex -2x +12.由(1)得q ′(x )<0,则q (x )在(-1,+∞)上单调递减. ①当a =1时,q (0)=h ′(0)=0且h (0)=0.在(-1,0)上,h ′(x )>0,h (x )单调递增;在(0,+∞)上,h ′(x )<0,h (x )单调递减. 所以h (x )的最大值为h (0),即h (x )≤0恒成立. ②当a >1时,h ′(0)<0, 在(-1,0)上,h ′(x )=2x +1-e -x-a <2x +1-1-a , 令2x +1-1-a =0,解得x =1-aa +1∈(-1,0). 在⎝⎛⎭⎪⎫1-a a +1,0上,h ′(x )<0,h (x )单调递减,又h (0)=0,所以此时h (x )>0,与h (x )≤0恒成立冲突. ③当0<a <1时,h ′(0)>0, 在(0,+∞)上,h ′(x )=2x +1-e -x-a >2x +1-1-a , 令2x +1-1-a =0,解得x =1-a a +1∈(0,+∞). 即在⎝ ⎛⎭⎪⎫0,1-a a +1上,h ′(x )>0,h (x )单调递增, 又h (0)=0,所以此时h (x )>0,与h (x )≤0恒成立冲突. 综上,a 的取值为1.。
第一讲 导数、偏导数及其应用(第二次作业)二、求多元函数的偏导数1.具体函数的偏导数 30.(1)设z =,则 z zxyx y∂∂+∂∂= . (2)设1(,)sin ln 1xy xf x y e x y -+=++,则(1,0)x f '= . (3)设(,)arctan1x xyf x y xy+=-,则(1,2)x f '= . (4)设u =,则222222u u ux y z ∂∂∂++∂∂∂= . (5)设223d x y t xz e t --=⎰,则2zx y∂∂∂= . 31.设222,(,)(0,0),(,)0,(,)(0,0).x y x y f x y x y x y ⎧+≠⎪=+⎨⎪=⎩则(0,0)y f '= ( ).(A)4 (B) 2 (C)1 (D) 0 【答】B2.抽象函数的偏导数 32.设 x z xy f y ⎛⎫=+⎪⎝⎭,其中()f u 为可导函数,求 z zx y x y ∂∂+∂∂. 33.设 22(23,)z f x y x y =-+,其中(,)f u v 具有二阶连续偏导数,求 2zx y∂∂∂.34.设 (,)y z f x xy x g x ⎛⎫=+ ⎪⎝⎭,其中f 具有二阶连续偏导数,g 具有二阶导数,求 2z x y ∂∂∂.35.设函数()f u 具有二阶连续导数,(sin )xz f e y =满足方程 22222x z ze z x y∂∂+=∂∂,求()f u . 36.设变换2u x y v x ay=-⎧⎨=+⎩可将方程2222260z z zx x y y ∂∂∂+-=∂∂∂∂简化为20z u v ∂=∂∂,求常数a . 3.一个方程确定的隐函数的(偏)导数 37.设x y z z ϕ⎛⎫= ⎪⎝⎭,其中()u ϕ为可导函数,求 z z xy x y ∂∂+∂∂. 38.设(),0f cx az cy bz --=,求 z zab x y∂∂+∂∂. 39.设()y y x =由方程1yy xe -=确定,求202d d x yx =的值.[92-3]【答】22e .40.证明由方程,0z z F x y y x ⎛⎫++= ⎪⎝⎭所确定的函数(,)z z x y =满足z z x y z xy x y ∂∂+=-∂∂.41.设(,)z z x y =是由zz e xy +=确定的二元函数,求2(1,1)zx y∂∂∂.4.由方程组确定的隐函数的(偏)导数42.设(,),(,)z f x y x y z ϕ==,其中,f ϕ都是可微函数,求d d y x. 43.设(,),(,)u u x y v v x y ==是由方程组sin ,cos uux e u v y e u v⎧=+⎪⎨=-⎪⎩确定的函数,求,u v x x ∂∂∂∂. 【答】sin cos ,(sin cos )1[(sin cos )1]uu uu v v v e x e v v x u e v v ∂∂-==∂-+∂-+. 5.函数的全微分44.当2,1x y ==时,函数22ln(1)z x y =++的全微分d z = . 【答】21d d 33x y + 45.由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分d z = .【答】d x y46.设函数(,)f x y 在点00(,)x y 处的两个偏导数都存在,则( ).(A )函数(,)f x y 在点00(,)x y 处连续 (B )函数(,)f x y 在点00(,)x y 处可微 (C )一元函数0(,)f x y 在点0x 处可导 (D )以上答案都不对 【答】C47.函数(,)f x y 在点00(,)x y 处的两个偏导数都存在是函数(,)f x y 在点00(,)x y 处连续的( ). (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分也非必要的条件 【答】D48.函数(,)f x y 在点00(,)x y 处的两个偏导数都存在是函数(,)f x y 在点00(,)x y 处可微的( ). (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分也非必要的条件 【答】B49.设函数22220(,)0,0x y f x y x y +≠=+=⎩,则(,)f x y 在点(0,0)处( ).(A)偏导数不存在 (B)偏导数存在但不可微 (C)可微但偏导数不连续 (D)偏导数连续 【答】B50.设函数222222()0,(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,则(,)f x y 在点(0,0)处( ).(A ),f f x y ∂∂∂∂不存在 (B ),f fx y∂∂∂∂连续 (C )可微 (D )不连续 【答】C6、方向导数与梯度51.已知u 是曲线2226,0x y z x y z ⎧++=⎨-+=⎩在点(1,2,1)处的切线向量,且它与与oz 轴正向夹角为锐角,求函数(,,)f x y z =在点(1,1,0)-处沿方向向量u 的方向导数fu∂∂. 【答】01(1,1,0)(1,1,0)2D f f -=∇-=-u u. 52.设u 为抛物线24y x =在点(1,2)处与x 轴正方向夹角为锐角的单位切向量,则函数ln()z x y =+在点(1,2)处沿u 方向的方向导数为 .【答】353.已知u 是空间曲线Γ:22,,4x t y t z t t ===- 在点(1,1,3)P -处的切线向量,且它与Oz 轴正向夹角为锐角,求函数2(,,)f x y z x y z =+在点P 处沿方向向量u 的方向导数f u∂∂. 【答】{}012,3,1,233322f f u ∂⎧⎫==---=⎨⎬∂⎩⎭grad u ,. 54.求函数22(,)f x y x y =-在点P 处沿曲线22221x y a b +=在该点的外法线方向的方向导数. 【答】00fgrad f n∂==∂n . 55.函数()222ln u x y z =++在点(1,1,1)处的最大方向导数是 .三、一元函数导数的应用 1. 求曲线的切线与法线56.(1)求曲线3y x =在点(1,1)处的切线与法线的方程.(2)过点(2,0)作曲线3y x =的切线,求此切线方程.57.已知曲线2y ax =(a 为常数)与ln y x =在点x b =处有公共切线,求,a b 的值.58.求极坐标方程(1cos )a ρθ=+的图形对应3πθ=处的切线方程.59.若曲线2y x ax b =++和321y xy =-+在点(1,1)-处相切,其中,a b 是常数,则( ). (A ) 0,2a b ==- (B )1,3a b ==- (C ) 3,1a b =-= (D )1,1a b =-=- 60.设)(x f 为可导函数,它在0=x 的某邻域内满足)(3)1(2)1(x o x x f x f +=--+,其中)(x o 是当0→x 时比x 高阶的无穷小量,则曲线)(x f y =在点())1(,1f 处的切线方程为( ).(A)2+=x y (B)1+=x y (C)1-=x y (D)2-=x y61.设函数n x x f )(ln )(=的图形在点)1,(e 处的切线与x 轴的交点坐标为)0,(n a ,试求)(lim n n a f ∞→.2. 一元函数的单调性与极值62.讨论函数1233()(1)(2)f x x x =--的单调区间与极值.63.设2()()lim1()x a f x f a x a →-=--,则在点x a =处( ). (A ) ()f x 的导数存在,且()0f a '≠ (B )()f x 取得极大值(C ) ()f x 取得极小值 (D )()f x 的导数不存在64.已知常数0a >,问方程xe ax =有几个实数根?3. 一元函数图形的凹凸性65.求曲线x y xe -=的凹凸区间与拐点. 66.用导数知识画出函数1(6)xy x e =+的图形.67.如果()()f x f x -=,且在(0,)+∞内,()0,()0f x f x '''>>,则在(,0)-∞内,( ). (A )()0,()0f x f x '''>> (B ) ()0,()0f x f x '''>< (C )()0,()0f x f x '''<> (D )()0,()0f x f x '''<<68.设函数()f x 在(,)a b 内连续,其导函数的图形如右,记p 为函数()f x 的极值点个数,q 为()f x 图形的拐点个数,则( ).(A )4,1p q == (B )4,2p q == (C ) 3,2p q == (D )2,3p q == 69.设()t ϕ是正值连续函数,()||()d a af x x t t t ϕ-=-⎰,(0)a x a a -≤≤>,证明函数()f x 在区间[,]a a -上的图形是向上凹的.70.先将函数)1ln()(2x x x f +=展开成带佩亚诺余项的7阶麦克劳林公式,再求)0()7(f ,并问点(0,0)是否为该函数图形的拐点?4. 函数的最大值与最小值71.用输油管把离岸12公里的一座油井和沿岸往下20公里处的炼油厂连接起来(如图5.1.8),如果水下输油管的铺设成本为每公里50万元,陆地输油管的铺设成本为每公里30万元.问应如何铺设水下和陆地输油管,使总的连接费用最小?【答】最小的连接成本为1080万元,最优的连接方案为:从炼油厂沿岸在陆地上铺设11公里到D 点,然后在水下铺设15公里的管道AD . 72.某种疾病的传播模型为()1tPf t ce -=+,其中P 是总人口数,c 是固定常数,)(t f 是到t 时刻感染该病的总人数,求(1)该种疾病的传播速率;(2)当传播速率最大时,感染该病的总人数.第68题图73.三角形由0,230,3=-==y x y x y 围成,在三角形内作矩形ABCD ,其一边AD 与x 轴重合,另两顶点B 、C 分别在x y x y 230,3-==上,求此长方形面积的最大值.5. 用洛必达法则及泰勒公式求不定型极限74.设()f x 在0x 处二阶可导,求极限00020()2()()lim h f x h f x f x h h →+-+-.75.计算下列极限 (1)30sin limx x x x →- (2)0x → (3)2011lim tan x x x x →⎛⎫- ⎪⎝⎭(4)()21lim 1tan 2x xx π→- (5)0lim xx x+→ (6)()12lim 2xxx x →∞+(7)2112lim sin cos x x x x x →∞⎛⎫+ ⎪⎝⎭ (8)sin lim sin x x x x x →∞-+ (9)x x dt e x xt x sin lim 002-⎰--→76.计算极限 2230cos limln(1)x x x ex x -→-+.77.设()f x 在点0x =的某邻域内可导,且320sin 3()lim 0x x f x xx →⎛⎫+= ⎪⎝⎭,求(1)(0),(0),(0)f f f ''';(2)2203()lim 0x f x x x →⎛⎫+=⎪⎝⎭.78.设 20ln(1)()lim 2x x ax b x →+-+=,则( ).(A ) 51,2a b ==- (B )0,2a b ==-(C ) 50,2a b ==- (D )0,2a b ==-【答】(A )6. 变化率与相关变化率79.一容器的侧面和底面分别由曲线段)21(12≤≤-=x x y 和直线段)10(0≤≤=x y 绕y 轴旋转而成(坐标单位长度为1米),若以每分钟1立方米的速度向容器内注水,求当水面高度达到容器深度一半时,水平面上升的速度. 【答】π52(米/分) 80.现有甲乙两条正在航行的船只,甲船向正南航行,乙船向正东直线航行.开始时甲船恰在乙船正北 40 km 处,后来在某一时刻测得甲船向南航行了 20 km ,此时速度为 15 km/h ;乙船向东航行了15 km ,此时速度为 25 km/h .问这时两船是在分离还是在接近 ,速度是多少 ? 【答】 它们正以3 km/h 的速度彼此远离 .四、多元函数偏导数的应用1. 空间曲线的切线和法平面81.空间曲线23,2,1x t y t t z t ==-=-在对应于1t =的点处的切线方程是 .【答】11103x y z-+== 82.设函数(,)f x y 在点00(,)x y 处的两个偏导数都存在,则下列结论正确的是( ).(A )函数(,)f x y 在点00(,)x y 处可微 (B )函数(,)f x y 在点00(,)x y 处连续 (C )曲线0(,),z f x y x x =⎧⎨=⎩在点0000(,,(,))x y f x y 的切线方向向量为00{0,1,(,)}x f x y '(D )曲线0(,),z f x y y y =⎧⎨=⎩在点0000(,,(,))x y f x y 的切线方向向量为00{1,0,(,)}x f x y '【答】D83.证明:圆柱螺旋线Γ:cos ,sin ,x a t y a t z bt ===在任意一点处的切线都与某定直线交成相等的夹角.【证明】曲线Γ上任意一点的切向量为:{(),(),()}{sin ,cos ,}x t y t z t a t a t b '''==-T .因为cos γ=为常数,所以T 与k 交成相等的夹角,即圆柱螺旋线上任意一点处的切线都与z 轴交成相等的夹角.84.曲线23,,x t y t z t ===的所有切线中,与平面24x y z ++=平行的切线( ). (A)只有1条 (B)只有2条 (C)至少有3条 (D)不存在 【答】B2. 曲面的切平面和法线85.求曲面22823z x y =--在点(1,1,3)-处的切平面方程与法线方程. 【答】46130x y z -+-=.113461x y z -+-==--. 86.已知曲面222z x y z =++上点P 处的切平面与平面220x y z -+=平行,求点P 的坐标以及曲面在该点的切平面方程. 【答】 12202x y z -++= 以及 52202x y z -+-=. 87.曲面 222x y z +=在点(1,1,1)-处的法线方程为 . 【答】111111x y z -+-==-- 88.曲面2221z x y =++在点(1,1,4)M -处的切平面方程为 . 【答】4220x y z ---= 3. 多元函数的极值与条件极值89.求函数3322(,)33f x y x y x y =+--的极值.【答】(0,0)0f =为函数的极大值;(2,2)8f =-为函数的极小值.90.设4422(,)2,(1,1)f x y x y x xy y A =+---和(1,1)B --是函数的驻点,则( ). (A)A 是极大点,B 是极小点 (B)A 及B 都是极大点 (C)A 是极小点,B 是极大点 (D)A 及B 都是极小点 【答】D91.某工厂生产甲、乙两种产品,其销售价格分别为每台12万元与每台18万元,总成本C 是两种产品产量x 和y (单位:台)的函数22(,)224C x y x xy y =+++(单位:万元),问:当两种产品的产量各为多少台时,可获最大利润?最大利润是多少?【答】生产甲产品2台,乙产品4台时,利润最大,对应的最大利润为44万元.92.在已给的椭球面2222221x y z a b c++=内的所有内接长方体(各边平行于坐标轴)中,求其体积之最大者.【答】(,,)x y z =时,V . 93.平面0x y z ++=交圆柱面221x y +=成一个椭圆,求这个椭圆上离原点最近和最远的点.【答】1。
数学二轮复习导数专题:同构思想的应用(解答题)一.分离双变量,同构例1.已知函数f(x)=lnx﹣mx2﹣x.(1)若是f(x)的一个极值点,求f(x)的最大值;(2)若,x1≠x2,都有x2f(x1)﹣x1f(x2)>x1x2(x2﹣x1),求实数m的取值范围.【解析】(1),由题意得,即2﹣m﹣1=0,所以m=1,所以=,当时,f'(x)>0;当时,f'(x)<0,所以f(x)在上单调递增,在上单调递减.所以=.(2)由题意得,x1≠x2都有x2f(x1)﹣x1f(x2)>x1x2(x2﹣x1),令函数==,当x1>x2时,g(x)在上单调递增,所以在上恒成立,即在上恒成立,令,,则,所以h(x)在上单调递减,故h(x)min=h(e)=0,所以实数m的取值范围为(﹣∞,1].同理,当x1<x2时,g(x)在上单调递减,所以在上恒成立,即在上恒成立,令,,则,所以h(x)在上单调递减,故.所以实数m的取值范围为[2e2+1,+∞),综上,实数m的取值范围为(﹣∞,1]∪[2e2+1,+∞).变式1:已知函数f(x)=.(1)判断f(x)在(0,+∞)的单调性;(2)若x>0,证明:(e x﹣1)ln(x+1)>x2.【解析】(1)由函数f(x)的定义域为(﹣1,0)∪(0,+∞)∴f′(x)=,设g(x)=﹣ln(1+x),∴g′(x)=﹣=<0,∴g(x)在(0,+∞)为减函数,∴g(x)<g(0)=0,∴f′(x)<0,∴f(x)在(0,+∞)为减函数;(2)(e x﹣1)ln(x+1)>x2等价于>,∵==,∴原不等式等价于>,由(1)知,f(x)=是(0,+∞)上的减函数,∴要证原不等式成立,只需要证明当x>0时,x<e x﹣1,令h(x)=e x﹣x﹣1,∴h′(x)=e x﹣1>0,∴h(x)是(0,+∞)上的增函数,∴h(x)>h(0)=0,即x<e x﹣1,∴f(x)>f(e x﹣1),即>=>,故(e x﹣1)ln(x+1)>x2.二.双变量换元后同构例3:已知函数f(x)=2a(lnx﹣x)+.(1)若a=,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)的两个极值点为x1,x2,且x2>e2x1,不等式f(x1)﹣f(x2)>b(x12﹣x22)恒成立,求实数b的取值范围.【解析】(1)当时,,.因为f'(1)=1,,所以所求切线方程为,即2x﹣2y﹣3=0.(2)因为,所以x1,x2是方程x2﹣2ax+2a=0的两个正根.令g(x)=x2﹣2ax+2a,则,解得a>2.因为x1+x2=x1x2=2a,所以=.由,可得.因为x1x2>0,所以,即恒成立.令,因为,所以t >e 2,则,整理得.令,t >e 2,则.所以h (t )在(e 2,+∞)上单调递减,所以.由,解得,故b 的取值范围是.三.指对互化同构例2、(2020﹒新高考卷T21)已知函数1()eln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若()1f x ≥,求a 的取值范围. 【解析】(1)()ln 1x f x e x =-+,1()x f x e x'∴=-,(1)1k f e '∴==-. (1)1f e =+,∴切点坐标为(1,1+e ),∴函数f(x)在点(1,f (1)处的切线方程为1(1)(1)y e e x --=--,即()12y e x =-+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e --, ∴所求三角形面积为1222||=211e e -⨯⨯--; (2)解法一:()111x lna x f x aelnx lna e lnx lna -+-=-+=-+≥等价于11lna x lnx e lna x lnx x e lnx +-++-≥+=+,令()x g x e x=+,上述不等式等价于()()1g lna x g lnx +-≥,……(同构法)显然()g x 为单调增函数,∴又等价于1lna x lnx +-≥,即1lna lnx x ≥-+, 令()1h x lnx x =-+,则()111x h x x x-=-=' 在()0,1上()()0,h x h x '>单调递增;在(1,+∞)上()()0,h x h x '<单调递减, ∴()()10max h x h ==,01lna a ≥≥,即,∴a 的取值范围是[1,+∞).解法二:1()ln ln x f x ae x a -=-+,11()x f x ae x-'∴=-,且0a >. 设()()g x f x =',则121()0,x g x ae x -'=+> ∴g(x )在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增, 当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e -<∴,111()(1)(1)(1)0a f f a e a a-''∴=--<,∴存在唯一00x >,使得01001()0x f x aex -'=-=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,011x ae x -∴=,00ln 1ln a x x ∴+-=-, 因此01min 00()()ln ln x f x f x aex a-==-+000011ln 1ln 2ln 122ln 1a x a a x a x x =++-+≥-+⋅=+>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞). 解法三:由解法二得01min 00()()ln ln x f x f x ae x a-==-+=000000011ln 1ln 2ln 11-+--=-+-≥x x x x x x x ∴00012ln 0--≥x x x ……(消超越函数e x ,参数a 设1()=g x x2ln --x x 易知函数()g x 在(0,+∞)上单调递减,且g (1)=1﹣0﹣1=0, ∴当x ∈(0,1]时,()g x ≥0,∴x 0∈(0,1]时,00012ln 0--≥x x x 设()h x =1﹣x ﹣lnx ,x ∈(0,1],∴()'h x =﹣1﹣1x<0恒成立, ∴()h x 在(0,1]上单调递减,∴()h x ≥(1)h =1﹣1﹣ln1=0, 当x →0时,()h x →+∞,∴ln a ≥0=ln1,∴a ≥1.解法四:由f (x )≥1可得1ln ln 1--+≥x ae x a ,即11ln ln --≥-x ae x a设g(x)=e x﹣x ﹣1,∴g ′(x )=e x﹣1>0恒成立,∴g (x )在(0,+∞)单调递增, ∴g(x)>g(0)=1﹣0﹣1=0,∴e x﹣x ﹣1>0,即e x>x +1,再设h(x)=x ﹣1﹣lnx ,∴()111'-=-=x h x x x, 当0<x <1时,()0'<h x ,函数h(x)单调递减, 当x >1时,()0'>h x ,函数h(x)单调递增, ∴h(x)≥h (1)=0,∴x ﹣1﹣lnx ≥0, 即x ﹣1≥lnx ∵0>a ,∴1-≥x e x ,则1-≥x ae ax ,此时只需要证ln ≥-ax x a , 即证1ln ()-≥-x a a , 当1≥a 时,10ln ()->>-x a a ,恒成立,当01<<a 时,10ln ()<-<-x a a ,此时1ln ()-≥-x a a 不成立, 综上所述a 的取值范围为[1,+∞).【变式2】ln()0--+>x e a ax a a 恒成立(0>a ),求实数a 的取值范围. 法一:()()111(1)ln (1)ln ---->⇔->x x a x a x a x e a x e e e e令()1(),(1)(ln )(1则x>)-=->x a x g x xe g x g e,()()1()+,1)ln ln ln 11在(0,)上递增-∞∴->=+--a x g x x a x e()ln 11ln 1-<---a x x ,由重要不等式知()1ln 11---≥x x2ln 2,0<∴<<a a e法二:ln ln ln()1ln ln(1)1ln ln(1)1-->--⇔>+--⇔+->-+-xx a x a e ax a e a x e x a x x a令()()+,(ln )(ln 1)则=->-x g x e x g x a g x ,()()()+,ln ln 1ln ln 1在(0,)上递增∞∴->-⇔<--g x x a x a x xF(x) ()1ln 1)11,('=--=--x x F x x F(x) min 2+,)(2)2,在(1,)上递减,(2,)上递增(∞∴==F x F 2ln 2,0<∴<<a a e 跟踪练习:1.设函数f (x )=lnx +,m ∈R .(Ⅰ)当m =e (e 为自然对数的底数)时,求f (x )的极小值; (Ⅱ)讨论函数g (x )=f ′(x )﹣零点的个数;(Ⅲ)若对任意b >a >0,<1恒成立,求m 的取值范围.【解析】(Ⅰ)当m =e 时,f (x )=lnx +,∴f ′(x )=,∴当x ∈(0,e )时,f ′(x )<0,f (x )在(0,e )上是减函数, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞))上是增函数, ∴x =e 时,f (x )取得极小值为f (e )=lne +;(Ⅱ)∵函数g (x )=f ′(x )﹣=(x >0),令g (x )=0,得m =(x >0),设φ(x )=(x >0),∴φ′(x )=﹣x 2+1=﹣(x ﹣1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上是增函数, 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上是减函数, ∴x =1是φ(x )的极大值点,也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=,又φ(0)=0,结合y =φ(x )的图象,如下图:可知:①当m >时,函数g (x )无零点;②当=时,函数g (x )有且只有一个零点;③当0<m <时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上,当m >时,函数g (x )无零点;当m =或m ≤0时,函数g (x )有且只有一个零点; 当0<m <时,函数g (x )有两个零点.(Ⅲ)对任意b >a >0,<1恒成立,等价于f (b )﹣b <f (a )﹣a 恒成立, 设h (x )=f (x )﹣x =lnx +(x >0),则h (b )<h (a ),∴h (x )在(0,+∞)上单调递减, ∵h ′(x )=在(0,+∞)上恒成立, ∴m (x >0), ∴m(当x =时,m =),∴m 的取值范围是[,+∞).2. 证明:y ln x =的图象恒在sin 1xy xe x =--的图象的下方。
导数在生活中的应用3则1.导数在股票投资中的应用:投资者通常会关注股票价格的变化趋势,导数可以用来衡量股票价格的变化速率。
如果股票价格的导数为正,表示股票价格在上升;如果股票价格的导数为负,表示股票价格在下降。
投资者可以根据股票价格的导数来作出买卖决策。
2.导数在医学中的应用:医学中,导数可以用来研究身体对药物的反应。
如果身体对药物的反应速率(即血液中药物浓度的变化速率)为正,表示药物的浓度在增加;如果身体对药物的反应速率为负,表示药物的浓度在减少。
医生可以根据身体对药物的反应速率来调整药物的用量。
3.导数在交通工程中的应用:交通工程中,导1.导数在建筑工程中的应用:建筑工程中,导数可以用来计算建筑物的屈服点。
屈服点是指建筑物在外力作用下,开始变形的点。
如果建筑物的弹性模量的导数为正,表示建筑物在受到外力时会变得更加坚固;如果建筑物的弹性模量的导数为负,表示建筑物在受到外力时会变得更加脆弱。
建筑工程师可以根据建筑物的弹性模量的导数来设计建筑物的结构。
2.导数在机械工程中的应用:机械工程中,导数可以用来计算机械设备的运动学参数。
如果机械设备的速度的导数为正,表示机械设备在变速;如果机械设备的速度的导1.导数在经济学中的应用:经济学中,导数可以用来研究经济变量之间的关系。
如果两个经济变量的函数图像的导数之积为正,表示这两个变量呈正相关;如果两个经济变量的函数图像的导数之积为负,表示这两个变量呈负相关。
经济学家可以根据这些信息来预测经济的发展趋势。
2.导数在生物学中的应用:生物学中,导数可以用来研究生物体内的生化反应速率。
如果生化反应速率的导数为正,表示反应速率在增加;如果生化反应速率的导数为负,表示反应速率在减少。
生物学家可以根据生化反应速率的导数来研究生物体的生理过程。
导数的应用
导数是微积分中的重要概念,它有许多应用。
以下是一些常见的导数应用:
1. 切线和法线:导数可以用来确定函数曲线在某一点的切线和法线。
切线的斜率等于函数在该点的导数,而法线的斜率是切线的负倒数。
2. 最值问题:导数可以用来解决最值问题。
例如,对于一个函数,它的局部最大值或最小值出现在它的导数为零的点,或者在导数发生跃变的点。
3. 函数的增减性和凹凸性:导数可以用来研究函数的增减性和凹凸性。
如果函数在某一区间内的导数大于零,那么函数在该区间内是递增的;如果导数小于零,函数是递减的。
函数的凹凸性则与导数的二阶导数有关。
4. 曲线的弧长:导数可以用来计算曲线的弧长。
通过对曲
线的参数方程或者极坐标方程进行导数运算,可以得到弧
长公式。
5. 高阶导数:导数可以进行高阶运算,即对导数再进行导数。
高阶导数可用于描述函数的曲率、加速度等更高阶的
变化特性。
以上只是导数的一些简单应用,实际上导数在数学、物理、经济学等领域有着广泛的应用,包括优化问题、速度与加
速度的计算、函数逼近等等。
导数的应用(二)1. 不等式问题:(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.2. 研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题思路,因此使用的知识还是函数的单调性和极值的知识.题型一 运用导数证明不等式问题:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么时候可以等于零,这往往就是解决问题的一个突破口.例1 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x ) f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )的最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 上单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.当0<x <π2时,求证:tan x >x +x 33.证明 设f (x )=tan x -⎝⎛⎭⎫x +x 33,则f ′(x )=1cos 2x-1-x 2=tan 2x -x 2=(tan x -x )(tan x +x ). 因为0<x <π2,所以x <tan x ,所以f ′(x )>0,即x ∈⎝⎛⎭⎫0,π2时,f (x )为增函数.所以x ∈⎝⎛⎭⎫0,π2时,f (x )>f (0). 而f (0)=0,所以f (x )>0,即tan x -⎝⎛⎭⎫x +x 33>0.故tan x >x +x 33.题型二 利用导数研究恒成立问题例2 已知函数f (x )=ln x -a x .(1)若a >0,试判断f (x )在定义域内的单调性;(2)若f (x )在[1,e]上的最小值为32,求a 的值;(3)若f (x )<x 2在(1,+∞)上恒成立,求a 的取值范围.解 (1)由题意知f (x )的定义域为(0,+∞),且f ′(x )=1x +a x 2=x +ax 2.∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数.(2)由(1)可知,f ′(x )=x +ax2.①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立,此时f (x )在[1,e]上为增函数,∴f (x )min =f (1)=-a =32,∴a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立,此时f (x )在[1,e]上为减函数, ∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去).③若-e<a <-1,令f ′(x )=0得x =-a ,当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e)上为增函数,∴f (x )min =f (-a )=ln(-a )+1=32,∴a =- e.综上所述,a =- e.(3)∵f (x )<x 2,∴ln x -ax <x 2.又x >0,∴a >x ln x -x 3.令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2,h ′(x )=1x -6x =1-6x 2x .∵x ∈(1,+∞)时,h ′(x )<0,∴h (x )在(1,+∞)上是减函数.∴h (x )<h (1)=-2<0,即g ′(x )<0,∴g (x )在(1,+∞)上也是减函数.g (x )<g (1)=-1, ∴当a ≥-1时,f (x )<x 2在(1,+∞)上恒成立.已知函数f (x )=ax 3-3x +1对x ∈(0,1]总有f (x )≥0成立,则实数a 的取值范围是__________.解析 当x ∈(0,1]时不等式ax 3-3x +1≥0可化为a ≥3x -1x 3,设g (x )=3x -1x 3,x ∈(0,1], g ′(x )=3x 3-(3x -1)(3x 2)x 6=-6⎝⎛⎭⎫x -12x 4,g ′(x )与g (x )随x 的变化情况如下表:因此g (x )的最大值为4题型三 利用导数研究函数的零点或方程根的方法例3 已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围. 解 (1)f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞).当a >0时,由f ′(x )>0,解得x <-a 或x >a . 由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞), 单调减区间为(-a ,a ).(2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0,∴a =1. ∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1).已知函数f (x )=x 3-92x 2+6x -a .(1)对∀x ∈R ,f ′(x )≥m 恒成立,求m 的最大值;(2)若函数f (x )有且仅有一个零点,求实数a 的取值范围.解 (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2),因为x ∈R 时,f ′(x )≥m 恒成立,∴对x ∈R ,恒有3x 2-9x +(6-m )≥0.因此Δ=81-12(6-m )≤0,得m ≤-34.∴实数m 的最大值为-34.(2)因为当x <1时,f ′(x )>0,当1<x <2时,f ′(x )<0,当x >2时,f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ;当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.∴当a >52或a <2时,函数f (x )仅有一个零点.典例4:(12分)(2011·辽宁)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)证明:f (x )≤2x -2.(1)解 f ′(x )=1+2ax +bx .由已知条件得⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧ 1+a =0,1+2a +b =2.解得⎩⎪⎨⎪⎧a =-1,b =3.[5分](2)证明 因为f (x )的定义域为(0,+∞),由(1)知f (x )=x -x 2+3ln x .设g (x )=f (x )-(2x -2)=2-x -x 2+3ln x ,则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x.[8分]当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0.所以g (x )在(0,1)内单调递增,在(1,+∞)内单调递减.[10分] 而g (1)=0,故当x >0时,g (x )≤0,即f (x )≤2x -2.[12分]典例5:(12分)已知函数f (x )=12x 2+a ln x .(1)若a =-1,求函数f (x )的极值,并指出是极大值还是极小值;(2)若a =1,求函数f (x )在[1,e]上的最大值和最小值;(3)若a =1,求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3的图象的下方.(1)解 由于函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=x -1x =(x +1)(x -1)x ,[1分]令f ′(x )=0得x =1或x =-1(舍去),当x ∈(0,1)时,函数f (x )单调递减,[3分] 当x ∈(1,+∞)时,函数f (x )单调递增,所以f (x )在x =1处取得极小值为12.[5分](2)解 当a =1时,易知函数f (x )在[1,e]上为增函数,∴f (x )min =f (1)=12,f (x )max =f (e)=12e 2+1.[7分](3)证明 设F (x )=f (x )-g (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x ,[9分]当x >1时,F ′(x )<0,故f (x )在区间[1,+∞)上是减函数,又F (1)=-16<0,∴在区间[1,+∞)上,F (x )<0恒成立.即f (x )<g (x )恒成立.[11分]因此,当a =1时,在区间[1,+∞)上,函数f (x )的图象在函数g (x )图象的下方.[12分] 练习:1. 函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是__________. 2. 若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.3. 若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是__________. 4. 若f (x )=ln xx,0<a <b <e ,则f (a )、f (b )的大小关系为________.5. 已知函数f (x )的定义域为R ,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞) 6. 已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞) 7. 曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.94e 2 B .2e 2C .e 2D.e 228. 已知函数f (x )=x 2+mx +ln x 是单调递增函数,则m 的取值范围是( )A .m >-2 2B .m ≥-22C .m <2 2D .m ≤2 29. 若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( )A.⎝⎛⎭⎫13,+∞B.⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞D.⎝⎛⎭⎫-∞,13 10. 函数f (x )=12e x (sin x +cos x )在区间⎣⎡⎦⎤0,π2上的值域为( )A.⎣⎡⎦⎤12,12e π2B.⎝⎛⎭⎫12,12e π2 C .[1,e π2] D .(1,e π2)11. 若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.33 B. 3 C.3+1 D.3-112. 已知对任意x ∈R ,恒有f (-x )=-f (x ),g (-x )=g (x ),且当x >0时,f ′(x )>0,g ′(x )>0,则当x <0时有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<0 13. 已知函数f (x )=1-xax +ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.14.已知函数f (x )=x 2(x -a ).若f (x )在(2,3)上单调,则实数a 的取值范围是__________________;若f (x )在(2,3)上不单调,则实数a 的取值范围是______________.15. 已知函数f (x )=a ln x +x 在区间[2,3]上单调递增,则实数a 的取值范围是__________.16. 设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________.17. (2011·福建改编)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于________. 18. 已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 19. (10分)设函数f (x )=ax 3-3x 2 (a ∈R ),且x =2是y =f (x )的极值点.(1)求实数a 的值,并求函数的单调区间;(2)求函数g (x )=e x ·f (x )的单调区间.20.已知函数f (x )=x +b 的图象与函数g (x )=x 2+3x +2的图象相切,记F (x )=f (x )g (x ).(1)求实数b 的值及函数F (x )的极值;(2)若关于x 的方程F (x )=k 恰有三个不等的实数根,求实数k 的取值范围.21. (13分)(2012·浙江)已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.。