2010届中考数学函数的综合应用复习题1
- 格式:doc
- 大小:249.00 KB
- 文档页数:3
一、选择题1.(2010某某某某)右图是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用)由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格。
下面给出四个图像(如图所示)则A .①反映了建议(2),③反映了建议(1)B .①反映了建议(1),③反映了建议(2)C .②反映了建议(1),④反映了建议(2)D .④反映了建议(1),②反映了建议(2) 【答案】B2.(2010某某省中中考) 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4s m /和6s m /,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离)(m y 与时间)(s t 的函数图象是……………………………………………………………………………( )【答案】C3.(10某某某某)如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的A1 1xyO A1 1xy O y1 1xO AA 1 1xyO ①②③④时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D .【答案】A4.(2010某某)如图(十七),在同一直在线,甲自A 点开始追赶等速度前进的乙, 且图(十八)长示两人距离与所经时间的线型关系。
若乙的速率为每秒 公尺,则经过40秒,甲自A 点移动多少公尺?(A) 60(D) 69 。
【答案】C5.(2010某某某某)一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( )A .摩托车比汽车晚到1 hB . A ,B 两地的路程为20 km第7题图甲 乙A9公尺图(十七)(秒)图(十八) 36 9甲與 乙 距 離( )0 火车隧道oyxoy xoy xoy x2图C .摩托车的速度为45 km/hD .汽车的速度为60 km/h 【答案】C6.(2010 某某)小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )【答案】C7.(2010 某某某某)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( )A时,两家汽车租赁公司租赁费用相同 B 时,租赁乙汽车租赁公车比较合算 CD 【答案】D8.(2010鄂尔多斯)某移动通讯公司提供了A 、B 两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误..的是 A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜第8题A .B .C .D .C .若通讯费用为了60元,则方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分【答案】D9.(2010天门、潜江、仙桃)l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km)随时间t :①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )【答案】C二、填空题1.(2010年某某)一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.【答案】y=100x -40三、解答题1.(10某某某某)我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,某某地面温O 12160图3度为20℃,设高出地面x 千米处的温度为y ℃. (1)写出y 与x 之间的函数关系式;(2)已知某某碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过某某上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?【答案】⑴x y 620-= (0>x ) ……………………………4分 ⑵500米=5.0千米 …………………………5分1750620=⋅⨯-=y (℃) ……………………………7分⑶x 62034-=-……………………………8分9=x ……………………………10分答:略.2.(2010某某某某)(8分)甲车从A 地出发以60km/h 的速度沿公路匀速行驶,0.5小时后,乙车也从A 地出发,以80km/h 的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车。
2010一次函数分类1.(2010某某)一个正比例函数的图像过点(2,-3),它的表达式为(A)A .32y x=- B.23y x= C.32y x= D.23y x=-2.(2010凉山州)如图,因水桶中的水有图①的位置下降到图②的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像是( C )3.(2010某某)如图,是一种古代计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)(B)4.(2010某某)如图所示,以恒定的速度向此容器注水,容器内水的高度(h)与注水时间(t)之间的函数关系可用下列图像大致描述的是(A)h0 tAtBhChDh5.(2010某某)两直线1:,12:21+=-=x y l x y l 的交点坐标为( D )A .(—2,3)B .(2,—3)C .(—2,—3)D .(2,3)6.(2010某某)一次函数21y x =-+的图象经过哪几个象限( B ) A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限7.(2010南安)一次函数23y x =-的图象不经过...( B ). A .第一象限B .第二象限C .第三象限 D .第四象限 8. (2010某某)若一次函数y kx b =+,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值(A)A .增加4B .减小4C .增加2D .减小29.(2010某某)如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( A )A. B . C . D .10.(2010某某)在一次 “寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A ()3,2、 B ()1,4,A 、B 两点到“宝藏”点的距离都是10,则“宝藏”点的坐标是( C ) A .()0,1 B.()4,5 C.()0,1或()4,5 D.()1,0或()5,411.(2010某某)一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随 时间变化的图象如图所示.则下列结论错.误.的是(C ) A .摩托车比汽车晚到1 h B .A ,B 两地的路程为20 km火车隧道oyxoy xoy xoy xC .摩托车的速度为45 km/hD .汽车的速度为60 km/h12.(2010荆州)函数x y =1,34312+=x y .当21y y >时,x 的X 围是( C ) A..x <-1 B .-1<x <2 C .x <-1或x >2 D .x >213.(2010荆州)若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?( D ) A .向上平移1个单位 B .向下平移1个单位 C .向左平移1个单位 D .向右平移1个单位14.(2010某某)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( A )15.(2010滨州)如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家如果菜地和玉米地的距离为a 千米,小强在玉米地除草比在菜地浇水多用的时间为b 分钟,则a b 、的值分别为( D )A. 1,1,8 B .0,9,3 C .1,1,12 D .0,9,8深 水浅水区16.(2010某某)如图,直线y =kx +b 交坐标轴于A (-3,0)、B(0,5)两点,则不等式-k x -b <0的解集为(A )A .x >-3B .x <-3C .x >3D .x <317.(2010日照)在平面直角坐标系内,把点P (-2,1)向右平移一个单位,则得到的对应点P ′的坐标是(B )A.(-2,2)B.(-1,1)C.(-3,1)D.(-2,0)18.(2010某某某某)在平面直角坐标系中,点P (-1,3)位于(B ) A .第一象限B .第二象限C .第三象限D .第四象限19.(2010某某)如图,小球从点A 运动到点B ,速度v (米/秒)和时间t (秒)的函数关系式是v =2t .如果小球运动到点B 时的速度为6米/秒,小球从点A 到点B 的时间是( C )A.1秒 B.2秒 C.3秒D.4秒20.(2010某某)一次函数b kx y +=的图象如图所示,当y <0时,x 的取值X 围是( D )A .x <0B .x >0C .x <2D .x > 221.(2010某某)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h , 水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆 水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是( C )22.(2010某某)若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是(D )A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<23.(2010莱芜)在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分) 变化的图象(全程)如图,根据图象判定下列结论不正确...的是( D ) A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米24.(2010黄冈)已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12, 则k 的值为( A )A .1或-2B .2或-1C .3D .425.(2010某某)如图,所示的计算程序中,y 与x 之间的函数关系对应的图象所在的象限是 (C )A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限tOAtOBtOCtODO96 86 66 30 x /分乙甲26.(2010某某)升旗时,旗子的高度h (米)与时间t (分)的函数图像大致为( B )27.(2010某某)已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值X 围在数轴上可表示为(阴影部分)( C )28.(2010东营)一次函数34y x =-的图象不经过( B )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 29.(2010 达州 )函数12y x =-中自变量的取值X 围在数轴上表示为( D )30.(2010某某)某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V 与时间t 的函数图象(不考虑图象端点情况)大致为( A)31.(2010某某) 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道 路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千1-2 -3 -1 02A .1-2 -3 -1 02B .C .1-2 -3 -1 02D .1-2 -3 -1 02米)与时间t (小时)之间的函数关系的大致图象是( A )32.(2010某某)新学年到了,爷爷带小红到商店买文具.从家中走了20分钟到一个离家900米的商店,在店里花了10分钟买文具后,用了15分钟回到家里.下面图形中表示爷爷和小红离家的距离y (米)与时间x (分)之间函数关系的是( D ).33.(2010鄂尔多斯)如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( D ).34.(2010鄂尔多斯)某移动通讯公司提供了A 、B 两种方案的通讯费用y (元)与通话时间x (分)之间的关系,如图所示,则以下说法错误..的是( D ). A .若通话时间少于120分,则A 方案比B 方案便宜20元D .C .B .A .B .若通话时间超过200分,则B 方案比A 方案便宜C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分 35.(2010某某).函数y kx k =-与(0)ky k x=≠在同一坐标系中的大致图象是( C ) 36.1.(2010宿迁)在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右 平移4个单位,再向下平移3个单位,得到线段A ′B ′,则点A 对应点A ′的坐标为 .(1,-1)2.(2010某某)如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的 不等式1x +≥mx n +的解集为.x ≥13.(2010某某)函数x x y 中自变量1-=的取值X 围是,当2=x 时,函数值y=.1,1≥x4.(2010某某)已知一次函数26y x =-与3y x =-+的图象交于点P ,则点P 的坐标为.(3,0)5.(2010某某)一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系 如图所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____y=100x-40___.1606.(2010某某)直线y = 2x +6与两坐标轴围成的三角形面积是97.(2010莱芜)在平面直角坐标系中,以点)3,4(A 、)0,0(B 、)0,8(C 为顶点的三角形向上平 移3个单位,得到△111C B A (点111C B A 、、分别为点C B A 、、的对应点),然后以点1C 为中心将△111C B A 顺时针旋转︒90,得到△122C B A (点22B A 、分别是点11B A 、的对应 点),则点2A 的坐标是.)7,11( 8.(2010日照)一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有个. 4 9.(2010红河)已知一次函数y=-3x+2,它的图像不经过第 三 象限.10.(2010某某)已知函数 f ( x ) =1x 2+ 1,那么f ( ─ 1 ) = ______1/2_____.(2010某某)将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是____y=2x+1__________.11.(2010某某)在平面直角坐标系中,点(2,3)A -位于第___________象限.四12.(2010某某)如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标是.(8,4)或(–3,4)或(–2,4)或(–76,4)13.(2010 达州 )请写出符合以下两个条件的一个函数解析式.①过点(-2,1), ②在第二象限内,y 随x 增大而增大. y=-2x ,y=x+3,y=-x2+5等14.(2010 某某 )写出一个经过点(11),的一次函数解析式.如y x =,等等(答案不唯一,只要正确均可得分)15.(2010某某)在一次函数32+=x y 中,y 随x 的增大而(填“增大”或“减小”),当50≤≤x 时,y 的最小值为.增大,3;16.(2010某某)一次函数y = -3x +6中,y 的值随x 值增大而减小 17.1.(2010某某)在直角坐标系xOy 中,直线l 过(1,3)和(3,1)两点,且与x 轴,y 轴分 别交于A ,B 两点.(1)求直线l 的函数关系式; (2)求△AOB 的面积.(1)设直线l 的函数关系式为)0(≠+=k b kx y , ①把(3,1),(1,3)代入①得⎩⎨⎧=+=+,3,13b k b k (2分)解方程组得⎩⎨⎧=-=.4,1b k (3分)∴直线l 的函数关系式为.4+-=x y ②(2)在②中,令)0,4(,4,0),4,0(,4,0A x y B y x ∴==∴==得令得.8442121=⨯⨯=⋅=∴∆BO AO S AOB 2.(2010某某)小聪和小明沿同一条路同时从学校出发到某某天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为_______千米/分钟。
2010年中考数学试题分类汇编 函数与一次函数10.(2010年某某省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是() 【关键词】函数的意义 【答案】A1、(2010年某某市)小聪和小明沿同一条路同时从学校出发到某某天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?(A) (B) (C) (D) s (千米)t (分钟)ABDC 304515O2 4 小聪 小明 第1题【关键词】函数与实际问题 【答案】解:(1)15,154 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t ) 令t t 45412154=+-,解得4135=t 当4135=t 时,34135454=⨯=S答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
5.(2010年某某省某某市)要使式子a +2a有意义,a 的取值X 围是() A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 【关键词】函数自变量的取值X 围 【答案】D9.(2010某某市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
2010年中考数学试题分类汇编 综合型问题20、(2010年浙江省东阳县)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.(1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值; (3)延长BC 至F ,连接FD ,使BDF ∆的面积等于 求EDF ∠的度数.【关键词】圆、相似三角形、三角形函数问题【答案】(1)∵点A 是弧BC 的中点 ∴∠ABC=∠ADB 又∵∠BAE=∠BAE ∴△ABE∽△ABD(2)∵△ABE∽△ABD ∴AB2=2×6=12 ∴AB=23在Rt△ADB中,tan∠ADB=33632= (3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形, ∠EDF=60°20.(2010年山东省青岛市)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金. 【关键词】不等式与方程问题 【答案】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. (2010年安徽省B 卷)23.(本小题满分12分)如图, Rt ABC △内接于O ⊙,AC BC BAC =∠,的平分线AD 与O ⊙交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD G ,是CD 的中点,连结OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE BF =; (3)若3(2OG DE =g ,求O ⊙的面积.【关键词】圆 等腰三角形 三角形全等 三角形相似 勾股定理【答案】(1)猜想:OG CD ⊥. 证明:如图,连结OC 、OD . ∵OC OD =,G 是CD 的中点,∴由等腰三角形的性质,有OG CD ⊥.(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. 而∠CAE =∠CBF (同弧所对的圆周角相等). 在Rt △ACE 和Rt △BCF 中, ∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF , ∴Rt △ACE ≌Rt △BCF (ASA ) ∴ AE BF =.(3)解:如图,过点O 作BD 的垂线,垂足为H .则H 为BD 的中点.∴OH =12AD ,即AD =2OH . 又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中, ∵∠DBE =∠DAC =∠BAD , ∴Rt △BDE ∽Rt △ADB ∴BD DE AD DB=,即2BD AD DE =·∴226(2BD ADDE OG DE ===·· 又BD FD =,∴2BF BD =.AA∴22424(2BF BD == … ①设AC x =,则BC x =,.∵AD 是∠BAC 的平分线, ∴FAD BAD ∠=∠.在Rt △ABD 和Rt △AFD 中, ∵∠ADB =∠ADF =90°,AD =AD ,∠F AD =∠BAD , ∴Rt △ABD ≌Rt △AFD (ASA ). ∴AF =AB,BD =FD . ∴CF =AF -AC1)x x -= 在Rt △BCF 中,由勾股定理,得2222221)]2(2BF BC CF x x x =+=+= …②由①、②,得22(224(2x -=-.∴212x =.解得x =-.∴AB ===∴⊙O.∴π6πO S =⋅2⊙=(2010年安徽省B 卷)24.(本小题满分12分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【关键词】二次函数解析式 对称点 相似三角形 三角形面积【答案】(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+ 则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. 把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭,(3)S 存在最大值 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴332OE m =-,连结OPOAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ∵304-<∴当1m =时,34S =最大(2010年福建省晋江市)已知:如图,把矩形OCBA 放置于直角坐标系中,3=OC ,2=BC ,取AB 的中点M ,连结MC ,把MBC ∆沿x 轴的负方向平移OC 的长度后得到DAO ∆.(1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标;②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.【关键词】二次函数、相似三角形、最值问题答案:解:(1)依题意得:⎪⎭⎫⎝⎛-2,23D ;(2) ① ∵3=OC ,2=BC , ∴()2,3B .∵抛物线经过原点,∴设抛物线的解析式为bx ax y +=2()0≠a又抛物线经过点()2,3B 与点⎪⎭⎫⎝⎛-2,23D∴⎪⎩⎪⎨⎧=-=+22349,239b a b a 解得:⎪⎪⎩⎪⎪⎨⎧-==32,94b a39∵点P 在抛物线上, ∴设点⎪⎭⎫ ⎝⎛-x x x P 3294,2. 1)若PQO ∆∽DAO ∆,则AOQO DA PQ =, 22332942x xx =-,解得:01=x (舍去)或16512=x ,∴点⎪⎭⎫⎝⎛64153,1651P . 2)若OQP ∆∽DAO ∆,则AOPQ DA OQ =, 23294232xx x -=,解得:01=x (舍去)或292=x ,∴点⎪⎭⎫⎝⎛6,29P . ②存在点T ,使得TO TB -的值最大. 抛物线x x y 32942-=的对称轴为直线43=x ,设抛物线与x 轴的另一个交点为E ,则点⎪⎭⎫⎝⎛0,23E . ∵点O 、点E 关于直线43=x 对称, ∴TE TO =要使得TB TO -的值最大,即是使得TB TE -的值最大,根据三角形两边之差小于第三边可知,当T 、E 、B 三点在同一直线上时,TB TE -的值最大.设过B 、E 两点的直线解析式为b kx y +=()0≠k ,∴⎪⎩⎪⎨⎧=+=+023,23b k b k 解得:⎪⎩⎪⎨⎧-==2,34b k3当43=x 时,124334-=-⨯=y . ∴存在一点⎪⎭⎫⎝⎛-1,43T 使得TO TB -最大.2. (2010年福建省晋江市)如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE .(1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.(2)∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴BCE DCB DCB ACD ∠+∠=∠+∠ ∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆()SAS∴BE AD =,∴1=BEAD. (3)①当点D 在线段AM 上(不与点A 重合)时,由(2)可知ACD ∆≌BCE ∆,则︒=∠=∠30CAD CBE ,作BE CH ⊥于点H ,则HQ PQ 2=,连结CQ ,则5=CQ .B CAB 备用图(1) AB 备用图(2)在CBH Rt ∆中,︒=∠30CBH ,8==AB BC ,则421830sin =⨯=︒⋅=BC CH . 在CHQ Rt ∆中,由勾股定理得:3452222=-=-=CH CQ HQ ,则②当点D 在线段AM 的延长线上时,∵ABC ∆与DEC ∆都是等边三角形 ∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴DCB ACB =∠+∠∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴=∠=∠CAD CBE ③当点D 在线段MA ∵ABC ∆与DEC ∆∴BC AC =,CD =∴=∠+∠ACE ACD ∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴CAD CBE ∠=∠ ∵︒=∠30CAM∴︒=∠=∠150CAD CBE ∴︒=∠30CBQ . 同理可得:6=PQ . 综上,PQ 的长是6.1.(2010年浙江省东阳市)如图,P 为正方形ABCD 的对称中心,A (0,3),B (1,0),直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以2个单位每秒速度运动,运动时间为t 。
中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?2.一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车1h后,继续按原速驶向乙地,两车距甲地4的路程kmy与慢车行驶时间()h x之间的函数图象如图所示,请结合图象解答下列问题:(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;(3)慢车出发多长时间,两车相距120km3.甲、乙两地之间是一条直路,王明跑步从甲地往乙地,陈星骑自行车从乙地往甲地,两人同时出发,陈星先到达目的地,设两人的在行进过程中保持匀速,两人之间的距离()km y 与运动时间()h x 的函数关系大致如图所示,请你根据图形进行探究:(1)王明和陈星的速度分别是多少?(2)请写出线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. 4.某次无人机展演活动中,Ⅰ号无人机从海拔10m 处出发,以12m/min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以()m/min a 的速度匀速上升,经过5min 两架无人机位于同一海拔高度()m b .无人机海拔高度()m y 与时间()min x 的关系如图.两架无人机都上升了15min .(1)求b 的值及Ⅱ号无人机海拔高度()m y 与时间()min x 的关系式; (2)问无人机上升了多少时间,两无人机高度相差32m .5.现有A 、B 两种品牌的共享电动车,收费y (元)与骑行时间(min)x 之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)直接写出A 品牌收费方式对应的函数关系式为 .(2)如果小致每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为30km /h ,小致家到学校的距离为6km ,那么小致选择 (填“A 品牌”或“B 品牌”)的共享电动车更省钱.(3)求出两种收费相差0.5元时x 的值.6.如图,小李和小赵相约去农庄游玩.小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲乙小区、超市和农庄之间的路程如图①所示,图②中线段OD 、BC 分别表示小李、小赵行驶中离甲小区的路程()km s 与出发时间t (分)之间的函数图象(或部分图象).根据图象回答问题:(1)分别求出线段OD 、BC 的函数表达式;(2)请补全小赵离甲小区的路程为()km s 与出发时间t (分)的函数图象,并写出小赵在超市购物,用时______分钟.7.甲、乙两人同时开车从A 地出发,沿同一条道路去B 地,途中都以两种不同的速度1V 与212()V V V >行驶.甲前一半路程以速度1V 匀速行驶,后一半路程以速度2V 匀速行驶;乙前一半时间以速度匀速2V 行驶,后一半时间用以速度1V 匀速行驶.(1)设甲乙两人从A 地到B 地的平均速度分别为V 甲和V 乙,则V =甲___________;___________(V =乙用含1V 、2V 的式子表示).2(1)当04t<≤时,求2v关于t的函数关系式;(2)求图中a的值;(3)小明每次踢球都能使球的速度瞬间增加6m/s,球运动方向不变,当小明带球跑完200m,写出小明踢球次数共有____次,并简要说明理由.10.已知甲、乙、丙三地依次在同一直线上,乙地离甲地260km,丙地离乙地160km.一艘游轮从甲地出发,途经乙地前往丙地.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km/h,离开甲地的时间记为t(单位:h),两艘轮船离甲地的距离y(单位:km)关于t的图象如图所示(游轮在停靠前后的行驶速度不变).货轮比游轮早2.6h到达丙地.根据相关信息,解答下列问题:(1)填表:游轮离开甲地的时间/h 6 13 16 22 24游轮离甲地的距离/km120 260(2)填空:①游轮在乙地停靠的时长为_______h;②货轮从甲地到丙地所用的时长为_______h,行驶的速度为_______km/h;③游轮从乙地出发时,两艘轮船的距离为_______km.13.我国已取得脱贫攻坚的全面胜利,国家已进入乡村振兴实施阶段,现代物流的高速发展,为乡村振兴的实施提供了良好条件.某物流公司的汽车在市区行驶20km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地,汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,回答下列问题:(1)汽车在乡村道路上行驶的平均速度是______ km/h;(2)求汽车在高速路上行驶的路程y与行驶的时间x之间的函数关系式,并写出自变量x的取值范围;(3)当该物流车行驶到距离出发地120km时,请问该车再过1.5小时能不动达目的地,如果能,写出计算过程;如果不能,直接写出1.5小时后该车离目的地还有多远?14.甲、乙两车分别从相距15km的大连北站和大连广播电视中心同时匀速相向而行.甲车出发10min后,由于交通管制,停止了2min,再出发时速度比原来减少15km/h,并安全到达终点.甲、乙两车距大连北站的路程y(单位:km)与两车行驶时间x(单位:h)的图象如图所示.(1)填空: a______;(2)求乙车距大连北站的路程y与两车行驶时间x的函数解析式,并直接写出自变量x的取值范围;(3)求甲、乙两车相遇时,乙车距大连北站的路程.15.随着疫情的消失,三年的管控使人们的消费和旅游在2023年的“五一”假期得以全面释放.小明和小军分别骑车和驾车从本村出发,沿同一条公路去东门外生态公园游玩.小明骑一段时间后,小军驾车出发,结果半路遭遇堵车,当小明迫上小军后,小军坐小明的自行车一起去生态公园(小军泊车时间忽略不计),如图是小明、小军两人在去生态公园过程中经过的路程()my与小明出发时间()s x之间的函数图像.请结合图像回答:(1)村与公园的距离为______ ,小明骑车速度是______ m/s.(2)小军在离开村多少公里处遭遇堵车?从小军遇到堵车到追上小明用了多长时间?(3)直接写出两人何时相距520m?16.甲、乙两地相距320km,A,B两辆货车同时分别从甲、乙两地相向而行,货车A先出发,一个小时后,货车B也出发,若它们都保持匀速行驶,货车A、货车B距乙地的距离()y km与时x h之间的关系如图所示.间()(1)求货车B距乙地的距离y与时间x的关系式;(2)求货车B到甲地后,货车A还需多长时间到达乙地.参考答案:1.(1)工厂离目的地的路程为880千米 (2)s 关于t 的函数表达式:()80880011s t t =-+≤≤ (3)t 的取值范围是254t ≤≤1522.(1)400,100,7(2)快车从乙地返回甲地的过程中,y 与x 的函数解析式为100400y x =-+ (3)慢车出发1小时或103小时或143小时,两车相距120km3.(1)王明跑步的速度为8km/h ,陈星的速度为16km/h . (2)()24241 1.5y x x =-≤≤ 4.(1)70 830y x =+(2)无人机上升了13min ,两无人机高度相差32m . 5.(1)10.2y x =(2)小明选择A 品牌的共享电动车更省钱 (3)两种收费相差0.5元时,x 的值为15或25;6.(1)线段OD 的函数表达式为()0.5020y x x =≤≤;线段BC 函数表达式为()81218y x x =-≤≤; (2)小赵在超市购物,用时10min . 7.(1)12121222VV V V V V ++,(2)乙(3)①1210050300V V S ===,,,②3.5小时 8.(1)20a = 140b =; (2)2020y x =+甲1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米。
中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。
中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案一、单选题(共12题;共24分)1.已知直线y=kx+2过一、二、三象限,则直线y=kx+2与抛物线y=x2−2x+3的交点个数为()A.0个B.1个C.2个D.1个或2个2.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>43.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+n与C1、C2共有3个不同的交点,则n的取值范围是()A.−2<n<18B.−3<n<−74C.−3<n<−2D.−3<n<−1584.已知直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,且抛物线与x轴交于点(-1,0)、(2,0),抛物线与直线交点的横坐标为1和,那么不等式mx+n <ax2+bx+c <0的解集是()A.1<x<2B.x<或x>1C.<x<2D.-1<x<25.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,x+2,8−x}时(x≥0),则y的最大值是()A.4B.5C.6D.7 6.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y= x2−x+c(c为常数)在−2<x<4的图象上存在两个二倍点,则c的取值范围是()A.−2<c<14B.−4<c<94C.−4<c<14D.−10<c<947.二次函数y1=x2+bx+c与一次函数y2=kx−9的图象交于点A(2,5)和点B(3,m),要使y1<y2,则x的取值范围是()A.2<x<3B.x>2C.x<3D.x<2或x>38.将二次函数y=−x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时b的值为()A.−214或−3B.−134或−3C.214或−3D.134或−39.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或210.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动,同时点Q沿边AB,BC从点A开始向点C以2cm/s的速度移动,当点P移动到点A时P、Q同时停止移动。
2010年中考数学复习综合测试卷(1)一、填空题(本大题有5小题,每小题4分,共20分)1、当21-=x 时,代数式()()2212232++++x x 的值为_________2、如图,在Rt △ABC 中,∠C =Rt ∠,CD ⊥AB 于D ,若AD=2cm ,CD =32cm ,则BC=_________ cm 。
3、如果二次函数的图像与x 轴交点的横坐标分别为x 1=–1和x 2=3,且图像通过点(0,–2),那么这个二次函数的解析式为_________4、要使方程()()04132=-+++m x m x 有一个正数根和一个负数根,那么m 的取值范围是_________5、如图,⊙O 1与⊙O 2相交于A ,B 两点,如果531=A O ,54cos ,5212=∠=O AO A O ,那么=∠2sin BAO _________ 二、解答题(本大题有4小题,共40分)1、(8分)如图,D 是AC 上的一点,AD= 2DC ,△ABC 有中线AM 与BD 相交于E ,(1)求BE :ED 的值;(2)求AE :EM 的值。
2、(10分)如图,在△ABC 的外接圆上,D 是弧BC 的中点,AD 交BC 于E ,F 在AE 上,CE =CF ,(1)求证:△ABE ∽△ACF ;(2)已知BC =14cm ,AF =3EF ,求BE 的长。
3、(10分)已知二次函数()42122-+-+=a x a x y 。
(1)求证:无论实数a 为何值,函数的图像与x 轴都有两个交点;(2)设函数图像与x 轴交点的横坐标分别为x 1,x 2,32||21=x x ,若a <2,求a 的值。
4、(i2分)如图,正方形ABCD 中,E ,F 分别在AD ,AC 上,CA CF DA DE 2= (1)求证:△BEF 是等腰直角三角形;(2)设AF =x ,四边形ABEF 的面积为S ,2:1:=∆∆BFE ABE S S ,求S 与x 的函数关系式;(3)已知正方形的边长为2,,求AF 的长。
中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=12,且经过点(2,0),下列说法:①abc>0;②b2﹣4ac>0;③x=﹣1是关于x的方程ax2+bx+c=0的一个根;④a+b=0.其中正确的个数为()A.1B.2C.3D.42.若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣53.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()A.m+n>0B.m−n<0C.m⋅n<0D.m n>04.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a +c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个5.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D 的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣43.其中正确的是()A.①②④B.①③④C.②③D.②④6.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x 的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3B.x1=1C.x1=−1,x2=1D.x1=37.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c0.020.010.020.04D.1或28.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3其中正确的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的部分图像如图所示,可知方程ax2+bx+c=0的所有解的积为()A.-4B.4C.5D.-510.抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,若关于x的一元二次方程﹣x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.﹣12<t≤3B.﹣12<t<4C.﹣12<t≤4D.﹣12<t<311.二次函数y=ax2−2ax+c(a≠0)的图象过点(3,0),方程ax2−2ax+c=0的解为()A.x1=−3,x2=−1B.x1=−1C.x1=1,x2=3D.x1=−312.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论中正确的有()①4ac<b2,②方程ax2+bx+c=0的两个根是x1=−1,x2=3③3a−c>0,④当y>0时,x的取值范围是−1≤x≤3.A.①②B.①②③C.①③④D.②④二、填空题(共6题;共6分)13.已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣m=0有两个相等的实数根,则m=.14.已知关于x的一元二次方程(x−2)(x−3)=m有实根x1,x2,且x1<x2,现有下列说法:①当)(x−m=0时,x1=2,x2=3;②当m>0时,2<x1<x2<3;③m>−14;④二次函数y=(x−x1x2)−m的图象与x轴的交点坐标为(2,0)和(3,0). 其中正确的有.15.如图所示为抛物线y=ax2−2ax+3,则一元二次方程ax2−2ax+3=0两根为.16.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣2<x<6的范围内有解,则t的取值范围是.17.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是三、综合题(共6题;共75分)19.已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有求出实数根;若没有请说明理由.21.在一次羽毛球比赛中,甲运动员在离地面53米的P点处发球,球的运动轨迹PAN可看作是一条抛物线的一部分,当球运动到最高点A处时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题.(1)求抛物线的解析式(不要求些出自变量的取值范围);(2)羽毛球场地底线距离球网BC的水平距离为6米,此次发球是否会出界?(3)乙运动员在球场上M(m,0)处接球,乙原地起跳可接球的最大高度为2.5米,若乙因接球高度不够而失球,求m的取值范围.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.并指出该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x 的取值范围.24.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当﹣1≤x≤2时,求y的取值范围.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】5 14.【答案】①③ 15.【答案】x 1=−1 16.【答案】﹣1≤t <2417.【答案】有两个同号不等实数根 18.【答案】①②④19.【答案】(1)解:∵抛物线与x 轴有两个交点∴b 2﹣4ac >0 即16+8c >0 解得c >﹣2(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1 ∵抛物线经过点(﹣1,0)∴抛物线与x 轴的另一个交点为(3,0) ∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=3.20.【答案】(1)解:∵抛物线经过P (-3,m )和Q (1,m )∴抛物线的对称轴为直线x=−3+12=-1∴-b 2×2=−1 ∴b=4;(2)解:方程有实数解.对于方程2x 2+4x+1=0 ∵Δ=42-4×2×1=8>0∴关于x 的一元二次方程2x 2+4x+1=0有两个不相等的实数根;∴x=−4±√82×2=−2±√22∴x 1=−1+√22,x 2=−1−√22.21.【答案】(1)解:设抛物线的解析式为y =a (x ﹣5)2+3,由题意,得 53=a (0﹣5)2+3;a =﹣ 475.∴抛物线的解析式为:y =﹣ 475 (x ﹣5)2+3(2)解:当y =0时,﹣ 475(x ﹣5)2+3=0解得:x 1=﹣ 52 (舍去),x 2= 252即ON = 252∵OC =6∴CN = 252 ﹣6= 132 >6∴此次发球会出界 (3)解:由题意,得 2.5=﹣ 475(m ﹣5)2+3;解得:m 1=5+ 5√64 ,m 2=5﹣ 5√64(舍去)∵m >6∴6<m <5+ 5√64. ∴m 的取值范围是6<m <5+ 5√6422.【答案】(1)解:根据题意得W =(x −20)(−2x +80) =−2x 2+120x −1600 =−2(x −30)2+200∴当x =30时,每天的利润最大,最大利润为200元. (2)令−2(x −30)2+200=150,解得:x =35或x =25 ∵这种产品的销售价不高于每千克28元 ∴x =25.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.【答案】(1)解:∵函数图象与x轴的两个交点坐标为(1,0)(3,0)∴方程的两个根为x1=1(2)解:∵二次函数的顶点坐标为(2,2)∴若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2(3)解:∵抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点由图象可知,抛物线在直线下方时x的取值范围为:x<1或x>2.24.【答案】(1)解:∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3)∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①把x=0,y=3代入y=﹣x2+bx+c得:c=3把c=3代入①,解得b=2则二次函数解析式为y=﹣x2+2x+3;(2)解:令二次函数解析式中的y=0得:﹣x2+2x+3=0可化为:(x﹣3)(x+1)=0解得:x1=3,x2=﹣1由函数图象可知:当﹣1<x<3时,y>0;(3)解:由抛物线的表达式知,抛物线的对称轴为直线x=1当﹣1≤x≤2时,y在x=﹣1和顶点处取得最小和最大值当x=﹣1时,y=0当x=1时,y=﹣x2+2x+3=4故当﹣1≤x≤2时,求y的取值范围0≤y≤4.。
2010中考数学模拟试题分类汇编——一次函数一、选择题1.(2010年广州中考数学模拟试题一)某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是( )A B C D答:D2.(2010年广州中考数学模拟试题(四))将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为( )答:B3.(2010年河南中考模拟题6)用图像法解二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图像(如图),则所解的二元一次方程组是 ( )A .2203210x y x y +-=⎧⎨--=⎩ B.2103210x y x y --=⎧⎨--=⎩C. 2103250x y x y --=⎧⎨+-=⎩ D.20210x y x y +-=⎧⎨--=⎩答案:D4.(2010年河南中考模拟题5)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是( )第2题图A . O (min)t (cm)hB .O (min)t (cm)h C .O (min)t(cm)h D .O (min)t(cm)hA .203210x yx y+-=⎧⎨--=⎩,B.2103210x yx y--=⎧⎨--=⎩,C.2103250x yx y--=⎧⎨+-=⎩,D.20210x yx y+-=⎧⎨--=⎩,答案:D5.(2010天水模拟)在同一直角坐标系中,函数y=kx+k,与y=xk-(k≠0)的图像大致为()答案:B6.(2010 河南模拟)如图所示的计算程序中,y与x的函数关系所对应的图像应为()答案:D 7.(2010湖南模拟)一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所·P(1,1)112233-1-1Oxy-2YX-4AYX4-2BYX-42CYX42D输入x取相反数×2+4输出y用的时间t(分钟)的函数关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A 、爸爸开始登山时,小军已走了50米;B 、爸爸走了5分钟,小军仍在爸爸的前面C 、小军比爸爸晚到山顶;D 、10分钟后小军还在爸爸的前面答案:D8.(2010浙江杭州)如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (秒),∠APB =y (度),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A .2B .2πC .12π+ D .2π+2答案:C9.(2010浙江永嘉)如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象 如图2所示,则当9x =时,点R 应运动到 ( )A .N 处B .P 处C .Q 处D .M 处答案:CDB CO A90 1 M xy45 O(第8题)PA(N )(cm)AD(N ) (cm) B(N ) (cm)C(N ) (cm)10.(2010年广州市中考七模)、在平面直角坐标系中,把直线y=2x 向右平移一个单位长度后,其直线解析式为( )A.y=2x+1 B.y=2x -1 C.y=2x+2 D.y=2x -2答案:D11.(2010重庆市綦江中学模拟1)在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )答案:C12.(2010年中考模拟)(鄂尔多斯市)如图是小王早晨出门散步时,离家的距离s 与时间t 之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是( )答案:D二、填空题1.(2010年河南中考模拟题6)正方形1122331,2132,C O C C C CA B A B A B …按如图所示的方式放置,点123,,A A A …和点123,,C C C …分别在直线y=kx+b(k ﹥0)和x 轴上,已知1B(1,1),2B(3,2),则nB的坐标是 。
函数的综合应用◆ 课前热身1.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<2.在平面直角坐标系中,函数1yx =-+的图象经过( )A .一、二、三象限B .二、三、四象限C .一、三、四象限D .一、二、四象限 3.点(13)P ,在反比例函数k y x=(0k ≠)的图象上,则k 的值是( ).A .13B .3C .13-D .3-4、如图为二次函数2y a x b x c=++的图象,给出下列说法: ①0ab <;②方程20a x b x c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)【参考答案】1. B2. D3. B4.①②④◆考点聚焦知识点一次函数与反比例函数的综合应用;一次函数与二次函数的综合应用;二次函数与图象信息x类有关的实际应用问题大纲要求灵活运用函数解决实际问题考查重点及常考题型利用函数解决实际问题,常出现在解答题中◆备考兵法1.四种常见函数的图象和性质总结轴交点(-,=注意事项总结:(1)关于点的坐标的求法:方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x 和y=-x-3的交点坐标,只需解方程组 就可以了。
(2)对解析式中常数的认识:一次函数y=kx+b (k ≠0)、二次函数y=ax2+bx+c(a ≠0)及其它形式、反比例函数y= (k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。
中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案一、单选题1.已知一次函数 y =x +1 和一次函数 y =2x −2 的图象的交点坐标是 (3,4) ,据此可知方程组{x −y =−12x −y =2 的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−32.如图,直线y =kx+b 交x 轴于点A (﹣2,0),直线y =mx+n 交x 轴于点B (5,0),这两条直线相交于点C (2,c ),则关于x 的不等式组 {kx +b <0mx +n >0的解集为( )A .x <5B .1<x <5C .﹣2<x <5D .x <﹣23.用图象法解二元一次方程组{kx −y +b =0x −y +2=0时,小英所画图象如图所示,则方程组的解为( )A .{x =1y =2B .{x =2y =1C .{x =1y =2.5D .{x =1y =34.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组 {2x −y =0x +y =b 的解为( ) A .{x =1y =2B .{x =−1y =2C .{x =1y =−2D .{x =−1y =−25.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组{y =ax +b y =kx的解是( )A .{x =−2y =−4B .{x =−4y =−2C .{x =2y =−4D .{x =−4y =26.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x ﹣y=2的解的是( )A .B .C .D .7.在平面直角坐标系中,直线l 1:y =x+3与直线l 2:y =mx+n 交于点A (﹣1,2),则关于x 、y 的方程组{y =x +3y =mx +n 的解为( ) A .{x =2y =1B .{x =2y =−1C .{x =−1y =2D .{x =−1y =−28.如图,是在同一坐标系内作出的一次函数l 1、l 2的图象,设l 1:y =k 1x+b 1,l 2:y =k 2x+b 2,则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =−2y =2B .{x =−2y =3C .{x =−3y =3D . {x =−3y =49.如图,l 1经过点(0,1.5)和(2,3),l 2经过原点和点(2,3),以两条直线l 1,l 2的交点坐标为解的方程组是( )A .{3x −4y =−63x −2y =0B .{−3x +4y =63x +2y =0C .{3x −4y =63x −2y =0D .{3x −4y =63x +2y =010.直线 y =2x −3 与直线 y =x −1 的交点坐标是( )A .(2,1)B .(4,3)C .(2,−1)D .(−2,1)11.已知直线y=3x ﹣3与y=﹣32x+b 的交点的坐标为(43,a ),则方程组{−3x +y +3=03x +2y −2b =0的解是( )A .{x =43y =−1B .{x =43y =1C .{x =−43y =−1D .{x =−43y =112.如图,已知一次函数y=ax+b 和y=kx 的图象相交于点P ,则根据图象可得二元一次方程组 的解是( )A .{x =−4y =−2B .{x =−2y =−4C .{x =2y =4D .{x =2y =−4二、填空题13.已知方程组{x +y =12x −y =2的解为{x =1y =0,则一次函数y=﹣x+1和y=2x ﹣2的图象的交点坐标为14.如图,直线l 1的解析式是y =2x -1,直线l 2的解析式是y =x +1,则方程组 {x −y =−12x −y =1 的解是 .15.一次函数y =3x -5与y =2x +b 的图象的交点的坐标为P(1,-2),则方程组 {y =3x −5y =2x +b 中b的值为 .16.如图,已知函数y=x ﹣2和y=﹣2x+1的图象交于点P (1,﹣1),根据图象可得方程组{x −y =22x +y =1的解是 .17.已知函数y=2x+1和y=﹣x ﹣2的图象交于点P ,点P 的坐标为(﹣1,﹣1),则方程组{2x −y +1=0x +y +2=0的解为 . 18.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y =kx+b 与y =bx+k 互为交换函数,例如:y =5x+2的交换函数为y =2x+5.一次函数y =kx+2与它的交换函数图象的交点横坐标为 .三、综合题19.如图,在平面直角坐标系中,点O 为坐标原点,直线y =2x ﹣1与直线y = 34 x+ 32交于点A ,过点A 作x 轴的垂线,点B 为垂足,点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上,连接BC .(1)求点A的坐标;(2)求∠CBO的度数.20.如图,在直角坐标系中,直线y=−43x+4与分别于x、y轴交于点A,B,点C在x轴上CD∠AB.垂足为D,交y轴于点E (0,3).(1)求∠AOB的面积;(2)求线段CE的长;(3)求D点的坐标.21.如图,两直线l1:y=−x+4、l2:y=2x+1相交于点P,与x轴分别相交于A、B 两点.(1)求P点的坐标;(2)求S∠PAB.22.一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x ﹣2y=0的解 {x =0y =0 和 {x =2y =1 可以转化为点的坐标A (0,0)和B (2,1).以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象.(1)写出二元一次方程x ﹣2y=0的任意一组解 ,并把它转化为点C 的坐标 ;(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x ﹣2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A 、点B 和点C ,观察它们是否在同一直线上; (3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;(4)根据图象,写出二元一次方程x ﹣2y=0的图象和二元一次方程x+y=3的图象的交点坐标 ,由此可得二元一次方程组 {x −2y =0x +y =3 的解是 .23.如图,直线y 1=kx+b 与坐标轴交于A (0,2),B (m ,0)两点,与直线y 2=-4x+12交于点P (2,n ),直线y 2=-4x+12交x 轴于点C ,交y 轴于点D .(1)求m ,n 值;(2)直接写出方程组{y =kx +b y =−4x +12的解为 ;(3)求∠PBC的面积.24.为便民惠民,树人公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.参考答案1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】B9.【答案】A10.【答案】A11.【答案】B12.【答案】A13.【答案】(1,0)14.【答案】15.【答案】-416.【答案】{x=1y=−117.【答案】{x=−1y=−1 18.【答案】119.【答案】(1)解:由{y=2x−1①y=34x+32②,解得{x=2y=3∴A(2,3);(2)解:过C点作CD∠x轴于D∵A(2,3)∴B (2,0)∵点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上 ∴y =2×(﹣1)﹣1=﹣3 ∴C (﹣1,﹣3) ∴BD =3,CD =3∴∠CBD 的等腰直角三角形 ∴∠CBO =45°.20.【答案】(1)解:∵当x=0时, y =4 ,∴B (0,4)∵当y=0时, x =3 ,∴A (3,0) ∴OA =3,OB =4 ∴S ∠AOB =12×3×4=6 (2)解:∵E (0,3) ∴OE=3 ∴OE=OA∵∠ECO+∠CEO=90°,∠BED+∠DBE=90°,∠CEO=∠BED ∴∠ECO=∠DBE 又∵∠COE=∠BDE=90° ∴∠AOB∠∠EOC (AAS ); ∴OC=OB=4∴Rt∠COE 中,CE =√OC 2+OE 2=√42+32=5 (3)解:由(2)得OC =4,即C (﹣4,0) 设直线CE 的解析式为y=kx+b 把C (﹣4,0),E (0,3)代入得 {−4k +b =0b =3 解得{b =3k =34∴直线CE 解析式为: y =34x +3由题意得方程组 {y =−43x +4y =34x +3解得: {x =1225y =8425 ∴D (1225,8425) .21.【答案】(1)解:联立方程组得: {y =−x +4y =2x +1,解得 {x =1y =3 ,因此 P(1,3) (2)解:在 y =−x +4 中,当 y =0 时, −x +4=0 , x =4 ,在 y =2x +1 中,当 y =0时 2x +1=0 , x =−12 ,∴A (−12,0) ,B (4,0) ,∴AB= |x A −x B |=92∴S ∠PAB = 92⋅|y P |⋅12=92×3×12=27422.【答案】(1){x =−2y =−1;(﹣2,﹣1)(2)解:如图,点A 、点B 和点C 同一直线上(3)二元一次方程x+y=3的两个解为 {x =3y =0 或 {x =0y =3 ,把它们转化成点的坐标为(3,0),(0,3) 如图(4)(2,1);{x =2y =123.【答案】(1)解:把点P (2,n )代入y 2=−4x +12得:n =−8+12=4第 11 页 共 11 ∴P (2,4)把A (0,2),P (2,4)代入y 1=kx +b 得,{b =22k +b =4解得:{k =1b =2∴y 1=x +2把B (m ,0)代入y 1=x +2得:0=m +2解得:m =−2∴m =−2,n =4;(2){x =2y =4(3)解:当y 2=−4x +12=0时解得:x =3∴C (3,0)∵P (2,4),B (-2,0),C (3,0)∴BC=5∴S △PBC =12×5×4=10. 24.【答案】(1)解:由题意得,普通卡:y 1=20x ;贵宾卡:y 2=10x +200; (2)解:令y 1=500得:20x =500,解得:x =25∴点B 坐标为(25,500);令y 2=500得:10x +200=500,解得:x =30∴点C 的坐标为(30,500);联立y 1、y 2得: {y =20x y =10x +200解得: {x =20y =400 ∴点A 的坐标为(20,400);∴A (20,400),B (25,500),C (30,500);(3)解:由图像可知:①当0<x <20时,选择普通卡更合算; ②当x =20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20<x <30时,选择贵宾卡更合算;④当x =30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x >30时,选择至尊卡更合算.。
第七节函数的综合应用【回顾与思考】函数应用1.:2.:3.:4.⎧⎪⎪⎨⎪⎪⎩一次函数图像及性质二次函数图像及性质反比例函数图像及性质综合应用【例题经典】一次函数与反比例函数的综合应用例1(2006年南充市)已知点A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,•可不写画法).【点评】本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.一次函数与二次函数的综合应用例2(2005年海门市)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,•若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y(桶)之间满足如图所示关系.(1)求y与x的函数关系式;(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买材料,哪一种花钱更少?(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?【点评】这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y与x关系式,同时这也是一道确定最优方案题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.二次函数与图象信息类有关的实际应用问题例3一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y1与上市时间x的关系可用图(a)的一条线段表示;•它的种植成本y2与上市时间x的关系可用图(b)中的抛物线的一部分来表示.(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)【点评】本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.【考点精练】基础训练1.在函数y=2x,y=x+5,y=x2的图象中是中心对称图形,且对称中心是原点的有()A.0个 B.1个 C.2个 D.3个2.下列四个函数中,y随x的增大而减少的是()A.y=2x B.y=-2x+5 C.y=-3xD.y=-x2-2x-13.函数y=ax2-a与y=ax(a≠0)在同一直角坐标系中的图象可能是()4.函数y=kx-2与y=kx(k≠0)在同一坐标系内的图象可能是()5.如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x 的取值范围__________.(第5题) (第6题)6.(2006年旅顺口)如图是一次函数y1=kx+b和反比例函数y2=mx的图象,•观察图象写出y1>y2时,x的取值范围是_________.7.(2005年十堰市)在同一平面直角坐标系中,函数y=kx+k,y=kx(k>0)•的图像大致是()8.(2005年太原市)在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=kx2+2kx的图像大致是()能力提升9.如图,已知反比例函数y1=mx(m≠0)的图象经过点A(-2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.10.如图,一次函数y=ax+b的图象与反比例函数y=mx的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=5,tan∠AOC=12,点B的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.(2005年扬州市)近几年,扬州市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到扬州观光旅游的客人越来越多,某景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?12.(2006年荆门市)某环保器材公司销售一种市场需求较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元)•存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价z(元)•的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)•小题中的函数图象帮助该公司确定这种产品的销售单价的范围.•在此条件下使产品的销售量最大,你认为销售单价应为多少元?应用与探究13.(2006年潍坊市)为保证交通完全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.下表是某款车在平坦道路上路况良好刹车后的停止距离与汽车行驶速度的对应值表:行驶速度(千米/时)40 60 80 …停止距离(米)16 30 48 …(1/时)的函数.•给出以下三个函数①y=ax+b;②y=kx(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.答案:例题经典例1:解:设直线AB 的解析式为y=k 1x+b ,则130,6,k b b -+=⎧⎨=-⎩ 解得k 1=-2,b=-6.•所以直线AB 的解析式为y=-2x-6.∵点C (m ,2)在直线y=-2x-6上,∴-2m-6=2, ∴m=-4,即点C 的坐标为C (-4,2), 由于A (0,6),B (-3,0)都在坐标轴上,反比例函数的图象只能经过点C (-4,2),设经过点C 的反比例函数的解析式为y=2k x .则2=24k-, ∴k 2=-8.即经过点C•的反比例函数的解析式为y=-8x.例2:(1)设y=kx+b ,∵x=4时,y=400;x=5时,y=320,∴400480,:3205720k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解之得 ∴y 与x 的函数关系式为y=-80x+720.(2)该班学生买饮料每年总费用为50×120=6000(元),当y=380时,380=-80x+720,得x=4.25.该班学生集体饮用桶装纯净水的每年总费用为380×4.25+780=2395(元), 显然,从经济上看饮用桶装纯净水花钱少. (3)设该班每年购买纯净水的费用为W 元,则W=xy=x (-80x+720)=-80(x-92)2+•1620. ∴当x=92时,W 最大值=1620.要使饮用桶装纯净水对学生一定合算, 则50a ≥W 最大值+780,•即50a•≥1620+780.解之得,a ≥48. 所以a 至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.例3:(1)设y 1=mx+n ,因为函数图象过点(0,5.1),(50,2.1),∴0 5.150 2.1n m n +=⎧⎨+=⎩解得:m=-350,n=5.1,∴y 1=-350x+5.1(0≤x ≤50). (2)又由题目已知条件可设y 2=a (x-25)2+2.因其图象过点(15,3),∴3=a(15-25)2+2,∴a=1 100,∴y2=1100x2-12x+334(或y=1100(x-25)2+2)(0≤x≤50)(3)第x天上市的这种绿色蔬菜的纯利润为:y1-y2=1100(x2-44x+315(0≤x≤55).依题意:y1-y2=0,即x2-44x+315=0,∴(x-9)(x-35)=0,解得:x1=9,x2=25.所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.考点精练1.B 2.B 3.A 4.B 5.-2≤x≤1 6.x>3或-2<x<0 7.D 8.D9.(1)反比例函数解析式为y=2x,一次函数的解析式为y=x+3.(2)点B的坐标为B(-1,2)10.(1)反比例函数解析式为y=-2x,一次函数为y=-2x-3.(2)S△AOB=154个平方单位.11.(1)设函数解析式为y=kx+b,由图象知:直线经过(50,3500),(60,3000)两点.则50350050,6030006000k b kk b b+==-⎧⎧⎨⎨+==⎩⎩解得,∴函数解析式为y=6000-50x.(2)①w=xy=x(6000-50x),即w=-50x2+6000x.•②w=-50x2+6000x=-50(x2-120x)=-50(x-60)2+180000,∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元.12.(1)由题意,设y=kx+b,图象过点(70,5),(90,3),∴1570,1039012k b kk bb⎧=+=-⎧⎪⎨⎨=+⎩⎪=⎩解得∴y=-110x+12.(2)由题意,得w=y(x-40)-z=y(x-40)-(10y+42.5)=(-110+12)(x-40)-10×(-110x+12)-42.5=-0.1x2+17x-642.5=-110(x-85)2+80.当x=85时,年获利的最大值为80万元.(3)令w=57.5,得-0.1x2+17x-642.5=57.5,。
2010年全国各地数学中考试题分类汇编二次函数的应用一、选择题1.(2010 甘肃)向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒 【答案】B2.(2010湖北十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )【答案】C3.(2010 重庆江津)如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )(第10题) C DE FABA .B .C .D .(第10题分析图) C DEF AB P【答案】A4.(2010广西南宁)如图3,从地面竖立向上抛出一个小球,小球的高度h (单位:m )与 小球运动时间t (单位:s )之间的关系式为2530t t h -=,那么小球从抛出至回落到地面所需要的时间是:(A )6s (B )4s (C )3s (D )2s【答案】A 二、填空题1.(2010甘肃兰州) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.【答案】212.(2010 四川成都)如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.【答案】33.(2010 内蒙古包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2. 【答案】252或12.5 4.(2010青海西宁)小汽车刹车距离s (m )与速度v (km/h )之间的函数关系式为21001v s =,一辆小汽车速度为100km/h ,在前方80m 处停放一辆故障车,此时刹车 有危险(填“会”或“不会”). 【答案】不会5.(2010云南昭通)某种火箭被竖直向上发射时,它的高度h (m)与时间t (s)的关系可以用公式h =-5t 2+150t +10表示.经过______s ,火箭达到它的最高点. 【答案】15 三、解答题1.(2010安徽蚌埠二中)已知:如图在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根。
2010年中考数学压轴题100题精选(1-10题)答案【001】解:(1) ∴二次函数的解析式为:2333y x x =-++(2)D为抛物线的顶点D ∴过D 作DN OB ⊥于N,则DN=3660AN AD DAO =∴=∴∠=,°OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形66(s)OP t ∴=∴= ②当DP OM⊥时,四边形DAOP 是直角梯形过O 作OHAD ⊥于H ,2AO =,则1AH =55(s)OP DH t ∴===③当PD OA =时,四边形DAOP 是等腰梯形26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,116(62)22BCPQS t ∴=⨯⨯⨯-=2322t ⎫-⎪⎝⎭当32t =时,BCPQ S此时3339332444OQ OP OE QE PE ==∴=-==,=,2PQ ∴===【002】解:(1)1,85; (2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-.由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, (3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 由△APQ ∽△ABC . 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 由△AQP ∽△ABC ,得AQ AP AB AC =,解得158t =.(4)52t =或4514t =.P图5【注:①点P 由C 向A 运动,DE 经过点C . 方法一、连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =. 方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】【003】解.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx 8=16a +4b 得0=64a +8b 得a =-12,b =4 解∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t ) =-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3= …………………11分 【004】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8xB =∴.点坐标为()80,.∴()8412AB =--=.(2分) 由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,.(3分)∴111263622ABCC S AB y ==⨯⨯=△·.(4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,. ∴D 点坐标为()88,.(5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.(6分)∴8448OEEF =-==,.(7分)(3)解法一:①当03t<≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CMAB ⊥于M,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =.Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.(10分)【005】(1)如图1,过点E 作EG BC ⊥于点G . ································· 1分∵E 为AB 的中点,∴122BE AB ==. 在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. (2)分∴112BG BE EG ====, 即点E 到BC ······························································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥.∵EF BC ∥,∴EP GM =,PM EG == 同理4MNAB ==. ······························································································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. ∴12PHPM == ∴3cos302MH PM =︒= .(图3)(图1)(图2)图1AD EBF CG图2ADEBF CPNH则35422NHMN MH =-=-=. 在Rt PNH △中,PN = ∴PMN △的周长=4PMPN MN ++.································································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PMPN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ·································································································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··························································· 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NPNM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒= .此时,6114x EP GM ===--=.综上所述,当2x=或4或(5时,PMN △为等腰三角形.【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC ×AB=45,得AB=52,设A (a,0),B(b,0)AB=b -a=52,解得p=32±,但p<0,所以p=32-。
2010年湖北省宜昌市初中毕业生学业考试数 学 模 拟 试 题(5)本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交. 以下数据、公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ;=n l R π弧长 (R 为半径,l 为弧长);S 扇形=Rn π2(n 为圆心角,R 为半径)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 本大题共15小题,每题3分,计45分) 1.下列四个数中,在1-和2之间的数是( )A .0B .2-C .3-D .32. 电影院大厅内设计呈阶梯或下坡形状的主要原因是( ).A .为了美观B .减小盲区C .增大盲区D .地势决定3.用计算器求32值时,需相继按“2”,“∧”,“3”,“=,“2”,“∧”,“4”,“=”键,则输出结果是( )A .4B .5C .6D .164.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32o,则∠2度数是( )A.32oB.58oC.68oD.60o5.用一平面截一几何体,截面一定是圆的几何体是( )A .圆锥 B.长方体 C.圆柱体 D.球体6.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是( )A .选取该校一个班级的学生B .选取该校50名男生C .选取该校50名女生D .随机选取该校50名九年级学生7.如图,ACB A C B '''△≌△,BCB '∠=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°8.六箱苹果的质量分别为(单位:千克):18,20,19,23,19,21. 则这六箱苹果质量的平均数和中位数分别为( ) A .19和20B .20和19C .20和20D .20和19.59.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是( )A .16B.13C.12D.2310. 杨伯家小院子的四棵小树E F G H 、、、刚好在其院子ABCD 各边 中点上,若在四边形EFGH 种上小草,则这块草地形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形 11.某商品的原售价为a 元,按此价的8折出售,仍可获利b%,则此商品的进价为( )A.0.8a b% B.0.8a1+b%C.0.8a ×b%D.0.8a (1+b%) 12.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120ºB.约156ºC.180ºD.约208º13.若1O ⊙与2O ⊙相切,且125O O =,1O ⊙的半径12r =,则2O ⊙的半径2r 是( )A . 3B . 5C . 7D . 3 或714. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 215.如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共 走了108米回到点P ,则α( ) A .30° B .40° C .80° D .不存在Pαα第15题第10题第7题B二、解答题(本大题共9小题,计75分)16.(6分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.17.(6分)如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE =CD . (1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM =EM .18. (7分) 深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准。
26二次函数二次函数用函数观点看一元二次方程实际问题与二次函数 选择题9. (莱芜市2010)二次函数c bx ax y ++=2的图象如图所示,则一次函数bx y +=图象不经过DA .第一象限B .第二象限C .第三象限D .第四象限11.(2010年某某)如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为 (0,3),则点B 的坐标为D A .(2,3) B .(3,2)C .(3,3)D .(4,3)5. (某某市2010)二次函数2365y x x =--+的图像的顶点坐标是 A A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)13. (某某市2010) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为BA . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=214.(2010年黄冈)若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( )A B .4C 或4D .4图5(第9题图)8.已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3),那么该抛物线有(B ) A .最小值-3B . 最大值-3C .最小值2D . 最大值210.(2010年某某某某)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是() A . B . C . D .10. (2010某某)定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为[2m ,1 – m , –1– m ]的函数的一些结论:①当m = – 3时,函数图象的顶点坐标是(31,38); ②当m > 0时,函数图象截x 轴所得的线段长度大于23; ③当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有BA.①②③④B.①②④C.①③④D.②④7.(2010年某某某某)关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5· O yx1填空题7.(2010某某)给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有C A .1个 B .2个 C .3个 D .4个15.(2010某某)写出图象经过点(1,-1)的一个函数关系式▲.15.y =-x 或y =-1x或y =x 2-2x ,答案不唯一13(株洲市2010).二次函数23y x mx =-+的图象与x 轴的交点如图所示,根据图某某息可得到m 的值是.13.416.(株洲市2010)已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y =. 16.112x -第13题图20. (某某市2010) 如图,小明的父亲在相距2米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.20.2115. 若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ▲ ;15.1;7.(2010年某某地区)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )7 A A .b =3,c =7B .b =6,c =3 C .b =-9,c =-5D .b =-9,c =216.(2010年某某地区)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) 6 Cy(第15题图)Ox1 3大题\23.(2010某某日照) (本题满分10分)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距83米.(1)求出点A 的坐标及直线OA 的解析式; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点.23.(本题满分10分) 解:(1)在Rt △AOC 中,∵∠AOC=30 o ,OA =83, ∴AC=OA ·sin30o =83×21=34, OC=OA ·cos30o =83×23=12. ∴点A 的坐标为(12,34).…………………………………2分 设OA 的解析式为y=kx ,把点A (12,34)的坐标代入得:34=12k ,∴k =33, ∴OA 的解析式为y =33x ;…………………………………………4分 (2) ∵顶点B 的坐标是(9,12), 点O 的坐标是(0,0)∴设抛物线的解析式为y=a (x-9)2+12,…………………………………6分 把点O 的坐标代入得: 0=a (0-9)2+12,解得a =274-, ∴抛物线的解析式为y =274-(x -9)2+12 及y =274-x 2+ 38x ;…………………………………………………8分 (3)∵当x =12时,y =332≠34, ∴小明这一杆不能把高尔夫球从O 点直接打入球洞A 点.…………10分22.(2010某某某某)(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) 解:(1)22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+)21070010000x x =-+-352bx a=-=. 答:当销售单价定为35元时,每月可获得最大利润. ········ 3分 (2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. (6)分(3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: 20(10500)P x =-+ 20010000x =-+ ∵200k =-<0, ∴P 随x 的增大而减小. ∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.10分24. (莱芜市2010)(本题满分12分)如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C . (1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线x y 2=交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于点E 、F 两点,求劣弧EF 的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分为1︰2两部分法二:∵10a =-<0, ∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000.∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小, 成本越小,24. (本小题满分12分)解:(1)∵抛物线c bx ax y ++=2经过点)0,2(A ,)0,6(B ,)320(,C . ∴⎪⎩⎪⎨⎧==++=++320636024c c b a c b a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==3233463c b a . ∴抛物线的解析式为:32334632+-=x x y .…………………………3分 (2)易知抛物线的对称轴是4=x .把x =4代入y =2x 得y =8,∴点D 的坐标为(4,8).∵⊙D 与x 轴相切,∴⊙D 的半径为8.…………………………4分连结DE 、DF ,作DM ⊥y 轴,垂足为点M . 在Rt △MFD 中,FD =8,MD =4.∴cos ∠MDF =21. ∴∠MDF =60°,∴∠EDF =120°.…………………………6分∴劣弧EF 的长为:π=⨯π⨯3168180120.…………………………7分 (3)设直线AC 的解析式为y =kx +b . ∵直线AC 经过点)32,0(),0,2(C A .∴⎩⎨⎧==+3202b b k ,解得⎪⎩⎪⎨⎧=-=323b k .∴直线AC 的解析式为:323+-=x y .………8分设点)0)(3233463,(2<+-m m m m P ,PG 交直线AC 于N , 则点N 坐标为)323,(+-m m .∵GN PN S S GNA PNA ::=∆∆.∴①若PN ︰GN =1︰2,则PG ︰GN =3︰2,PG =23GN . 即32334632+-m m =)(32323+-m . 解得:m 1=-3,m 2=2(舍去). 当m =-3时,32334632+-m m =3215. ∴此时点P 的坐标为)3215,3(-.…………………………10分 ②若PN ︰GN =2︰1,则PG ︰GN =3︰1, PG =3GN .即32334632+-m m =)(3233+-m .解得:121-=m ,22=m (舍去).当121-=m 时,32334632+-m m =342. ∴此时点P 的坐标为)342,12(-. 综上所述,当点P 坐标为)3215,3(-或)342,12(-时,△PGA 的面积被直线AC 分成1︰2两部分.…………………12分23.(2010某某市)(10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.23.(1)解:设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =. ∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分(2) 答:l 与⊙C 相交.…………………………………………………………………4分证明:当21(4)104x --=时,12x =,26x =. ∴B 为(2,0),C 为(6,0).∴AB =.设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠. ∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴2CE =.∴2CE =>.…………………………6分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交.……………………………………………7分(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .x (第23题)可求出AC 的解析式为132y x =-+.…………………………………………8分 设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+).∴2211133(23)2442PQ m m m m m =-+--+=-+.∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,PAC ∆的面积最大为274.此时,P 点的坐标为(3,34-).…………………………………………10分26.(某某省某某市2010)如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形...BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值X 围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接..写出此时m26.(1) 利用中心对称性质,画出梯形 ∵A ,B ,C 三点与M ,N ,H ∴A (0,4),B (6,4),C (8,0) (写错一个点的坐标扣1分)(2)设过A ,B ,C 三点的抛物线关系式为2y ax bx c =++, ∵抛物线过点A (0,4),∴4c =.则抛物线关系式为24y ax bx =++. ············· 4分 将B (6,4), C (8,0)两点坐标代入关系式,得3664464840a b a b ++=⎧⎨++=⎩,.··························· 5分 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩,. ···························· 6分 所求抛物线关系式为:213442y x x =-++.··············· 7分 (3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m . ··············· 8分 ∴AGF EOF BEC EFGB ABCO S S S S S =---△△△四边形梯形21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12-CE ·OA m m m m m 421)8(21)4(2186421⨯-----+⨯⨯=)( 2882+-=m m ( 0<m <4) ····················· 10分∵2(4)12S m =-+. ∴当4m =时,S 的取最小值.又∵0<m <4,∴不存在m 值,使S 的取得最小值. ············ 12分 (4)当2m =-+GB =GF ,当2m =时,BE =BG . 14分O MN HA C E FDB↑→ -8(-6,-4)xy28.(2010某某)(本题满分12分)已知:函数y =ax 2+x +1的图象与x 轴只有一个公共点. (1)求这个函数关系式;(2)如图所示,设二次..函数y =ax 2+x +1图象的顶点为B ,与y 轴的交点为A ,P 为图象上的一点,若以线段PB 为直径的圆与直线AB 相切于点B ,求P 点的坐标; (3)在(2)中,若圆与x 轴另一交点关于直线PB 的对称点为M ,试探索点M 是否在抛物线y =ax 2+x +1上,若在抛物线上,求出M 点的坐标;若不在,请说明理由.28.解:(1)当a = 0时,y = x +1,图象与x 轴只有一个公共点当a ≠0时,△=1- 4a =0,a = 14 ,此时,图象与x 轴只有一个公共∴函数的解析式为:y =x +1 或`y =14 x 2+x +1……(3(2)设P 为二次函数图象上的一点,过点P 作PC ⊥x 轴于点C .∵y =ax 2+x +1 是二次函数,由(1)知该函数关系式为: y =14x 2+x +1,则顶点为B (-2,0),图象与y 轴的交点 坐标为A (0,1)………(4分)∵以PB 为直径的圆与直线AB 相切于点B ∴PB ⊥AB 则∠PBC =∠BAO ∴Rt △PCB ∽Rt △BOA∴AOBC OBPC ,故PC =2BC ,……………………………………………………(5分)设P 点的坐标为(x ,y ),∵∠ABO 是锐角,∠PBA 是直角,∴∠PBO 是钝角,∴x <-2∴BC =-2-x ,PC =-4-2x ,即y =-4-2x , P 点的坐标为(x ,-4-2x )∵点P 在二次函数y =14 x 2+x +1的图象上,∴-4-2x =14 x 2+x +1…………………(6分)解之得:x 1=-2,x 2=-10∵x <-2 ∴x =-10,∴P 点的坐标为:(-10,16)…………………………………(7分) (3)点M 不在抛物线y =ax 2+x +1 上……………………………………………(8分) 由(2)知:C 为圆与x 轴的另一交点,连接CM ,CM 与直线PB 的交点为Q ,过点M 作x 轴的垂线,垂足为D ,取CD 的中点E ,连接QE ,则CM ⊥PB ,且CQ =MQ ∴QE ∥MD ,QE =12 MD ,QE ⊥CE∵CM ⊥PB ,QE ⊥CEPC ⊥x 轴∴∠QCE =∠EQB =∠CPB ∴tan ∠QCE = tan ∠EQB = tan ∠CPB =12CE =2QE =2×2BE =4BE ,又CB =8,故BE =85 ,QE =165∴Q 点的坐标为(-185 ,165)可求得M 点的坐标为(145 ,325 )…………………………………………………(11分)∵14(145)2+(145)+1 =14425 ≠325∴C 点关于直线PB 的对称点M 不在抛物线y =ax 2+x +1 上……………………(12分) (其它解法,仿此得分)28.(宿迁市2010)(本题满分12分)已知抛物线2y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C ,其顶点为D . (1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形; (3)抛物线上是否存在点Q ,使得△OBQ 的面31?若存积等于四边形ODBE 的面积的在,求点Q 的坐标;若不存在,请说明理由.28、(1)求出:4-=b ,3=c ,抛物线的对称轴为:x=2 ………………3分(2) 抛物线的解析式为342+-=x x y ,易得C 点坐标为(0,3),D 点坐标为(2,-1) 设抛物线的对称轴DE 交x 轴于点F ,易得F 点坐标为(2,0),连接OD ,DB ,BE ∵∆OBC 是等腰直角三角形,∆DFB 也是等腰直角三角形,E 点坐标为(2,2), ∴∠BOE= ∠OBD= 45∴OE ∥BD ∴四边形ODBE 是梯形………………5分 在ODF Rt ∆和EBF Rt ∆中, OD=5122222=+=+DF OF ,BE=5122222=+=+FB EF∴OD= BE∴四边形ODBE 是等腰梯形………………7分(3) 存在,………………8分由题意得:29332121=⨯⨯=⋅=DE OB S ODBE 四边形………………9分 设点Q 坐标为(x ,y ), 由题意得:y y OB S OBQ 2321=⋅=三角形=23293131=⨯=ODBE S 四边形 ∴1±=y当y=1时,即1342=+-x x ,∴221+=x ,222-=x ,∴Q 点坐标为(2+2,1)或(2-2,1) ………………11分当y=-1时,即1342-=+-x x ,∴x=2, ∴Q 点坐标为(2,-1)综上所述,抛物线上存在三点Q 1(2+2,1),Q 2 (2-2,1) ,Q 3(2,-1) 使得OBQ S 三角形=ODBE S 四边形31.………………12分23.(株洲市2010)(本题满分10分)在平面直角坐标系中,抛物线过原点O ,且与x 轴交于另一点A ,其顶点为B .孔明同学用一把宽为3cm 带刻度的矩形直尺对抛物线进行如下测量:①量得3OA cm =;②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C 的刻度读数为4.5. 请完成下列问题:(1)写出抛物线的对称轴; (2)求抛物线的解析式;EFQ 1 Q 3Q 2(3)将图中的直尺(足够长)沿水平方向向右平移到点A 的右边(如图2),直尺的两边交x 轴于点H 、G ,交抛物线于点E 、F .求证:21(9)6EFGH S EF =-梯形.再次提醒:所有的答案都填(涂)到答题卡上,答在本卷上的答案无效。
课时20 函数的综合应用(1)
【课前热身】
1.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为________.
2.已知函数:(1)图象不经过第二象限;(2)图象经过(2,-5),请你写出一个同时满足(1)和(2)的函数_________________
3.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的 长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则
菜园的面积y (单位:米2)与x (单位:米)的函数关
系式为 .(不要求写出自变量x 的取值范围)
4.当路程s 一定时,速度v 与时间t 之间的函数关系是( )
A .正比例函数
B .反比例函数
C .一次函数
D .二次函数 5.函数2y kx =-与k
y x
=
(k ≠0)在同一坐标系内的图象可能是( )
【考点链接】
1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 . 2. 求函数b kx y +=与x 轴的交点横坐标,即令 ,解方程 ; 与y 轴的交点纵坐标,即令 ,求y 值 3. 求一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像的交点,解方程组 . 【典例精析】
例1(06烟台)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,
直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2
. ⑴ 写出y 与x 的关系式;
⑵ 当x=2,3.5时,y 分别是多少?
⑶ 当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.
例2 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.
(1)求抛物线的解析式;
(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.
A
B
C D
(第3题)
菜园 墙
【中考演练】 1. 反比例函数x
k y =
的图像经过A (-23
,5)点、B (a ,-3),则k = ,a = .
2.(06旅顺)如图是一次函数y 1=kx +b 和反比例函数 y 2==
m
x
的图象,•观察图象写出y 1>y 2时,x 的取值范 围是_________.
3.根据右图所示的程序计算 变量y 的值,若输入自变 量x 的值为
3
2
,则输出 的结果是_______.
4.(06威海)如图,过原点的一条直线与反比例函数y =
k
x
(k<0) 的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点 的坐标为( ) A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b )
5. 二次函数y =x 2
+2x -7的函数值是8,那么对应的x 的值是( ) A .3 B .5 C .-3和5 D .3和-5
6.下列图中阴影部分的面积与算式122)2
1
(|43|-++-的结果相同的是( )
7. 如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1) 四点,则该圆圆心的坐标 为( )
A.(2,-1)
B.(2,2)
C.(2,1)
D.(3,1) 三、解答题
8. 已知点A 的坐标为(1
3),,点B 的坐标为(31),. ⑴ 写出一个图象经过A B ,两点的函数表达式;
⑵ 指出该函数的两个性质.
9. 反比例函数y =x
k
的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,
(1)求反比例函数解析式.
(2)当P 在什么位置时,△OPA 为直角三角形,求出此时P 点的坐标.
10.(08枣庄)如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折
后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34
. (1)求B ′点的坐标;
(2)求折痕CE 所在直线的解析式.。